

NEUBAU STH-RH STÖCKHEIM-SÜD - BRAUNSCHWEIG

STATISCHE BERECHNUNG IM RAHMEN DER GEHNEMIGUNGSPLANUNG LEISTUNGSPHASE 4

BAUHERR Nibelungen Wohnbau GmbH

Freyastraße 10

38106 Braunschweig

OBJEKTPLANUNG KPN Architekten BDA

Frankfurter Str. 2 38122 Braunschweig

PROJEKTNUMMER 2023 300

AUFSTELLUNG Dipl.-Ing. Andreas Kyrath

BEARBEITUNG Georg Brachmann, M. Sc.

STAND 29.02.2024

DATEINAME

NBAUVORLVO 06 Standsicherheit Nachweis 20240229 V1

Seite: V-2

2023 300 DV ÙVPËJPĀĀŪd& @ ą ÁJ>å

Pos. DV

Dokumentenverfolgung

Datum	Dokument	Grund	Vermerk	Sachbearbeiter
29.02.2024	Kapitel V Seiten V-1 bis V-6 Kapitel 0 Seiten 0-1 bis 0-18 Kapitel 1 Seiten 1-1 bis 1-137 Kapitel 2 Seiten 2-1 bis 2-251 Kapitel 3 Seiten 3-1 bis 3-120 Kapitel 4 Seiten 4-1 bis 4-112 Kapitel 5 Seiten 6-1 bis 5-44 Kapitel 6 Seiten 6-1 bis 6-23 (711 Seiten)	Abgabe Genehmigungsplanung	Stadt BS, Bauherr und Objektplanung pdf	Bra

2023 300 Inhalt ÙVPËUPĀĀŪd& @ ą̃ ÁŪ>å Seite: V-3

<u>Inhaltsverzeichnis</u>

Position	Beschreibung	Seite
DB DV	Deckblatt Dokumentenverfolgung Inhalt	V-1 V-2 V-3
0 - Allgemeir V-0.1 L-0.1 L-0.2 GA-0.1	nes Allgemeine Vorbemerkungen Allgemeine Lastannahmen Eigen- und Verkehrslasten 夕&&@森&弾 ずんし&@^^Á Ěヤ む ůん>¦んじ^*^ ~碘 Õ^ê ů^滋・・・ぐぎ } *	0-1 0-2 0-9 0-11 0-16
1 - 3. Oberge D-1.1	eschoss Ö^&\^}•^•¢^{ Á-à^¦Á-HÁ-JŐ	1-1 1-2
D-1.2	C 30/37 h = 20 cm Ö^&\^}•^•¢^{Á⇒à^¦ÁnHÁUÕÄÄÖÓ^¦^&&@ÁVÜPÁEÁs@⊹{ã&@ÁV¦^}}`}* C 30/37	1-53
ST-1.1	h = 20 cm Ùà⊞J⇔c ^Á B 500SA, C 25/30	1-87
ST-1.2	b/h = 56/20 cm Ùœ⊕ ⇔c ^ \$ 235	1-95
ST-1.3	ROHR 88.9-14.2 Ùà∰J⊳c ^ B 500SA, C 25/30	1-101
RB-1.1	b/h = 38/20 cm Ùcà⊞Üā;*àæ∖\^}Æi,ÁNËÙ&@æ∤^ÁÓ¦>∙č}*Æšæěà^}*æ)* B 500SA, C 25/30	1-110
DST-1.1	b/h = 12.5/17.5 cm Ùœ@à^﴿}ËÖ゙¦&@æ):}æ&@,^ã∙ÁÛœæ@•c>c^ B 500SA, C 30/37	1-115
DST-1.2	h = 20 cm Ùœ@à^﴿} HÖˇ¦&@æà:}æ&@,^ã∙ÁÙœæΦ•⇔c^ B 500SA, C 30/37	1-118
DST-1.3	h = 20 cm Stahlbeton-Durchstanznachweis Wandecke B 500SA, C 30/37	1-121
DST-1.4	h = 20 cm Ùœæ@à^q[}EÖˇ¦&@œa):}æ&@,^ãrÁÜæ)å∙⇔c^ B 500SA, C 30/37	1-124
DST-1.5	h = 20 cm Ùœ@à^q[}EÖˇ¦&@œa):}æ&@,^ãrÁÜæ)å^&∖∙⇔c^ B 500SA, C 30/37	1-126
DST-1.6	h = 20 cm Ùœ@à^q[}EÖˇ¦&@œà):}æ&@,^ã-ÁÜæ)å^&\∙⇔c^ B 500SA, C 30/37	1-129
AW-1.1	h = 20 cm Taĕ^¦¸^¦\∙}æ&@,^ãnÁÖQoÁÒÞÁrJJÎÉACEi^}¸æ)åÉA,ãjÈAç^¦oãa†^ÁÓ^æ)•]¦`&@}* KS-P20-2.0/DM	1-131
W-1.1	t = 20 cm StbAttika Dachgarten B 500SA, C 25/30 h = 20 cm	1-135
2 - 2. Oberge D-2.1		2-1 2-2

Auftrags-Nr.	Position	Ingenieurgesellschaft mbH	
2023 300	Inhalt	ÙVPËÜPÄÄÜd&\@ã ÁÛ>å	Seite: V-4
Position	Beschreibung $b/h = 20/53$ cm, $h = 20$ cm		Seite
D-2.2	Ö^&\^}•^•¢^{ Á∗à^¦ÁŒĂ∪ÕÃ C 30/37 h = 20 cm	ÄÓ^¦^&&@ÁVÜPÁÉÁs@¦{ã&@ÁV¦^}}*	2-68
ST-2.1	n = 20 cm Ùœ⊞J⇔c ^ B 500SA, C 25/30 b/h = 56/20 cm		2-100
ST-2.2	D/N = 56/20 GH Ùœ⊞J⇔c ^ B 500SA, C 25/30 b/h = 24/70 cm		2-108
ST-2.3	D/II = 24/70 CIII Ùœ⊞J⇔c ^ B 500SA, C 25/30 b/h = 20/20 cm		2-116
ST-2.4	D/H = 20/20 GH Ùœ∰Jcc ^ B 500SA, C 25/30 b/h = 38/20 cm		2-123
RB-2.1	D/n = 36/20 Cm ÙœÌËÜ₫ * àæ\^} Æ ÁVËÙ&@d' B 500SA, C 25/30 b/h = 12.5/17.5 cm	^ÁÓ¦>•č}*Æšæěà^}*æ)*	2-131
W-2.1	Stahlbetonwand B 500SA, C 25/30 h = 20 cm		2-139
DST-2.1	Ùæ@à^{{} } ËÖ`¦&@æ};}æ&@ B 500SA, C 30/37 h = 20 cm	⊉, ^ãrÁÜæ) å• c>c ^	2-143
DST-2.2	Ùæ@à^﴿} EÖ`¦&@æ):}æ&© B 500SA, C 30/37 h = 20 cm	[⊉] , ^ã ÁÜæ) å^&\•c-c^	2-146
DST-2.3	Ùæ@à^﴿} EÖ`¦&@æ):}æ&© B 500SA, C 30/37 h = 20 cm	[⊉] , ^ã ÁÜæ) å^&\•c-c^	2-149
DST-2.4	Stahlbeton-Durchstanznach B 500SA, C 30/37 h = 20 cm	weis Wandecke	2-152
DST-2.5	Ùæ@à^﴿} EÖ`¦&@æ):}æ&@ B 500SA, C 30/37 h = 20 cm	[⊉] , ^ã ÁÜæ) å• ⇔c ^	2-155
WT-2.1-1	Y æ) åæda ^\Á\\ê*^\ B 500SA, C 25/30 b/h = 24/316 cm		2-158
WT-2.1-2	Y æ) åælæt ^¦Á/¦ê* ^¦ÆÛ&@ ã C 25/30 h = 24 cm	à^}}æ&@^ã^	2-164
WT-2.2-1	Y æ) åæda ^\Á\\ê*^\ B 500SA, C 25/30 b/h = 24/316 cm		2-181
WT-2.2-2	Y æ) åæda ^¦Á/¦ê* ^¦ÆÛ&@ ã C 25/30 h = 24 cm	à^}}æ&@,^ã^	2-191
WT-2.3	Y æ) åæda ^¦Á/¦ê* ^¦ B 500SA, C 25/30 b/h = 20/316 cm		2-206
WT-2.3-2	Y æ) åæda ^\Á/\ê*^\ÆÛ&@ a C 25/30 h = 20 cm	à^}}æ&@,^ã^	2-216
WT-2.4-1	Y a) åædî ^¦Á/¦ê*^¦ B 500SA, C 25/30 b/h = 20/316 cm		2-228

Auftrags-Nr. Position 2023 300 ÙVPËÜPÆÄÙ¢4&\@`ā ÁÙ>å Seite: V-5 Inhalt Position Beschreibung Seite WT-2.4-2 Yæ)åæloā*^¦ÁV¦ê*^¦ÆÄÚ&@^āa^}}æ&@^ãa^ 2-235 C 25/30 h = 20 cm3 - 1. Obergeschoss 3-1 Ö^&\^}•^•œ^{ Á+à^¦ÁFÈÁUÕ D-3.1 3-2 B 500SA, C 25/30, C 30/37 b/h = 20/53 cm, h = 20 cmÖ^&\^}•^•c^{Ápà^¦ÁFÉAUÕÆÉÓ^¦^&&@ÁVÜPÆÉÁs@¦{ã&@ÁV¦^}}`}* D-3.2 3-73 C 30/37 h = 20 cmÙœ̀∰cc^ ST-3.1 3-111 B 500SA, C 25/30 b/h = 38/20 cmÙcæ@pà^{[} ËÖ`¦&@cæ):}æ&@^ãAÜæ)å∙c>c^ DST-3.1 3-118 B 500SA, C 30/37 h = 20 cm4 - Erdgeschoss 4-1 D-4.1 Ö^&\^}•^•¢^{ Á•à^¦ÁÒÕ 4-2 B 500SA, C 25/30, C 30/37 b/h = 20/40...20/109 cm, h = 20 cm ST-4.1 Ùœ̀∰cc^ 4-83 B 500SA, C 25/30 b/h = 38/20 cmDST-4.1 Stahlbeton-Durchstanznachweis Wandende 4-90 B 500SA, C 30/37 h = 20 cmW-4.1 4-93 Innenwand, genaueres Verfahren KS-P 20-2.0/DM t = 17.5 cmW-4.2 Stb.-Wand 4-96 B 500SA, C 25/30 h = 20 cmW-4.3 Innenwand, genaueres Verfahren 4-102 KS-P 20-2.0/DM t = 24 cmW-4.4 OEi^}、æa)åÆk^}æĕ^¦^•Áx^¦~æ@^} 4-105 KS-P 20-2.0/DM t = 20 cmW-4.5 Mauerwerksnachweis DIN EN 1996 / Aussteifungswand EG 4-109 KS-P 20-2.0/DM t = 17.5 cm) '!'; f~ bXi b[5-1 SP-5.1 Sohlplattensystem 5-2 C 30/37 h = 35 cmEF-5.1 Stb.-Einzelfundament 5-33 B 500SA, C 30/37 by/bz/h = 205/205/60 cmW-5.1 Stb.-Wand Aufzugsunterfahrt WU 5-37 B 500SA, C 30/37 h = 24 cmSP-5.2 Rissbreitennachweis Sohle Aufzugsunterfahrt WU 5-42 B 500SA, C 30/37 h = 35 cm6 - Allgemeine Positionen 6-1

Auftrags-Nr.	Position	Ingenieurgesellschaft mbH	
2023 300	Inhalt	ÙVPËJPÆÄJG4&\@@{AJ>å	Seite: V-6
Position	Beschreibung		Seite
TR-6.1	Gerader StbTreppenlauf B 500SA, C 30/37 h = 26 cm		6-2
IK-6.1	Isokorbanschluss Balkon		6-10
IK-6.2	Isokorbanschluss Balkon		6-14
W-6.1	Stahlbetonwand Aufzug B 500SA, C 25/30 h = 24 cm		6-18
W-6.2	Allgemeine Angaben KS-Mauerw	verk	6-21

2023 300 ÚVP ËÜP ĀĀŪd& @ ą̃ AŪ>å Seite: 0-1

0 - Allgemeines

2023 300 V-0.1 ÙVPËJPÆÄQd&\@a(A)>å Seite: 0-2

Pos. V-0.1

Allgemeine Vorbemerkungen

1 Anlass

Die Nibelungen Wohnbau GmbH plant den Neubau einer Wohnbebauung im Stadtquartier Stöckheim-Süd in Braunschweig. Die m+p Ingenieurgesellschaft mbH wurde mit der Erstellung der Unterlagen zur Genehmigungsstatik beauftragt.

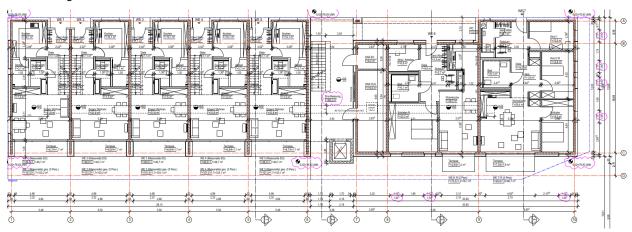


Abbildung 1-1 Grundriss EG

2 Unterlagen

Grundlagen der Berechnungen sind die Entwurfspläne (Vorabzug) von KPN Architekten BDA, Frankfurter Str. 2, 38122 Braunschweig vom 31.01.2024.

3 Bau- und Konstruktionsbeschreibung

Bei dem Gebäude handelt es sich um einen 4-geschossigen Baukörper. Die Grundrisse des Hauses mit den maximalen äußeren Abmessungen betragen insgesamt ca. L \times B = 52,90 m \times 15,00 m mit einer Attikahöhe von ca. 12,35 m über GOK.

Die Ausführung des Gebäudes ist in konventioneller Bauweise geplant. Die 20 cm dicken zweiachsig gespannten Stahlbeton-Geschossdecken tragen ihre Lasten über Mauerwerkswände, Stahlbetonwände und Stahlbetonstützen in die Gründung ab. In Teilbereichen wird die Decke über dem 1. Obergeschoss 28 cm dick ausgeführt. Die Balkone und Laubengangplatten aus Stahlbeton (h = 20 cm) werden mittels tragenden Wärmedämmelementen, überwiegend liniengelagert, an die Decken angeschlossen. Die Bereiche zwischen den Anschlüssen mittels Wärmedämmelementen können mit bauseitiger Dämmung oder nichttragenden Wärmedämmelementen ausgeführt werden.

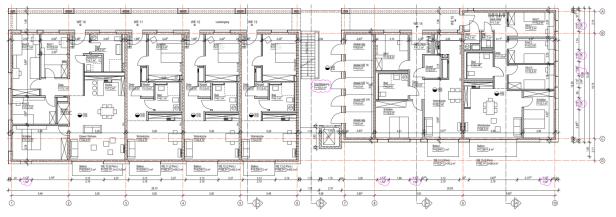


Abbildung 3-1 Grundriss 2. Obergeschoss

Seite: 0-3

2023 300 V-0.1 ÚVPĒÜPĀĀĴ¢4& @ (a ĀĴ)>å

Im 2. Obergeschoss werden die Deckenlasten teilweise über wandartige Träger abgefangen und in tragende Wände bzw. Stützen geleitet.

Der Aufzugsschacht wird in Stahlbetonbauweise hergestellt. Die leichten Trennwände werden über einen Trennwandzuschlag bei den Nutzlasten berücksichtigt. Die Gebäudeaussteifung erfolgt über die horizontalen Deckenscheiben in Verbindung mit den vertikalen Mauerwerksscheiben, Stb.-Wandscheiben, wandartigen Träger und dem Stahlbetonaufzugskern.

Das Gebäude wird auf einer elastisch gebetteten Stahlbetonsohlplatte flach gegründet.

Abbildung 3-2 Ansicht Nord

4 Baugrund und Grundwasser

Es liegt ein Bodengutachten Nr. 644.21 aus dem Hause bsp ingenieure GmbH, Sudetenstraße 1e, 38114 Braunschweig vom 18.01.2024 vor. Gemäß Bodengutachten sind aus statischer Sicht folgende Hauptparameter für die Bemessung maßgebend:

- Vorhandener Baugrund
 - o Oberboden schwach humos bis humoser Schluff bis ca. 0,40 cm unter Geländeoberkante (GOK)
 - Schluff/Sand, stark witterungsempfindlich, ab ca. 0,40 m unter GOK bis ca. 4,20 m 5,10 m unter GOK
 - o Ton ab ca. 4,50 m − 5,50 m unter GOK, stark witterungsempfindlich

• Grundwasserverhältnisse

- o Grundwasser stand während den Untersuchungen bei ca. 1,5 m bis 2,0 m unter GOK an (74,80 mNN bzw. 75,26 mNN)
- Bemessungswasserstand HGW₁₀₀ = 75,90 mNN (± 0,00 entspricht 76,95 mNN)
- o Aufstauendes Sickerwasser kann zeitweise bis zur GOK anstehen

Gründungsempfehlung

- Oberboden ist vollständig abzuschieben
- Fundamentsohle liegt im Schluff, welche bei mind. steifer Konsistenz als ausreichend tragfähig eingestuft wird
- weich bzw. weich bis steif konsistente Böden in der Gründungssohle sind nicht ausreichend tragfähig und in einer Mächtigkeit von mind. 0,50 m gegen gut verdichtbares Material auszutauschen
- Sohlwiderstand $\sigma_{R,d}$ = 225 kN/m² bzw. σ_{zul} = 160 kN/m² für Einzel- und Streifenfundamente
- o Bettungsmodul für Flachgründung k₅ = 5 MN/m³

Für alle weiteren Angaben wird auf das Originaldokument verwiesen.

2023 300 V-0.1 ÚVPËÜPÆÄÚd4&\@a[AÛ>å Seite: 0-4

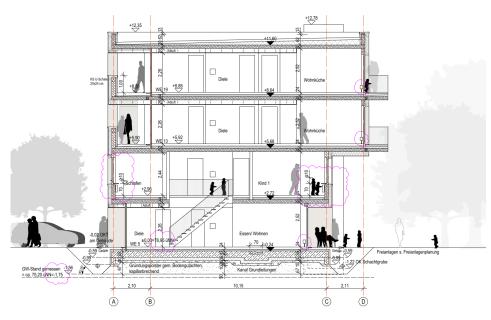


Abbildung 4-1 Querschnitt

5 Angabe von Produkten

In der statischen Berechnung und in den Ausführungszeichnungen werden im Regelfall keine Produkte wie Fugenbänder, Lager, Einbauteile, Dübel u. ä. gewählt. In Ausnahmefällen wird davon abgewichen um darzulegen, dass die gewählte Konstruktion ausführbar ist. Die Anforderungen sind in der statischen Berechnung ermittelt und angegeben. Die Wahl der Produkte erfolgt durch die ausführende Firma, die auch die eventuell erforderlichen Unterlagen, Nachweise und Zulassungen für diese Bauteile beizubringen hat.

6 Verwendete Baustoffe

Beton:

Geschossdecken C30/37 – XC3, WO (luftseitig im Außenbereich)

C30/37 - XC1, WO (im Innenbereich)

Balkonplatten / Loggien C30/37 – XC3, XF1, WF (oberseitige Abdichtung)

Wandartige Träger C25/30 – XC1, WO

Treppen, Treppenpodeste C30/37 – XC3, XF1, WF (Außenbereich)

Wände Aufzug C25/30 – XC1, WO

Gründung (Sohlplatte) C30/37 – XC2, WF (erdseitig)

C30/37 – XC1, WO (luftseitig im Innenbereich)

C30/37 - XC3, WF (Außenbereich)

Aufzugsunterfahrten C30/37 WU – XC2, WF

Sauberkeitsschicht C8/10

Abweichungen sind den entsprechenden Positionen zu entnehmen.

Betonstahl: B500S (A) (Ausführung überwiegend in Stabstahl)

Mauerwerk:

Wände (tragend) Kalksandstein DIN 20000-402 – KS-P 20 – 2,0 DM

Seite: 0-5

2023 300 V-0.1

Für den Einbau und die Anwendung von vorgefertigten Konstruktionen (z.B. Anker, Schrauben, Dübel) sind die diesbezüglichen vom Hersteller als verbindlich angegebenen Einbau- und Anwendungsvorschriften zu beachten.

Die in der Statik und in den Positionsplänen angegebenen Querschnitte sind vor Bauausführung verantwortlich zu prüfen. Bei Unstimmigkeiten der Berechnung bzw. Konstruktionspläne mit den Entwurfsplänen oder bei nicht zutreffenden rechnerischen Annahmen ist der Aufsteller zu benachrichtigen. Für die Güte der verwendeten Materialien und für die Standsicherheit während der Bauzustände ist der ausführende Bauunternehmer verantwortlich.

7 Lastannahmen

Die Lastannahmen entsprechen der DIN EN 1991-1 und sind der statischen Berechnung zu entnehmen.

8 Wärmeschutz, Schallschutz

Ein Nachweis des Schall- und Wärmeschutzes ist nicht Gegenstand dieser Berechnung.

9 Flachdächer mit Innenentwässerung

Bei Dächern mit einer leichten Dacheindeckung und einer umlaufenden Attika bzw. höher liegenden angrenzenden Gebäuden sind in Höhe der Dacheindeckung ausreichend viele Notüberläufe (Speier) anzuordnen.

In den statischen Nachweisen der Dachdecke sind in den Nutzlasten 10 cm Wasserüberstau berücksichtigt.

10 Angaben zur Ausführung

10.1 Gründung

Der Bodenaushub ist so durchzuführen, dass die Baugrundsohle nicht durch Gerätebetrieb aufgewühlt und in der Tragfähigkeit beeinträchtigt wird.

Vor Ausführung der Gründung ist die Abnahme der Baugrundsohle durch die Bauleitung zu beantragen. Hierbei ist feststellen zu lassen, dass zwischen den in der Berechnung getroffenen Annahmen und dem örtlich angetroffenen Baugrundzustand Übereinstimmung besteht.

10.2 Stahlbeton

Die Ausführung der Stahlbetonarbeiten hat in allen Bereichen der DIN EN 13670 im vollen Umfang zu entsprechen.

Betonüberdeckung:

Es ist das "Merkblatt Betondeckung und Bewehrung" (Fassung 07/02), herausgegeben vom Deutschen Betonverein e. V., zu beachten.

Schwinden:

Es ist ein kriech- und schwindarmer Beton zu verwenden. Die Nachbehandlung, die Ausschalfristen sowie die Stellung von Hilfsstützen hat gem. DIN EN 13670 zu erfolgen.

Aussparungen:

Das Stemmen von Aussparungen aller Art in tragenden Wänden ist verboten. Aussparungen dürfen nur nach Rücksprache mit dem Statiker gefräst oder geschnitten werden.

Rissbreitenbeschränkung:

Jede Stahlbetonkonstruktion kann in Abhängigkeit von der Beanspruchung Risse enthalten. Dieses ist kein Mangel, sondern die physikalische Notwendigkeit des Risses wird in der statischen Berechnung nach Zustand II vorausgesetzt. Die Rissbreitenbeschränkung wird erforderlichenfalls im Einzelnen nachgewiesen. Die Verminderung der Rissbildung wird zusätzlich bei der Bewehrungswahl berücksichtigt.

martens+puller
Ingenieurgesellschaft mbH

Seite: 0-6

ÙVPËÜPÄÄÜd&\@A ÁÜ>å

2023 300

V-0.1

Bewehrungswahl:

Die in der Bemessung unter Berücksichtigung der erforderlichen Bewehrungsquerschnitte angegebene Bewehrung kann im Zuge der Ausführungsplanung durch den Aufsteller modifiziert werden.

Betonieren bei kühler Witterung und Frost:

Hierzu siehe die Angaben in der DIN EN 13670. Des Weiteren ist das Merkblatt "Betonieren im Winter" (Fassung 08/99 und 2004), herausgegeben vom Deutschen Betonverein e. V., zu beachten.

Arbeitsfugen:

Die einzelnen Betonierabschnitte sind vor Beginn des Betonierens festzulegen und abzustimmen. Arbeitsfugen sind so auszubilden, dass alle auftretenden Beanspruchungen aufgenommen werden können. Hierzu siehe auch Heft 400 des DAfStb. Für weitere Angaben zum "Fördern, Verarbeiten und Nachbehandeln des Betons" siehe DIN EN 13670.

Betonieren bei dichter Bewehrungslage:

Die Körnung des gewählten Betons bzw. die Einbring- und Verdichtungsgeräte sind auf die Bewehrung abzustimmen. Hierzu sind die Angaben in der DIN EN 13670 zu beachten.

Schweißarbeiten an Bewehrungsstäben:

Schweißarbeiten an Bewehrungsstäben dürfen nur von Betrieben ausgeführt werden, die einen Eignungsnachweis nach DIN EN ISO 17660 besitzen. Die Schweißarbeiten dürfen nur von geprüften Schweißern vorgenommen werden.

10.3 Stahlbetonfertigteile

Der Abschnitt Stahlbeton gilt hier analog. Ergänzend sind die Merkblätter des Fachverbandes für Fertigteile zu beachten.

Die Transportbewehrung und -anker sind nicht Bestandteil der statischen Berechnung. Sie sind von der ausführenden Firma nachzuweisen. Für den Einbau und die Anwendung der Transportanker sind die diesbezüglichen vom Hersteller als verbindlich angegebenen Einbau- und Anwendungsvorschriften zu beachten. Dies betrifft auch den Einbau zusätzlicher Schrägzugbügel, die auch ggfs. für die Anwendung von Zweistranggehängen und/oder für das Aufrichten der Fertigteile zusätzlich erforderlich sind.

10.4 Leichtbauwände auf Stahlbeton-Deckenplatten

Zur Vermeidung von schädlichen Durchbiegungen der Deckenplatten und der Rissbildung in den Leichtbauwänden sind folgende Anweisungen zu berücksichtigen:

- Der Abschnitt Stahlbeton ist in vollem Umfang zu berücksichtigen, soweit dies nicht durch die folgenden Punkte neu geregelt wird.
- Die Nachbehandlung des Betons der Decken ist besonders sorgfältig durchzuführen (vergl. DIN EN 13670).
- Die Angaben über Ausschalfristen nach DIN EN 13670 sind zu beachten und zusätzlich zu den üblichen Zusatzfristen (aus Temperaturen unter + 5° usw.) um mind. 30 % zu verlängern.

Die leichten Trennwände wurden bei der Bemessung der Decke durch einen Trennwandzuschlag von 1,20 kN/m² berücksichtigt. Dies entspricht einer Wand (einschließlich Putz) mit einer Last von bis zu 5 kN/m Wandlänge.

Nichttragende Wände sind mittels Fugenkonstruktion von der Decke zu trennen, so dass es zu keinem unbeabsichtigten Lastabtrag kommt.

Alle nicht tragenden, nachträglich ergänzten Mauerwerks-Wände sind erst nach Abschluss der Schwindverformungen aufzumauern und über geeignete Verbindungen (z.B. Mauerwerksanschlussschienen etc.) an Stahlbeton- bzw. Mauerwerksbauteile anzuschließen, um störende Trennrisse zu vermeiden.

m p martens+puller
Ingenieurgesellschaft mbH

ÙVPËÜPÄÄÜ¢4&\@ãÁÜ>å

2023 300

V-0.1

@ a ÂJ>a Seite: 0-7

11 Sonstiges

11.1 Arbeitsfugen

Die Oberflächenbeschaffenheit von Arbeitsfugen von Betonbauteilen ist mindestens rau (DIN EN 1992-1-1, Abs. 6.2.5) auszubilden. Die Arbeitsfugen werden nach technisch wirtschaftlichen Gesichtspunkten der ausführenden Firma festgelegt.

11.2 Treppen

Die Treppen werden als Stahlbetontreppen ausgebildet. Die Belastungen aus den Treppenkonstruktionen werden an den Deckenauflagern berücksichtigt.

12 Literatur

Betonkalender

"Bautabellen mit Berechnungshinweisen und Beispielen" von SCHNEIDER

Hefte DAfStb

Leonhard-Vorlesungen über Massivbau

KS-Mauerfibel

DASt-Richtlinien (Band 1 und Band 2, 2. Auflage)

Grundbau

DIN-Bestimmungen

Eurocodes

13 Normen

DIN EN 1991 Einwirkungen auf Tragwerke

DIN EN 1992 Stahlbetonbauten

DIN EN 1993 Stahlbauten

DIN EN 1996 Mauerwerksbauten

DIN EN 1997 Grundbau

DIN EN 13670 / DIN 1045-3

in den jeweils gültigen Fassungen

14 EDV Programme

mb AEC Software GmbH, Kaiserslautern (BauStatik, MicroFe) Version 2022

Infograph

Infograph Rissbreitenbeschränkung nach DIN EN 1992-1-1

Schöck Isokorb Typ Concrete - Concrete Version 1.15.0.0

15 Allgemeines zum Lesen des Standsicherheitsnachweises

Austauschseiten sind mit einem Kleinbuchstaben versehen. Der alphabetisch letzte Buchstabe hat Gültigkeit, z.B. ersetzt die Seite 10d die Seiten 10 bis 10c. Einschubseiten sind mit einem Punkt hinter der Seitenzahl versehen, z.B. werden die Seiten 5.1 bis 5.3 hinter der aktuellen Seite 5 eingefügt. Ungültige Seiten sind bitte auszusortieren.

uftrags-Nr.	Position
uitiago ivi.	1 03111011

(Dipl.-Ing. Andreas Kyrath)

2023 300 V-0.1 ÚVPËÜPĀĀŪd& @ ą̃ ÂŪ>å Seite: 0-8

16 Aufstellervermerk

Diese statische Berechnung für den Neubau eine Kapitel 0 - 6 mit dem auf der Seite zur Dokumenten	r Wohnbebauung Stöckheim-Süd in Braunschweig umfasst die verfolgung (Seite V-2 ff.) angegebenen Umfang.
Braunschweig, den 29.02.2024	
Aufgestellt:	Bearbeitet:

(Georg Brachmann, M.Sc.)

Pos. L-0.1	Allgemeine Lastar	nnahmen Eigen- und Verkeh	rslast	en_			
Einwirkungen	Einwirkungen nach DIN EN 1990:2010-12						
Gk	Eigenlasten						
Gk.H	Ùœ̂}åã*^ÁÒã¸ã\`} Wasserdruck						
Gk.E	Ùœ̂}åã*^¦Ávæ•^¦å Erddruck	1 &\					
Qk.N	Ùœ̂} åã* ^¦ÁÒ¦å妎 &\ Nutzlasten						
Qk.S	Schnee	ËÄ}åÁOE ~}c@ado•¦ê~{ ^				fw	
	Ù&@;^^Ё∕(`}åÁÔã(æ• Qk.S	c^} Á⊳¦ÁU¦c^Áàã Á⊳ÞÆÆÆ€€Á; min/max Werte					
Qk.W	Wind Windlasten Qk.W Qk.W.000 Qk.W.090	min/max Werte OB,•d4{¦&&@č}*Á ÁMÁ€» OB,•d4{¦&&@č}*Á ÁMÁJ€»					
Belastungen Ø ê&@} æ ৫\}	Öæ&@ ê&@}						
Gk-gk_DA_1 Gk-gk_DA_2 Û\BE\´Y>	Dachaufbau (gesar Dachaufbau (gesar Yæ•^¦>à^¦•æĕ			= = =	3.40 4.00 1.00	\Þ₽(\Þ₽(\Þ₽(
Zusammenstellungen							
gk_DA_1	Dachaufbau (gesar PV-Anlage Ballastierung PV-Aı Öæ&@^* >} * Á\¢ = 10 cm)	nlage	0.30 1.00		0.30 1.00	/ ÞΦ)	
	Abdichtung Öê{ { `} * ÁÇAZÁT EZÉQÁ	<i>M</i> AH€Á&{ D	1.60 0.20 0.30	= =	1.60 0.20 0.30	/ ÞÐ / ÞÐ / ÞÐ	
gk_DA_2	Dachaufbau (gesar Öæ&@^*¦>} * Á§ e = 30 cm)	nt) ^}•ãçÁÇÙ`à•dæaA@		=	3.40	\Þ Ð)	
	Abdichtung Öê{ { ` } * ÁZZÁT ÉZÓM	MÁNEÁS{ D	3.5 0.20 0.30	=	3.50 0.20 0.30 4.00	\ ÞÐ \ ÞÐ \ ÞÐ \ ÞÐ	
~\^Y>	Yæ•^¦>à^¦•œĕ Yæ•^¦>à^¦•œĕÁ(a	æ¢È @W⁄⊼€ /&{	1.00	=	1.00	\ÞÐ(
Ø ê&@} æ¢\}	Y [@} ê&@}						
Gk-gk_BA_1 Qk.N-qk_BA_1	Bodenaufbau Nutzlast			= =	1.80 2.70	/ ÞÐ/	
Zusammenstellungen							
gk_BA_1	Bodenaufbau Belag (Fliese bzw.	Teppich bzw.					

Auftrags-Nr.	Position	Imartens+	haft mbH		
2023 300	L-0.1	ÙVPËJPÄÄJd& @ā ÁJ>	å	Se	ite: 0-10
	Parkett)				
	7	31 (5 5 m)	0.30 =	0.30	/ ÞÐ
	Zementest	rich (5.5 cm)	1.20 =	1.20	/ Þ₽)
	Viau र अध्या	nê{{``}*ÁÇÜÈEÁ&{D	0.20 = 0.10 =	0.20 0.10	\ÞÐ() \ÞÐ()
	Keserve		0.10 =	1.80	\ ÞÐ
qk_BA_1	Nutzlast Þ`c∣æ-oÁO∃ OE-^}c@æ‡o	ĐÁ≽¦ÁY[@)ËÁÈ •¦ê`{^			·
		, , ,	1.5 =	1.50	\ÞÐ)
		å:`•&@pætÁ⊳¦ÆŠVYÁàã			
	5.0kN/m		4.0	4.00	\ L D\
			1.2 =	1.20 2.70	_\Þ₽) _\Þ₽)
			=	2.70	/ Ptg/
<u>Ø ê&@} æ•¢\}</u>	Loggien B	alkone			
Gk-gk_L	Bodenaufb	วลน	=	2.30	\ÞÐ)
Qk.N-qk_L	Nutzlast	, du	=	4.00	\ Þ₽)
Zusammenstellungen					
gk_L	Bodenaufb				
		ag (4.5 cm)	1.10 =	1.10	/ ÞÐ
		7.5 cm) g + Bitumenbahn +	1.10 =	1.10	/ ÞÐ)
	Drainage		0.10 =	0.10	\ P.E/I
			0.10 =	2.30	\ÞÐ) \ÞÐ)
qk_L	Šæ a ^} * ê}	Á⊳¦ÁÖæ&@^¦æ•^}È ∤*^ÈÄŠ[**&}Á•, ÈÄÓæ∦[}^ egspodeste	_	2.30	(F4)
	ana / taccti	ogopoucoto	4.0 =	4.00	\Þ₽)
Ø ê&@\} æ c^}	Treppen				
Ok ale TH	Dadasaufi			4.40	\ - - - -
Gk-gk_TH Qk.N-qk_TH	Bodenaufb Nutzlast	oau	= =	1.40 3.00	\ÞÐ) \ÞÐ)
Qk.N-qk_TTT	เทนเผล		=	3.00	\РБ
Zusammenstellungen					
gk_TH	Bodenaufb	oau			
0 –	Fliesen (2	cm)	0.40 =	0.40	\Þ₽)
	T 4¦¢^ à^œ	ÁÇIÁS(D	1.00 =	1.00	\ ÞÐ
			=	1.40	/ ÞÐ)
qk_TH		FÁ⊳¦Á/^]] ^} Á } å odeste der Kategorie A und			
	DI		3.0 =	3.00	\Þ₽)
			3.0 =	3.00	י אדעי

Auftrags-Nr. Position IIII Ingenieurgesellschaft mbH

2023 300 L-0.2 ÜVPEÜPÆÄUd& @ ā ÂJ>å Seite: 0-11

Pos. L-0.2	: `UW(XUW(`a]h'GW(bYY'i"K]bX'Z'f'FY[Y`ZU``

System Abmessungen	Õ^àê`å^åæc^} Õ^àê`å^à!^ãc^ Õ^àê`å^ ê}*^ Õ^àê`å^@!@ÁÇP4@ÁQ æ&@àæ&@D	B L H	=	52.50 14.50 12.50	m m m
Geograf. Angaben	Õ^ ê} å^@⊈@Á≽à^¦ÁÞÞ Windzone Schneelastzone Standort	A WZ SLZ		80.00 2 2 Binne	m enland
Geometrie	Flachdach Traufbereich mit Attika				

Oficiá æ>à^¦•cæ}å

and a ray a

Yæ)å4~-}`}*^}

*^•&@[••^}^ÁŒi^}¸ê}å^

Einwirkungen nach DIN EN 1990:2010-12

Qk.S Schnee

Ù&@ ^^ËÁ} åÁÒã |æ ♂} Á>¦ÁU¦ ♂Áàã Á>ÞÁÉÁF€€€Á

Qk.S min/max Werte

Qk.W Wind

Windlasten

Qk.W min/max Werte

Windlastern Windlastermittlung nach DIN EN 1991-1-4:2010-12

Ermittlung im Regelfall nach NA.B.3.3

OF • d4{ | 28@ } * Æ Á A A A A A

Basiswindgeschwindigkeit	$V_{b,0} =$	25.00	m/s
Basisgeschwindigkeitsdruck	$q_{b,0} =$	0.39	\Þ₽)
Ó^: * * • @# @	Ze =	13.20	m
Geschwindigkeitsdruck	$q_p =$	0.73	\ÞÐ)
Šæ• c^ ā, ⊣` • • ¬ê &@	Ä	10.00	{
Ó^{^ & @*¦4i ^	e _D =	14.50	m

 $h_p =$

0.70

14.50

m

ew =

m

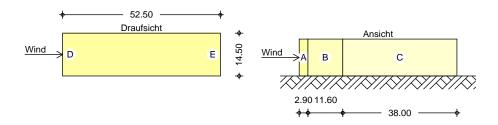
Ü&&@č}*Á M€»
Winddruckverteilung

Qk.W.000

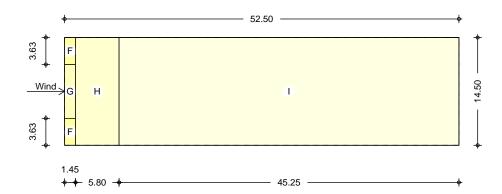
M 1:600

52.50 — qp(z) [kN/m²]
0.73

Position


2023 300

L-0.2


ÙVPËÜPÄÄÛ¢4&\@@ã ÁÛ>å

Seite: 0-12

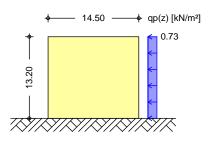
Bereichseinteilung M 1:1250

M 1:500

Bereich	d,b	h	Cpe,1	C pe,10	We,10
	[m]	[m]	[-]	[-]	ŽİÞÐ() á
A	2.90	12.50	-1.40	-1.20	-0.88
В	11.60	12.50	-1.10	-0.80	-0.59
С	38.00	12.50	-0.50	-0.50	-0.37
D	14.50	12.50	1.00	0.70	0.51
E	14.50	12.50	-0.50	-0.30	-0.22

Bereich	d	b	Cpe,1	C pe,10	We,10
	[m]	[m]	[-]	[-]	ŽiÞÐ() á
F	1.45	3.63	-1.98	-1.38	-1.01
G	1.45	7.25	-1.58	-0.89	-0.65
Н	5.80	14.50	-1.20	-0.70	-0.51
I-	45.25	14.50	-0.60	-0.60	-0.44
l+	45.25	14.50	0.20	0.20	0.15

Ó^¦^&@*¦4i ^


 $e_D = 25.00$ $e_W = 25.00$

m

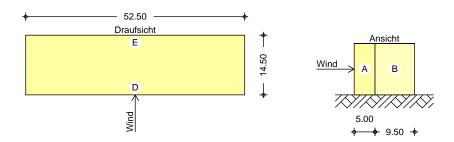
m

Qk.W.090 Ü&&@č}*ÁMJ€»

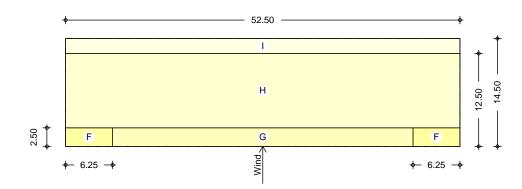
Winddruckverteilung M 1:600

2023 300

L-0.2

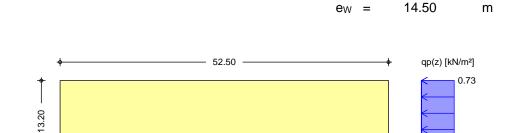

Seite: 0-13

14.50


 $e_D =$

m

Bereichseinteilung M 1:900

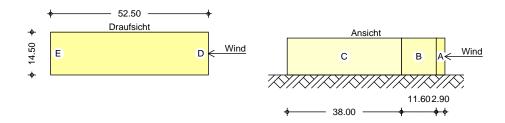

M 1:500

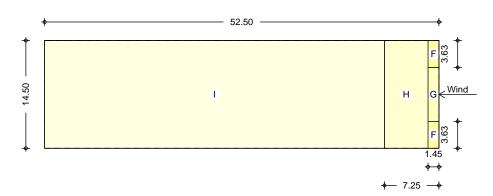
Bereich	d,b	h	Cpe,1	Cpe,10	We,10
	[m]	[m]	[-]	[-]	ŽÞÐjá
A	5.00	12.50	-1.40	-1.20	-0.88
В	9.50	12.50	-1.10	-0.80	-0.59
D	52.50	12.50	1.00	0.78	0.57
Е	52.50	12.50	-0.50	-0.46	-0.34
Bereich	d	b	Cpe,1	Cpe,10	We,10
	[m]	[m]	[-]	[-]	ŽİÞÐ() á
F	2.50	6.25	-1.98	-1.38	-1.01
G	2.50	40.00	-1.58	-0.89	-0.65
Н	10.00	52.50	-1.20	-0.70	-0.51
 -	2.00	52.50	-0.60	-0.60	-0.44
l+	2.00	52.50	0.20	0.20	0.15

Qk.W.180 Ü&&@c*}*ÁMFÌ€»

Winddruckverteilung M 1:600

Ó^\^&@*\4i ^

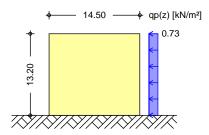

Position


2023 300 L-0.2

Seite: 0-14

Bereichseinteilung M 1:1250

M 1:500



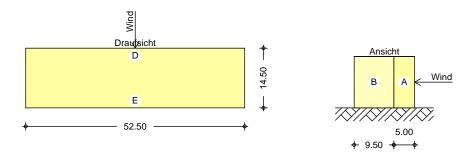
Bereich	d,b	h	C _{pe,1}	C _{pe,10}	W _{e,10}
	[m]	[m]	<u>[-]</u>	[-]	
Α	2.90	12.50	-1.40	-1.20	-0.88
В	11.60	12.50	-1.10	-0.80	-0.59
С	38.00	12.50	-0.50	-0.50	-0.37
D	14.50	12.50	1.00	0.70	0.51
E	14.50	12.50	-0.50	-0.30	-0.22
Bereich	d	b	Cpe,1	C _{pe,10}	We,10
	[m]	[m]	[-]	[-]	ŽiÞÐ() á
F	1.45	3.63	-1.98	-1.38	-1.01
G	1.45	7.25	-1.58	-0.89	-0.65
Н	5.80	14.50	-1.20	-0.70	-0.51
I-	45.25	14.50	-0.60	-0.60	-0.44

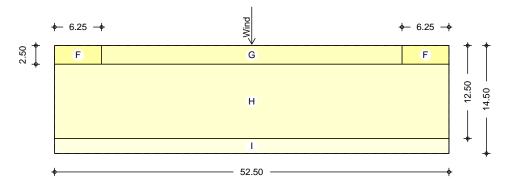
Qk.W.270 Ü&&@č}*ÁMGÏ€»

Winddruckverteilung M 1:600

l+	45.25	14.50	0.20	0.20	0.15
Ó^¦^ &@ *¦4i ^			e _D e _W		m m

Position


L-0.2


2023 300

Seite: 0-15

Bereichseinteilung M 1:900

M 1:500

Bereich	d,b	h	C _{pe,1}	C pe,10	We,10
	[m]	[m]	[-]	[-]	ŽİÞÐ() á
A	5.00	12.50	-1.40	-1.20	-0.88
В	9.50	12.50	-1.10	-0.80	-0.59
D	52.50	12.50	1.00	0.78	0.57
E	52.50	12.50	-0.50	-0.46	-0.34
Bereich	d	b	Cpe,1	C pe,10	We,10
	[m]	[m]	[-]	[-]	ŽİÞÐ() á
F	2.50	6.25	-1.98	-1.38	-1.01
G	2.50	40.00	-1.58	-0.89	-0.65
Н	10.00	52.50	-1.20	-0.70	-0.51
 -	2.00	52.50	-0.60	-0.60	-0.44
I+	2.00	52.50	0.20	0.20	0.15

Schneelasten

Schneelastermittlung nach DIN EN 1991-1-3:2010-12

char. Schneelast auf Boden	s _k =	0.85	\Þ₽)
Ø[¦{à^ą̃^¦oÁ⇒¦ÁÙ&@;^^ æ•c	1 =	0.80	
Schneelast auf dem Dach	s =	0.68	\ Þ₽)

2023 300 GA-0.1 ÜVPËÜPÆÄÚd&\@@@ AÚ>å Seite: 0-16

Pos. GA-0.1

; Y} i XYUi gghY]Zi b[

Beschreibung

Die Gebäudeaussteifung erfolgt über die Deckenscheiben sowie den Gebäudelängsund Gebäudequerwänden. Der Baukörper kann für die Gesamtaussteifung in drei Abschnitte unterteilt werden:

- 1 Reihenhäuser
- 2 Treppenhaus / Laubengänge
- 3 Mehrfamilienhaus

Die einzelnen Bereiche sind mittels tragenden Wärmedämmelementen miteinander gekoppelt.

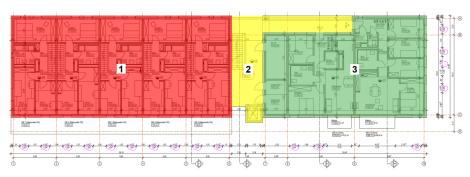
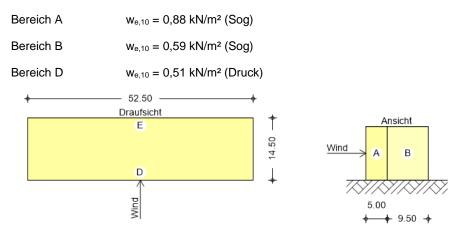



Abbildung 1: Betrachtete Gebäudebereiche für Gesamtaussteifung

Bereich 1

In den oberen drei Geschossen stehen in beiden Hauptrichtungen ausreichend Wände zur Verfügung, die nur durch geringe Öffnungsbreiten unterbrochen sind. Aussteifungsrelevant sind alle Außenwände. Das 2. Obergeschoss wird außerdem komplett in Stahlbetonbauweise hergestellt. Im Erdgeschoss parallel zu Achse C besteht die Außenwand aus großen Öffnungen. Daher wurde zwischen den Achsen 1 – 6 eine aussteifenden Mauerwerkswand in Längsrichtung (ca. in Gebäudemitte) angeordnet.

Windbeanspruchung:

Gebäudebreite 15,00 m / Gebäudehöhe 12,35 m

ÙVPËÜPÄÄÜ¢4&\@`ã ÁÙ>å

2023 300

Windbeanspruchung

 $W_{k,90} = (5,00 \text{ m} \cdot 12,35 \text{ m} \cdot 0,88 \text{ kN/m}^2) + (10,00 \text{ m} \cdot 12,35 \text{ m} \cdot 0,59 \text{ kN/m}^2)$

 $W_{k.90} = 127,2 \text{ kN}$

Die gesamte horizontale Windbeanspruchung wird auf auf sicherer Seite liegend auf 5 Wandscheiben im EG aufgeteilt.

Seite: 0-17

 $W_{k,90} = 127,2 \text{ kN} / 5 = 25,44 \text{ kN}$

Beim Nachweis der Mauerwerkswand Pos. W-4.5 wurde die horizontale Beanspruchung berücksichtigt.

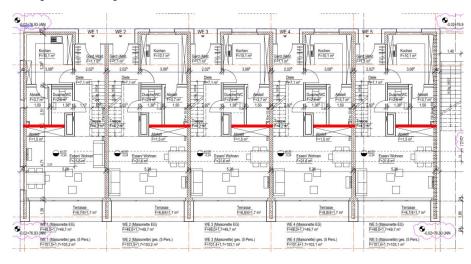


Abbildung 2: Aussteifungswände im EG

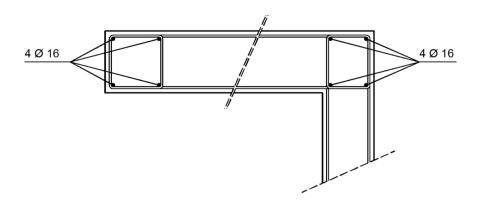
Aufgrund der vielen Wandscheiben in Gebäudequerrichtung ist der Gebäudeteil offensichtlich gegen ein verdrehen ausgesteift, so dass der Rotationsnachweis nicht weiter betrachtet wird.

Bereich 2

Gebäudebereich B wird komplett über den in Stahlbetonbauweise hergestellten Aufzugskern, welcher über alle Geschosse läuft, ausgesteift.

Die geringen horizontalen Kräfte aus Wind (Aufzugskern und Brüstungen) und Schiefstellung werden durch die Deckenscheibe in den Aufzugskern eingeleitet und in die Stahlbetonbodenplatte bzw. –gründung weitergeführt, der Gebäudeteil ist somit ausgesteift.

Sollten bei den Einzelnachweisen der Aufzugskerne kein größerer Bewehrungsquerschnitt ermittelt werden, sind konstruktiv in sämtlichen Wanddecken und an den Wandenden mindestens jeweils 4 Bewehrungsstäbe Ø 16 mm (siehe nachfolgende Bewehrungsskizze) als durchlaufendes Zugband anzuordnen.


Im Untergeschoss werden je Wandecke bzw. -ende 6 Ø 16 mm angeordnet.

Die Übergreifungsstöße der Bewehrung sind als Zugstöße auszubilden.

In allen Deckenebenen ist im Bereich des Aufzuges ein Ringbalken auszubilden.

<u>Wandende</u> <u>Wandecke</u>

Bereich 3

Die Gebäudeaussteifung erfolgt über die Deckenscheiben sowie den Gebäudelängsund Gebäudequerwände. In beiden Hauptrichtungen stehen ausreichend Wände zur Verfügung, die nur durch geringe Öffnungsbreiten unterbrochen sind. Der Gebäudebereich 3 ist offensichtlich ausgesteift.

Gesamt

Bei der Bewehrungswahl der Deckenscheiben bzw. der Stahlbetonwände wird eine konstruktive Bewehrung berücksichtigt. Die Deckenscheiben werden mit einer umlaufenden Randbewehrung bewehrt.

Die Stahlbetonsohlplatte wird als ein monolithisches Bauteil ohne thermische Trennungen unterhalb der drei Gebäudeteilen hergestellt.

2023 300 ÜVP ËÜP ÆÄÛ¢4&\ @ ã ÁÛ>å Seite: 1-1

1 - 3. Obergeschoss

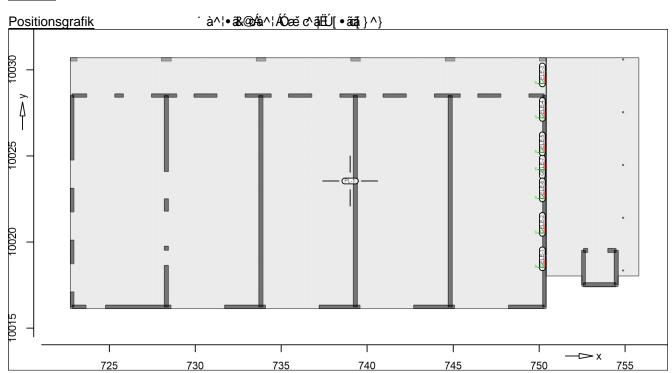
- Viewel Version zozz - Copyright zoz I - IIID AEC Sontware Grilbri

martens+puller
Ingenieurgesellschaft mbH

Auftrags-Nr. Position

2023 300 D-1.1 ÙVPËÜPĀĀÚc4&\ @ ą ÂÛ>å

Seite: 1-2


Pos. D-1.1

8 YW YbgmghYa "VYf" "C;

System

Positionsplan Positionsplan

Bauteile Bauteil-Positionen

Platten-Positionen

St	ah!	lbe ¹	tor	1

Position	Winkel	Art		Material	Dicke
	Ž∕á		Šê} * •	Quer	[cm]
PL-1	0.0	iso		C 30/37 Q	20.0
			$B = 500M\Delta$	B 500SA	

Winkel: Beiso: iso: Q: Õ/

Bewehrungsrichtung r isotropes Material Õ^•��• �\$•\4¦} *}* ÁÛ* æ: æ

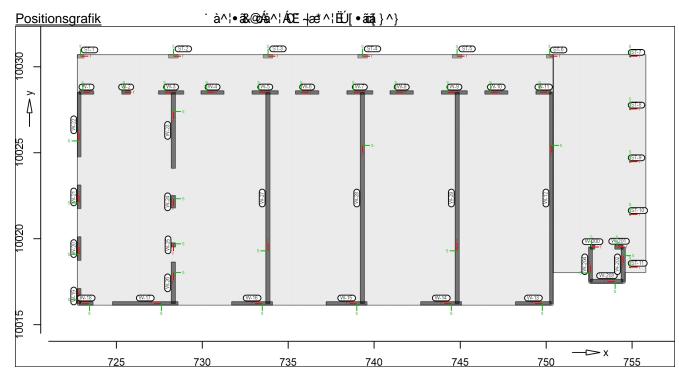
Expositionsklasse

*^{ êi ÁÖ OÞÁÖÞÁFJJ GËFËFÉÁ æà ÈÁ ÈF

Position	Seite	KI	Kommentar
PL-1	oben		{ êi ât ^Áx2^ ~ & @ 2^
		WF	Pê`~ātÁjå^¦Ájê}*^¦^Áz^ãoÁ
			feuchter Beton
	unten	XC1	d[&\^}Á(å^¦Áncê}åãfÁæ••
		WO	Weitgehend trockener Beton

		_
Ø162@\}	æ4 •	&@>••∧

Position		$K_{R,r}$		$K_{R,s}$		$K_{T,t}$
		[kNm/rad/m]		[kNm/rad/m]		[kN/m/m]
GELE-1	+/-	frei	+/-	frei	+/-	250000
GELE-2	+/-	frei	+/-	frei	+/-	frei
GELE-3	+/-	frei	+/-	frei	+/-	250000
GELE-4	+/-	frei	+/-	frei	+/-	frei
GELE-5, GELE-6	+/-	frei	+/-	frei	+/-	250000
GELE-7	+/-	frei	+/-	frei	+/-	frei



750.40

10024.70

Koordinaten	Position	X	у
		[m]	[m]
	GELE-1	750.40	10018.03
		750.40	10020.03
	GELE-2	750.40	10020.03
		750.40	10022.03
	GELE-3	750.40	10028.70
		750.40	10030.70
	GELE-4	750.40	10026.70
		750.40	10028.70
	GELE-5	750.40	10024.70
		750.40	10026.70
	GELE-6	750.40	10022.03
		750.40	10024.03
	GELE-7	750.40	10024.03

<u>Auflager</u> Auflager-Positionen

Stahlbeton	Position	Šê} * ^	Material	$b_{(r)}$	h _(s)
		[m]		[cm]	[cm]
	ST-1	3.00	C 25/30 Q	38.0	20.0
			B 500SA		
	ST-2ST-5	3.00	C 25/30 Q	56.0	20.0
			B 500SA		
	ST-6	3.00	C 25/30 Q	38.0	20.0
			B 500SA		

Q: $\tilde{O}^{\bullet} c^{\bullet} \tilde{a} \bullet (4|)^* * \hat{AU}^* ad: \tilde{ac}$

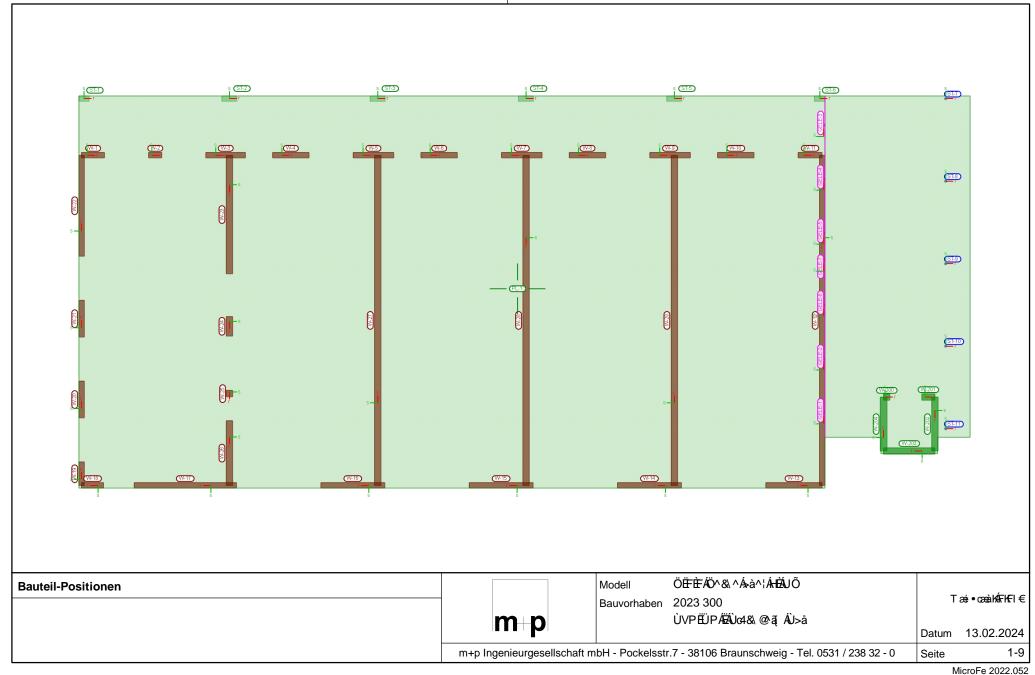
Auftrags-Nr.	Position	Ingenieur	ens+puller gesellschaft mbH			
2023 300	D-1.1 ÙV	PËÜPĀÄŪd& @ā	ÁÚ>å			Seite: 1-4
<u>Stahl</u>	Position	Šê} * ^		Material		Profi
	ST-7ST-11	3.00		S 235	ROHR	88.9-14.2
<u>Federsteifigkeiten</u>	Position	K _{R,r}		K _{R,s}		K _{T,}
	OT 4	[kNm/rad]		اس/rad]		[kN/m]
	ST-1	frei		frei	+/-	785333
	ST-2ST-5	frei		frei	+/-	1157333
	ST-6 ST-7ST-11	frei frei		frei frei	+/- +/-	785333 233100
Koordinaten	Position		_		х	y
			Ž∕á		[m]	[m]
	ST-1		0.00		2.93	10030.60
	ST-2		0.00		8.32	10030.60
	ST-3		0.00		3.82	10030.60
	ST-4		0.00		9.32	10030.60
	ST-5		0.00		4.82	10030.60
	ST-6		0.00		0.21	10030.60
	ST-7		0.00		4.88	10030.60
	ST-8		0.00		4.88	10027.54
	ST-9		0.00		4.88	10024.47
	ST-10 ST-11		0.00 0.00		4.88 4.88	10021.41 10018.35
107			0.00	734	4.00	10016.33
Wandlager	Wandlager-Positioner	1				
Stahlbeton	Position	P4@ [m]	Šê} * ^ [m]		Materia	I Dicke [cm]
	W-200	3.00	0.24		25/30	24.0
	W-201	3.00	0.48		B 500MA C 25/30 C	
					B 500MA	
	W-202	3.00	2.00	C	25/30 G	24.0
					B 500MA	
	W-203	3.00	1.90		25/30 G	
	W-204	3.00	2.00		B 500MA C 25/30 C	
	Q: Õ^•ơã•\4¦}*}*ÂÛ*æb:ãc	0.00	2.00		B 500MA	
		D.4.0	Ŏ0. * A			. 5
<u>Mauerwerk</u>	Position	P4@	Šê} * ^		Materia	
	W-1	[m]	[m]	VC	D 20 DA	[cm]
	W-2	3.00	0.85		-P 20 DN -P 20 DN	
	W-3	3.00 3.00	0.49 1.47		-P 20 DN -P 20 DN	
	W-4	3.00	1.47		-P 20 DN	
	W-5	3.00	1.51		-P 20 DN	
	W-6	3.00	1.35		-P 20 DN	
	W-7	3.00	1.51		.P 20 DN	
	W-8	3.00	1.34		.P 20 DN	
	W-9	3.00	1.51		P 20 DN	
	W-10	3.00	1.35		P 20 DN	
	W-11	3.00	0.89		P 20 DN	
	W-12	3.00	12.26		P 20 DN	
	W-13	3.00	2.09	KS-	P 20 DN	
	W-14W-16	3.00	2.37		P 20 DN	
	W-17	3.00	3.79		-P 20 DN	
	W-18	3.00	0.81		P 20 DN	
	W-19	3.00	0.88	KS-	-P 20 DN	1 20.0

D-1.1 ÙVPËÜPĀĒĀJO4& @āļ ÁĴ>å Seite: 1-5

2023 300	D 1.1	OVI DI /EUOTAI S q	70>α		Ocite. 1 0
	Position	P4@	Šê} * ^	Materia	al Dicke
	Position			Materia	
	M 00 M 04	[m]	[m]	//O D 00 DA	[cm]
	W-20, W-21	3.00	1.36	KS-P 20 DN	
	W-22	3.00	3.75	KS-P 20 DN	
	W-23	3.00	4.40	KS-P 20 DN	
	W-24	3.00	0.73	KS-P 20 DN	<i>l</i> 24.0
	W-25	3.00	0.24	KS-P 20 DN	<i>1</i> 24.0
	W-26	3.00	2.41	KS-P 20 DN	
	W-27W-29	3.00	12.26	KS-P 20 DN	
<u>Federsteifigkeiten</u>	Position	K _{R,r}	FL N.L /	K _{R,s}	K _{T,t}
	M 4 M 00	[kNm/rad/m]	[kNm/ra		[kN/m/m]
	W-1W-22	frei		frei +/-	665387
	W-23W-29	frei		frei +/-	798464
	W-200W-204	frei		frei +/-	2480000
<u>Koordinaten</u>	Position			X	у
	10.4			[m]	[m]
	W-1			722.84	10028.50
				723.69	10028.50
	W-2			725.33	10028.50
				725.82	10028.50
	W-3			727.45	10028.50
				728.92	10028.50
	W-4			729.93	10028.50
				731.27	10028.50
	W-5			732.91	10028.50
	VV-3			734.42	10028.50
	W C				
	W-6			735.43	10028.50
				736.77	10028.50
	W-7			738.41	10028.50
				739.92	10028.50
	W-8			740.93	10028.50
				742.27	10028.50
	W-9			743.91	10028.50
				745.42	10028.50
	W-10			746.43	10028.50
				747.77	10028.50
	W-11			749.41	10028.50
	V V - 1 1			750.30	10028.50
	W 12				
	W-12			750.30	10028.50
	14/ 40			750.30	10016.24
	W-13			750.30	10016.24
	-			748.21	10016.24
	W-14			745.08	10016.24
				742.71	10016.24
	W-15			739.58	10016.24
				737.21	10016.24
	W-16			734.08	10016.24
	-			731.71	10016.24
	W-17			728.58	10016.24
	•• ••			724.79	10016.24
	W-18			723.65	10016.24
	4 4 · 1 O			723.83 722.84	10016.24
	W-19				
	VV-19			722.84	10016.24
	W 00			722.84	10017.11
	W-20			722.84	10018.75
	144.54			722.84	10020.11
	W-21			722.84	10021.75

m—p martens+puller

Auftrags-Nr.	Position	martens+p	aft mbH		
2023 300	D-1.1	ÙVPËÜPÄÄÜd&\@ã ÁÙ>å			Seite: 1-6
	Position			х	у
				[m]	[m]
				722.84	10023.11
	W-22			722.84	10024.75
				722.84	10028.50
	W-23			728.32	10028.50
				728.32	10024.09
	W-24			728.32	10022.51
	W-25			728.32 728.32	10021.78 10019.77
	VV-25			728.32 728.32	10019.77
	W-26			728.32	10019.55
	VV 20			728.32	10016.04
	W-27			733.82	10016.24
				733.82	10028.50
	W-28			739.32	10028.50
				739.32	10016.24
	W-29			744.82	10016.24
				744.82	10028.50
	W-200			752.58	10019.52
				752.82	10019.52
	W-201			754.00	10019.52
	W 000			754.48	10019.52
	W-202			754.48	10019.52
	W-203			754.48 754.48	10017.52 10017.52
	VV-203			754.48 752.58	10017.52
	W-204			752.58	10017.52
	*** 20 **			752.58	10019.52
<u>Material</u>	Materialkennwe	erte			
Stahlbeton	Position	Material	Wichte	E _{cm}	f _{ck}
DIN EN 1992-1-1				G	f _{ctm}
			ŽÞÐ()á	ŽÞ-E(){ á	ŽD-E() { á
	ST-1ST-6, W- 200W-204	C 25/30 Q	25.00	31000	25.00
	5. 4	0.00/07.0		12900	2.60
	PL-1	C 30/37 Q	25.00	33000	30.00
	Q: Õ^•¢^ã•\4¦}~}*	ÁÛ ĕek:ãc		13750	2.90
Betonstahl	Position	Material	Wichte	Es	f_{yk}
DIN EN 1992-1-1	1 0311011	Material	VVICITIO	G	f _{tk,cal}
DIIVER 1002 1 1			ŽÞÐ()á	ŽÞ-₽){ á	Ž⊳Đ(á
	PL-1, W-200V	V-204 B 500MA	78.50	200000	500.00
	,			77000	525.00
	PL-1, ST-1ST	-6 B 500SA	78.50	200000	500.00
				77000	525.00
0	D 18		347 17	_	
Stahl	Position	Material	Wichte	E	f_{yk}
DIN EN 1993-1-1			ŽÞÐ á	G ŽD-B){á	ŽÞÐ(á
	ST-7ST-11	S 235	др ц уа_ 78.50	Δυτέγ { α	235.00
	01-701-11	3 233	70.00	81000	200.00
				0.000	
<u>Mauerwerk</u>					
DIN EN 1996-1-1					


Auftrags-Nr.	Position	martens- Ingenieurgesel				
2023 300	D-1.1	ÙVPËÜPÄÄÛ¢1&\@ā, ÁÛ	>å		Seite: 1-7	
	Position	Material	Di ŽÞ	chte E chte G ₧0 á ŽÞ£0 { a ål{ á	i	
	W-1W-29	KS-P 20 DM	2	0.00 9981 2.00 3992		
Auswertung	Geometrisch	e Auswertung der Positionen				
<u>Ø ê&@}</u>	Ø ê&@\}~4 {	ã^ÁÓæĕc^ā́¦ËÚ[•ããā[}^}				
Stahlbeton	Position		Dicke [cm]	Ø ê&@ Ž á	Volumen گِر á	
	PL-1		20.0	472.30	94.46	
<u>Ùc>c ^} æ* ^¦</u>	Ùc>c^}Ás^¦Á	Ùoc^} Áa^¦ÁÙoc^} æ*^¦ËÚ[•ããa[}^}				
Stahlbeton	Position	b _(r) [cm]	h _(s) [cm]	Mantelfl. [m²]	Volumen [m³]	
	ST-1	38.0	20.0	3.48	0.23	
	ST-2ST-5 ST-6	56.0 38.0	20.0 20.0	4.56 3.48	0.34 0.23	
<u>Stahl</u>	Position		Profil	Mantelfl. [m²]	Volumen	
	ST-7ST-11	ROHR 88.	9-14.2	0.84	[m ³] 0.01	
<u>Wandlager</u>	Y ê} å^Æå^¦Æ∕	′æ),å æ*^¦ËÚ[•ãa[a]}^}				
<u>Stahlbeton</u>	Position	Dicke	P4@	Ø ê&@	Volumen	
	W-200	[cm] 24.0	[cm] 300.0	[m ²] 0.71	[m ³] 0.17	
	W-201	24.0	300.0	1.45	0.35	
	W-202	24.0	300.0	6.00	1.44	
	W-203	24.0	300.0	5.70	1.37	
	W-204	24.0	300.0	6.00	1.44	
<u>Mauerwerk</u>	Position	Dicke [cm]	P4@ [cm]	Ø ê&@ [m²]	Volumen [m³]	
	W-1	20.0	300.0	2.55	0.51	
	W-2	20.0	300.0	1.47	0.29	
	W-3	20.0	300.0	4.40	0.88	
	W-4	20.0	300.0	4.04	0.81	
	W-5	20.0	300.0	4.53	0.91	
	W-6	20.0	300.0	4.04	0.81	
	W-7	20.0	300.0	4.53	0.91	
	W-8 W-9	20.0 20.0	300.0 300.0	4.03 4.53	0.81 0.91	
	W-10	20.0	300.0	4.04	0.81	
	W-11	20.0	300.0	2.68	0.54	
	W-12	20.0	300.0	36.78	7.36	
	W-13	20.0	300.0	6.27	1.25	
	W-14W-16	20.0	300.0	7.11	1.42	
	W-17	20.0	300.0	11.38	2.28	
	W-18	20.0	300.0	2.43	0.49	
	W-19 W-20 W-21	20.0 20.0	300.0	2.63 4.09	0.53 0.82	
	W-20, W-21 W-22	20.0	300.0 300.0	4.09 11.25	2.25	
	W-23	24.0	300.0	13.21	3.17	
	W-24	24.0	300.0	2.19	0.53	

2023 300 D-1.1 ÙVPËÜPĀĀÛ¢4&\ @ ą̃ ÁÛ>å

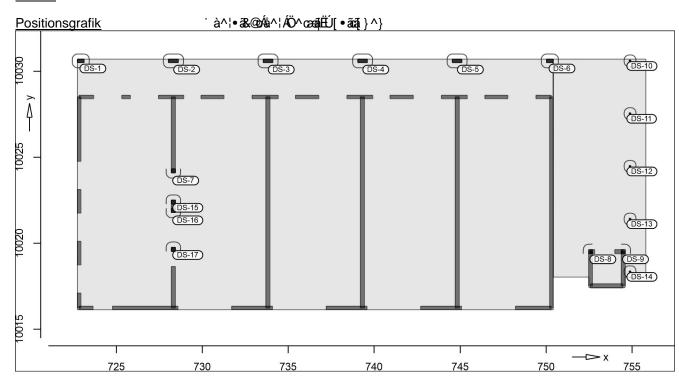
Position	Dicke [cm]	P4@ [cm]	Ø ê&@ [m²]	Volumen [m³]
W-25	24.0	300.0	0.72	0.17
W-26	24.0	300.0	7.22	1.73
W-27W-29	24.0	300.0	36.78	8.83

Seite: 1-8

D-1.1

Seite: 1-10

ÙVPËÜPÄÄÛ¢4&\@@ã ÁÛ>å


Detailplan

Auftrags-Nr.

Detailplan

Details

Detail-Positionen

Durchstanzstellen	Position		Lel von	MinBew	Rundsch	beta
	DS-1		unten	ja	nein	1.50
	DS-2		unten	ja	nein	1.50
	DS-3		unten	ja	nein	1.50
	DS-4		unten	ja	nein	1.50
	DS-5		unten	ja	nein	1.50
	DS-6		unten	ja	nein	1.50
	DS-7		unten	ja	nein	1.35
	DS-8		unten	ja	nein	1.20
	DS-9		unten	ja	nein	1.20
	DS-10		unten	ja	nein	1.50
	DS-11		unten	ja	nein	1.50
	DS-12		unten	ja	nein	1.50
	DS-13		unten	ja	nein	1.50
	DS-14		unten	ja	nein	1.50
	DS-15		unten	ja	nein	1.35
	DS-16		unten	ja	nein	1.35
	DS-17		unten	ja	nein	1.35
	unten: MinBew	Lasteinleitung erfolgt von unten Mindesthewehrung nach NCL Zu 9	4.3(2)?			

MinBew: Mindestbewehrung nach NCI Zu 9.4.3(2)?
Rundsch: Rundschnitt am Rand erweitern?

Geometrie

Õ^[{ ^dã\Ás^\|ÁŠæ•c^ā,|^ãč}*•\|ê&@

Position	Тур	Winkel	b(r)/D	h(s)
		Ž∕á	[cm]	[cm]
DS-1	Re	0.00	38.0	20.0
DS-2	Re	0.00	56.0	20.0
DS-3	Re	0.00	56.0	20.0
DS-4	Re	0.00	56.0	20.0
DS-5	Re	0.00	56.0	20.0
DS-6	Re	0.00	38.0	20.0

754.88

754.88

754.88

754.88

728.32

728.32

728.32

10027.54

10024.47

10021.41

10018.35

10022.51

10021.78

10019.77

Auftrags-Nr. Position ÙVPËÜPÄÄÛ¢4&\@ã ÁÛ>å 2023 300 D-1.1 Seite: 1-11 Winkel Position Тур b(r)/D h(s) Žά [cm] [cm] **DS-10** Re 0.00 8.9 8.9 **DS-11** 8.9 Re 0.00 8.9 **DS-12** 8.9 Re 0.00 8.9 **DS-13** Re 0.00 8.9 8.9 **DS-14** Re 0.00 8.9 8.9 Re: Rechteck Šê} * ^ Position Тур Winkel2 Winkel **Breite** Žγá Žγá [cm] [cm] DS-7 We 90.00 24.0 24.0 **DS-8** Wk 0.00 270.00 24.0 24.0 **DS-9** Wk 180.00 270.00 24.0 24.0 24.0 **DS-15** We 270.00 24.0 **DS-16** 24.0 We 90.00 24.0 **DS-17** We 24.0 24.0 270.00 Wandende Wk: Wandecke Χ Υ Koordinaten Position [m][m] DS-1 722.93 10030.60 DS-2 728.32 10030.60 DS-3 733.82 10030.60 739.32 DS-4 10030.60 DS-5 744.82 10030.60 DS-6 750.21 10030.60 DS-7 728.32 10024.09 **DS-8** 752.58 10019.52 DS-9 754.48 10019.52 **DS-10** 754.88 10030.60

DS-11

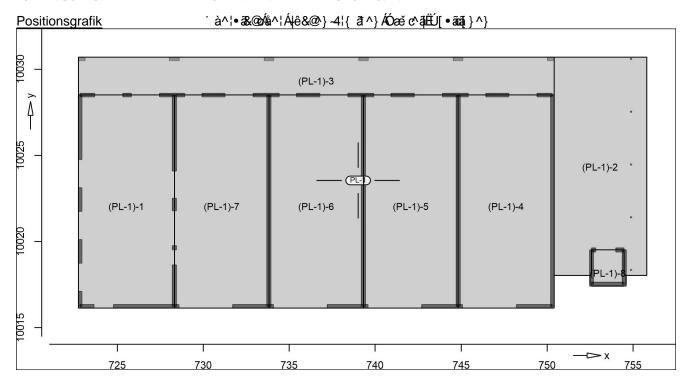
DS-12

DS-13

DS-14

DS-15

DS-16

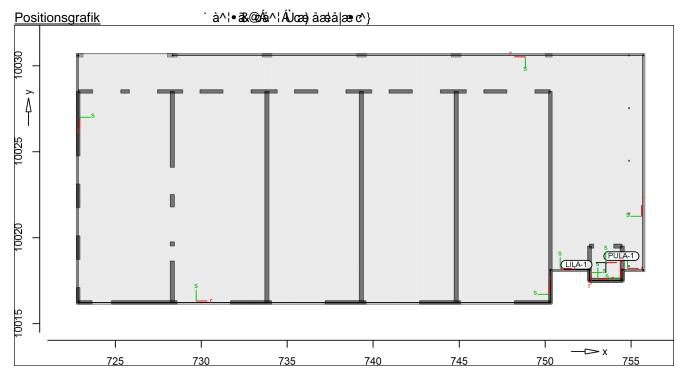

DS-17

Belastungen

2023 300 D-1.1 ÚVP ËÜP ĀĀŪ 04&\ @ ą̃ AŪ>å Seite: 1-12

Lastplan Lasten des FE-Modells

<u>Bauteillasten</u> Bauteilbezogene Lasten


Eigengewicht	Position	EW	Lastfall	Art	g
					[kN/m ²]
	PL-1	Gk	LF-1	PGr	5.00
	PGr: Gravitations	slast; positive Laster	n wirken senkrecht nach	n unten	
<u>Ù[}•cã*^Á</u> ncê}åã*^ÁŠæ•c	Position	EW	Lastfall	Art	g [kN/m²]
	PL-1	Gk	LF-1	PGr	3.40
	: = :		n wirken senkrecht nach		0.40
Nutzlast	Position	EW	Lastfall je Las	tfeld Art	p [kN/m²]
	PL-1	Qk.N	(PL-1)-1(PL-	1)-8 PGr	2.00
	PGr. Gravitations	slast positive Laster	n wirken senkrecht nach		

Bemessung (GZT+GZG)

Auftrags-Nr. Position | martens+puller | Ingenieurgesellschaft mbH | D-1.1 | DVPEUPÆDu4& @ ā ÂU>å | Seite: 1-13

Standardlasten im FE-Modell

<u>Punktlasten</u>	Position	EW	Lastfall	Art	[I	P,M kN],[kNm]
	PULA-1	Aufzug				
		Gk	LF-1	PGr		25.00
	PGr: Gravitationslast;	positive Laster	wirken senkrecht nach ur	nten		
Winkel	der gedrehten glo	balen Koor	dinatensysteme			
	Position					Žá
	PULA-1					0.00
<u>Linienlasten</u>	Position	EW	Lastfall	Art	p _A ,m _A [kN/m]	p _E ,m _E],[kNm/m]
	LILA-1	Attika				
	-0	Gk	LF-1 wirken senkrecht nach ur	pGr	5.00	5.00
	pGr: Gravitationslast;	positive Laster	i wirken senkrecht nach ur	nen		
Einwirkungen						
<u>DIN EN 1990</u>	Einwirkungen nac	h DIN EN	1990			
	•	eschreibun	g			
		pisierung				
		genlasten	d) V > 4 - >			
			¸ ā \ ˇ} * ^}			
		utzlasten ~~^* [& <i>l</i> oc	ÄEÁY[@]EÁ{}åÁOE^}	ا ۱۵۰ مامه ۱۵۰	٨	
	36	as [la Au	TAPI (US LEA) a ANDE ~ ')) Company (
<u>Šæ cê ^</u>	Šæ• œê∥^Á } åÁå^¦^	} Æ [¦å} ઁ	}*Á.`Á&n^}ÁÒāj,āl\`	`}*^}		
Gk	LF-1					
Qk.N	(PL-1)-1, (PL-1)-2,	, (PL-1)-3,	(PL-1)-4, (PL-1)-5	, (PL-1)-6, (PL-1)-7, (PL-	1)-8

Auftrags-Nr. Position IIII Ingenieurgesellschaft mbH

2023 300 D-1.1 ÜVPEÜPÆÜG& @ ã ÁJ>å Seite: 1-14

Biegung Pl-As-erf-Iso Plattenbiegebemessung nach DIN EN 1992-1-1

 $\underline{PL-1} \qquad \qquad \acute{O}^{\ } ^{\ } \stackrel{\star}{A} \stackrel{\star}{A} \stackrel{\star}{A} \stackrel{\star}{A} \stackrel{\star}{A} \stackrel{\star}{U} \stackrel{\star}{\partial} \stackrel{\star}{\partial} \stackrel{\star}{A} \stackrel{\star}{U} \stackrel{\star}{\partial}$

Mat./Querschnitt Beton C 30/37

Õ^• c^ā,•\4¦} `} *ÁÛ`æ: ãc Betonstahl *B 500MA*

Dicke konstant h = 20.00 cm

Expositionsklasse *^{ êi ÁÖQÞÁÖÞÁFJJQËFËFÉÁ/æàÀÀÈ

Position Kommentar Seite ΚI XC3 { êi at ^ Áz ^ * & @ ^ * PL-1 oben Pê ~ at / fi a ^ l / fie } * ^ l ^ / ÁZ ^ a a Á WF feuchter Beton XC1 d[&\^} A a^\A cê} a A æ• unten WO Weitgehend trockener Beton

Bewehrung Vorgaben zur Bewehrungsdefinition

Betondeckung $C_{min,u}/C_{min,o} =$ 10 / 20 mm&def,uD &def,o =10 / 15 mm 20 / 35 $c_{nom,u}/c_{nom,o} =$ mm Bewehrungsabstand $d'_{ru/su} =$ 30 / 30 mm $d'_{ro/so} =$ 30 / 30 mm Bewehrungsrichtung 0.0 / $W_{ru/su} =$ 90.0 Wro/so = 0.0 / 90.0

Tænc^ÉAÙcêà^ Grundbewehrung Seite d'_r d's $a_{sg,r}$ a_{sg,s} <Ž{{aĐŽ&{á [mm] Ž&{ Đ() á [mm] ₽)á Unten 30 2.27 30 2.27 Oben 30 3.35 30 3.35

Nachweisparameter nach DIN EN 1992-1-1

Tā å^•cà^. ^@`} * ÁÇIÈDÈÈDÁ `¦å^Áà^!>& • 3&@ā cÈ

Kombinationen Tæi *^à^} å^ÁS[{ àã; ææã; }^} Á; æ&@ÓOΦÂÖÞÁFJJ€

Ew Einwirkungsname

Lkn Lastkombinationsnummer

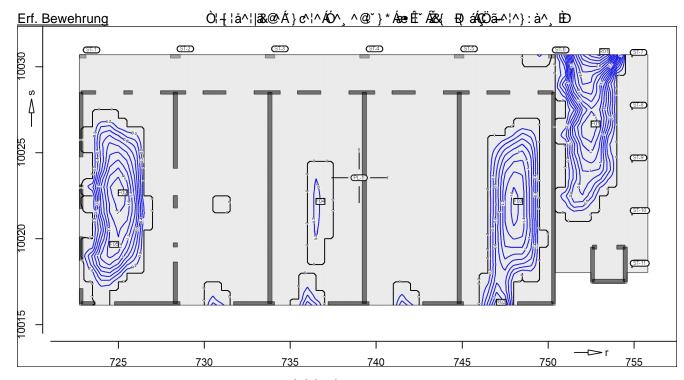
! c[| @ | | • & @ } a^Aç^|ê } a^| | a& @ AOa _ a\` } *

 $\ddot{O} \hat{A} \acute{O} ? \hat{A} \hat{A} ? ? \hat{A} \hat{A} : ? \\ ? A \hat{A} : ? ? A \hat{A} : ? \\ ? A \hat{A} : ? A : ? A \hat{A} : ? A : ? A : ? A : ? A : ? A : ? A : ? A : ? A : ? A : ? A : ? A : ? A$

Ausgabeformat nicht dokumentiert.

Ew	Gk	Qk.N	
Lkn	Grundkombination		
1-19	1.35	1.50 !	

IIID-VIBWEL VEISIGH ZUZZ - COPYTIGH ZUZ I - IIID AEC SONWALE GILIDH


D-1.1

ÙVPËÜPÄÄÛc4&\@ã ÁÛ>å

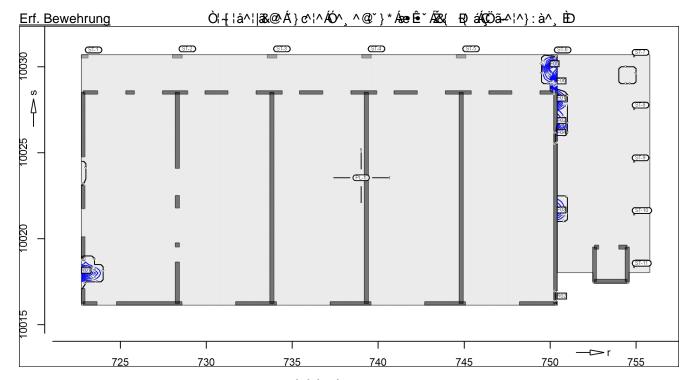
Seite: 1-15

as,r,unten

Šê}*•à^, ^@`}*Á§ÁËÜæ&@`}*ÁŞÁ}¢^¦^¦Æ&æ*^

@[|ã,ã}•č.~}ÁMÁ€Ì€€Á&{ Ð

Punkt	Х	У	$m_{r,Ed}$	$m_{s,Ed}$	$m_{rs,Ed}$	m_{Ed}	$\mathbf{a}_{s,ru}$	Lkn
		[m]				[kNm/m]	Ž&{ Ð()á	
F01	752.50	10027	29.96	6.81	2.16	32.12	1.80	3
F02	725.00	10023	32.61	9.19	0.65	33.26	1.97	2
F03	748.00	10022	31.37	8.91	-0.04	31.41	1.69	2
F04	736.50	10022	21.75	5.33	-0.01	21.76	0.27	2
F05	724.50	10020	27.05	9.17	-3.11	30.17	1.51	2
R01	753.00	10031	38.39	0.87	4.51	42.90	3.46	1
R02	747.00	10016	21.32	0.56	-8.24	29.56	1.42	2


D-1.1

ÙVPËÜPÄÄÛ¢4&\@@ã ÁÛ>å

Seite: 1-16

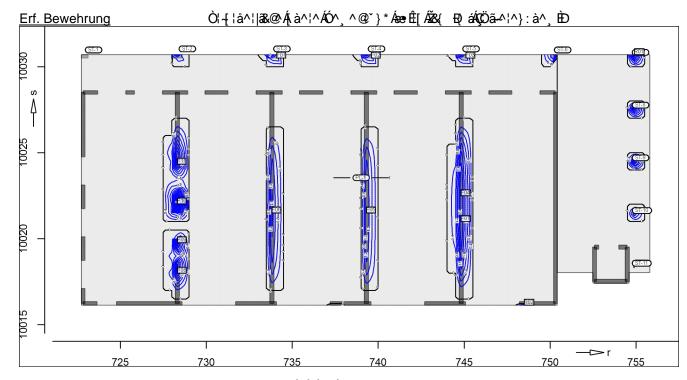
as,s,unten

Šê}*•à^¸^@*}*Á§ÁEÜæ&@*}*Á§Á}¢^!^!Á\$æt^

@[|ã,ã^}•č.^}ÁMÁ€ÈÈ€Á&{ Ð

Achsabstand erf. Bewehrung: $d'_{su} = 30 \text{ mm}$ Achsabstand vorh. Bewehrung: $d'_{su} = 30 \text{ mm}$ $\tilde{O}|^*\} \mathring{a}\hat{a}^, ^@^*\} * \mathring{Abe} * \hat{E}^* \mathring{AMATC} \mathring{AS}$

Punkt	Х	У	$m_{r,Ed}$	$m_{s,Ed}$	$m_{rs,Ed}$	m_{Ed}	$a_{s,su}$	Lkn
		[m]				[kNm/m]	Ž&{ Ð()á	
F01	750.40	10028	-1.38	19.41	-6.11	25.52	0.82	4
F02	750.40	10027	-3.91	14.56	12.01	26.57	0.98	5
F03	750.40	10022	0.09	12.73	-10.60	23.32	0.50	6
F04	750.40	10026	4.84	13.81	-6.98	20.79	0.13	7
F05	750.00	10030	-4.66	15.80	10.14	25.94	0.89	3
F06	750.40	10029	7.39	23.04	-7.39	30.43	1.55	8
R01	722.74	10018	0.08	16.05	-11.60	27.65	1.14	2
R02	750.40	10017	0.44	11.70	8.84	20.55	0.10	2


D-1.1

ÙVPËÜPÄÄÛc4&\@ã ÁÛ>å

Seite: 1-17

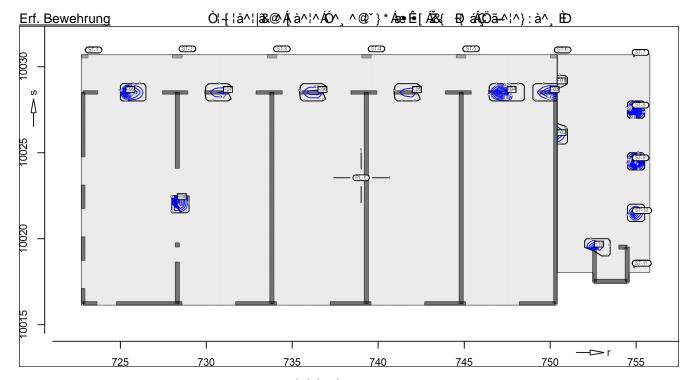
as,r,oben

Šê}*•à^¸^@`}*ÁŞÁËÜæ&@`}*ÁŞÁ;à^\à^\^\AŠæ*^

@[|ã,ã^}•č.^}ÁMÁ€ÈÈ€Á&{ Ð

Achsabstand erf. Bewehrung: $d'_{ro} = 30 \text{ mm}$ Achsabstand vorh. Bewehrung: $d'_{ro} = 30 \text{ mm}$ \tilde{O}_{i}^{*} } $\tilde{a}a^{*}$ \tilde{A}^{*} \tilde{A}^{*} \tilde{A}^{*} \tilde{A}^{*}

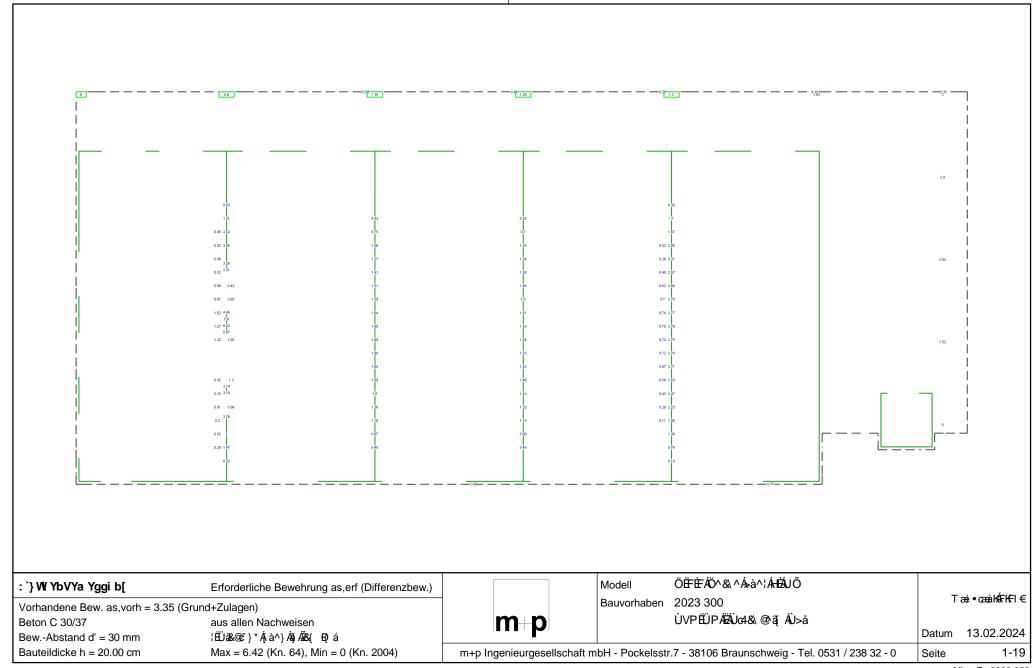
Punkt	Х	У	$m_{r,\text{Ed}}$	$m_{s,Ed}$	$m_{rs,Ed}$	m_{Ed}	$a_{s,ro}$	Lkn
		[m]				[kNm/m]	Ž&{ Ð()á	
ST-2			-31.28	-3.50	-2.26	-33.54	0.97	9
ST-3			-37.69	-4.20	0.51	-38.20	1.66	10
ST-4			-37.23	-4.15	0.11	-37.34	1.53	11
ST-5			-36.60	-4.08	0.40	-37.00	1.48	12
ST-6			-27.48	-13.65	10.48	-37.96	1.63	3
ST-7			-41.28	-15.26	5.57	-46.86	3.00	1
ST-8			-45.43	-47.73	0.77	-46.21	2.90	1
ST-9			-42.83	-43.86	3.65	-46.49	2.94	13
ST-10			-31.36	-28.27	5.96	-37.31	1.53	4
F01	734.10	10030	-26.99	-1.87	-8.03	-35.02	1.19	10
F02	739.60	10030	-26.57	-1.81	-8.33	-34.91	1.17	11
F03	745.10	10030	-26.36	-1.87	-7.92	-34.28	1.08	12
F04	744.82	10023	-45.05	-9.12	0.35	-45.40	2.77	14
F05	739.32	10022	-37.24	-7.57	0.13	-37.38	1.54	15
F06	733.82	10022	-38.28	-7.77	-0.10	-38.39	1.69	16
F07	744.82	10021	-44.99	-9.10	-0.28	-45.28	2.75	14
F08	728.32	10018	-43.45	-15.90	3.42	-46.87	3.00	17
F09	728.32	10020	-50.31	-23.39	1.31	-51.63	3.74	18
F10	728.32	10022	-67.35	-35.93	1.18	-68.53	6.42	18
F11	728.32	10024	-48.73	-19.18	-0.60	-49.33	3.38	18
R01	754.91	10031	-41.78	-7.45	7.19	-48.97	3.33	1
R02	748.50	10016	-28.34	-2.39	-3.82	-32.16	0.77	2

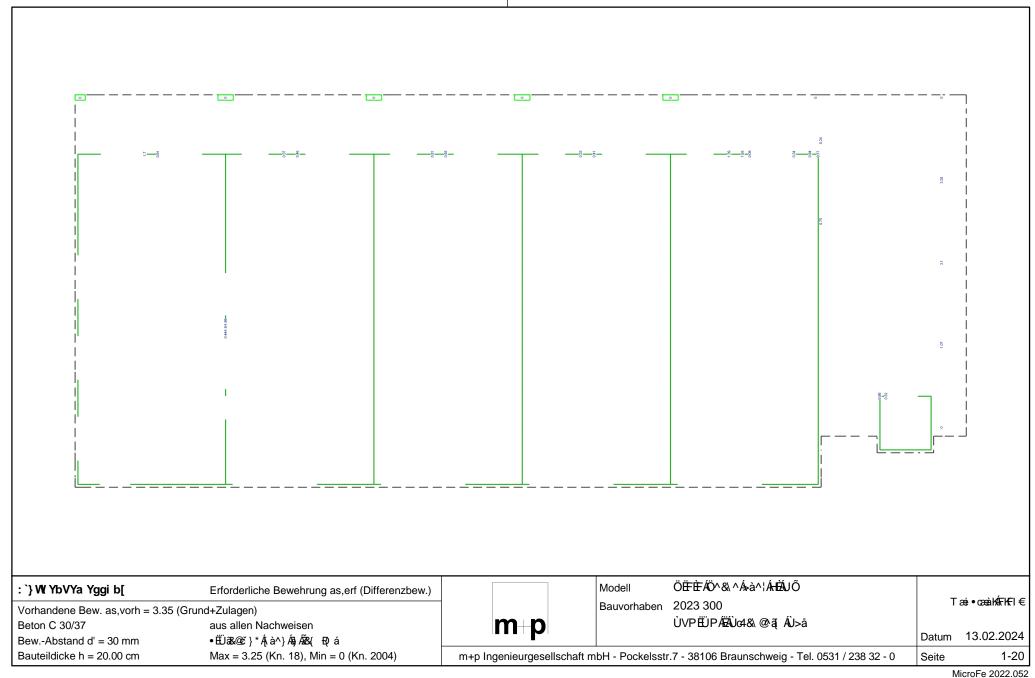

D-1.1

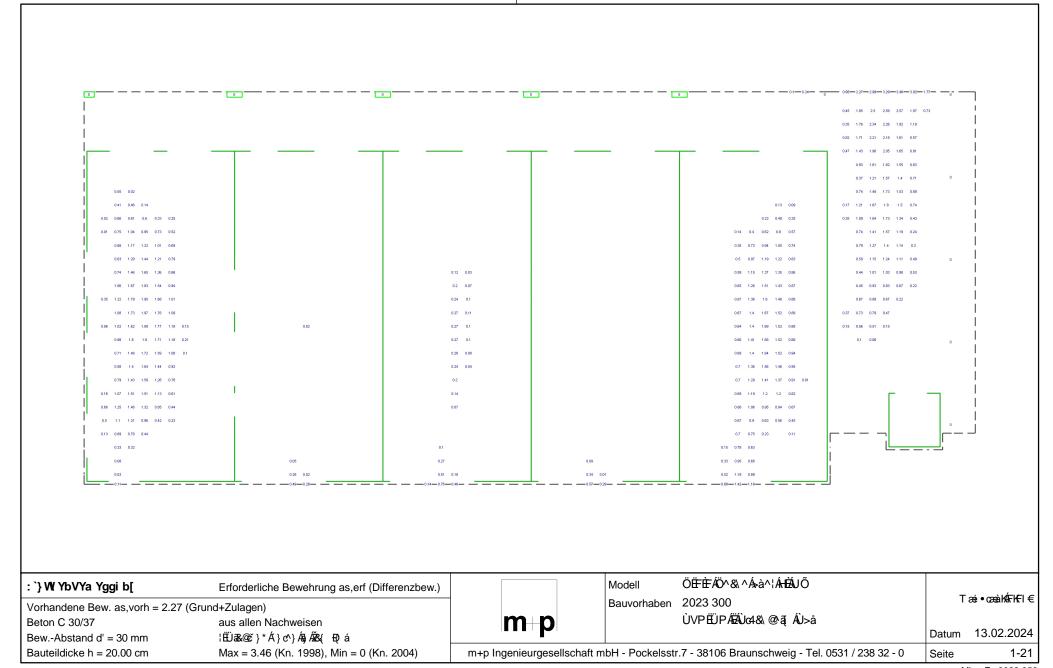
ÙVPËÜPÄÄÛ¢4&\@@ã ÁÛ>å

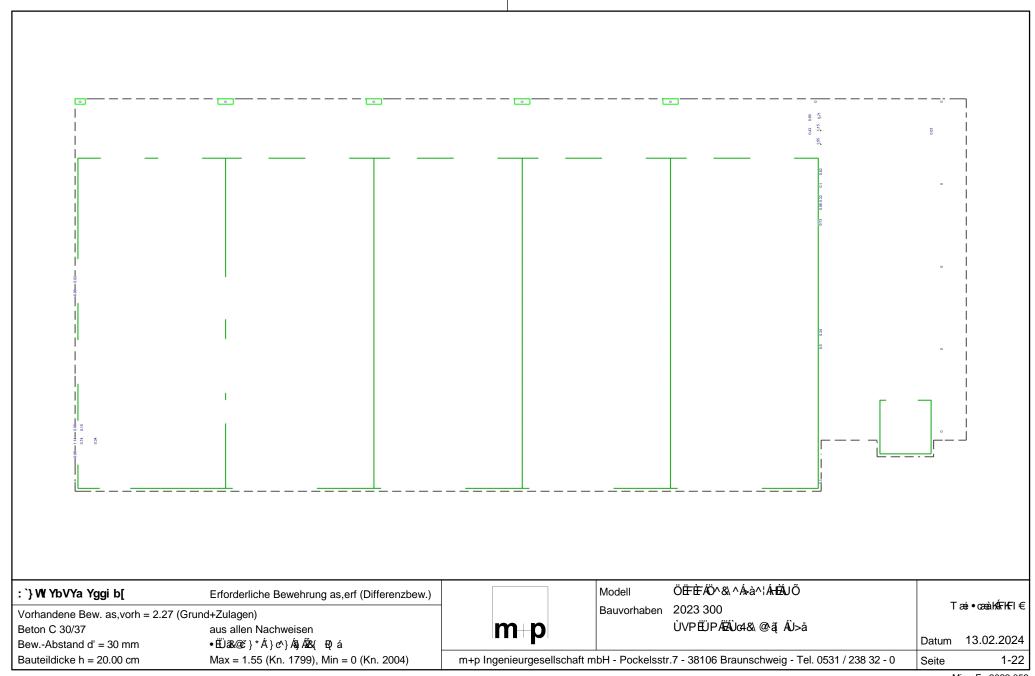
Seite: 1-18

as,s,oben


Šê}*•à^¸^@`}*ÁşÁ;ÉÜæ&@`}*ÁşÁ;à^¦^¦ÆŠæ*^




@[|ã,ã}•č.~}ÁMÁ€Ì€€Á&{ Ð


Achsabstand erf. Bewehrung: $d'_{so} = 30$ mm Achsabstand vorh. Bewehrung: $d'_{so} = 30$ mm $\tilde{O}|^*$ } aa^* aa^* *

Punkt	Х	У	$m_{r,Ed}$	$m_{s,Ed}$	$m_{rs,Ed}$	m_{Ed}	$a_{s,so}$	Lkn
		[m]				[kNm/m]	Ž&{ Ð(á	
ST-8			-45.43	-47.73	0.77	-48.51	3.25	1
ST-9			-42.83	-43.86	3.65	-47.51	3.10	13
ST-10			-31.36	-28.27	5.96	-34.23	1.07	4
F01	750.40	10029	-2.42	-20.10	-8.45	-28.54	0.24	1
F02	750.40	10026	-0.04	-26.48	5.55	-32.03	0.75	4
F03	750.00	10028	-8.12	-24.69	-8.62	-33.31	0.94	7
F04	747.50	10028	-13.91	-37.88	0.24	-38.12	1.65	19
F05	742.00	10028	-9.94	-29.52	-0.18	-29.70	0.41	4
F06	736.50	10028	-10.35	-30.63	-0.03	-30.66	0.55	19
F07	731.00	10028	-10.06	-29.76	0.28	-30.04	0.46	4
F08	728.32	10022	-64.93	-37.32	-0.34	-37.66	1.58	18
F09	725.33	10028	-12.03	-38.38	-0.06	-38.44	1.70	19
F10	752.58	10020	-23.10	-32.45	1.13	-33.58	0.98	3

Querkraft PI-As-Iso

Querkraftbemessung Plattenbereiche

<u>PL-1</u>

Querkraftbemessung der Platte (Isolinien)

Querkraftbemessung nach DIN EN 1992-1-1

Beton C 30/37, Betonstahl B 500SA

Õ^• c^ā,•\4¦} `} * ÁÛ `æ: ãc

Druckstrebenneigung wurde vom Programm optimiert.

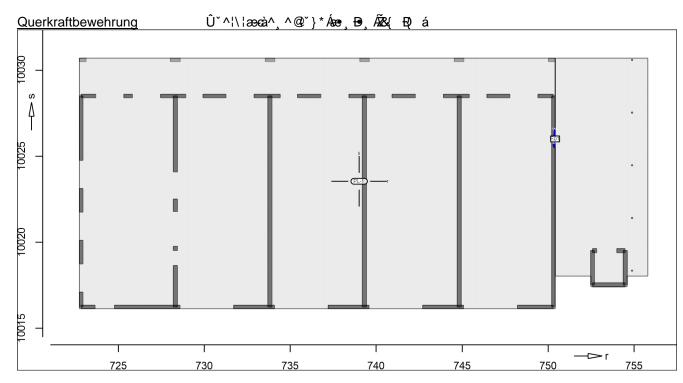
Mindestbewehrung (9.3.2) wurde nicht ermittelt.

Dicke konstant h = 20.00 cm

Kombinationen

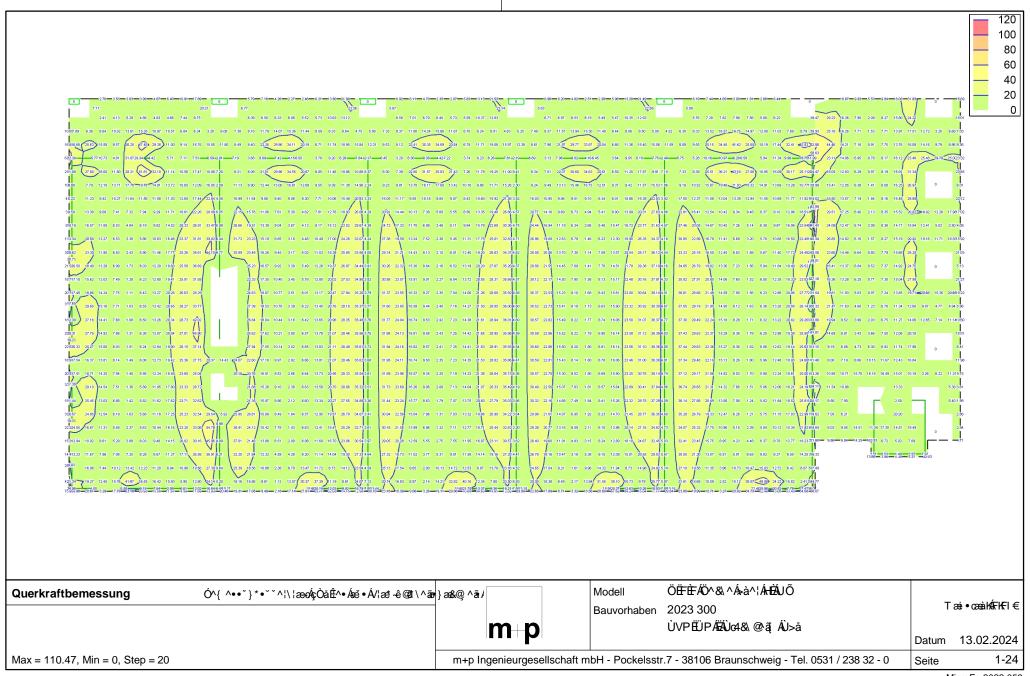
Tæi*^à^}å^ÁS[{àãjæaãj}^}Ájæ&@ÁÖQÞÁÖÞÁFJJ€

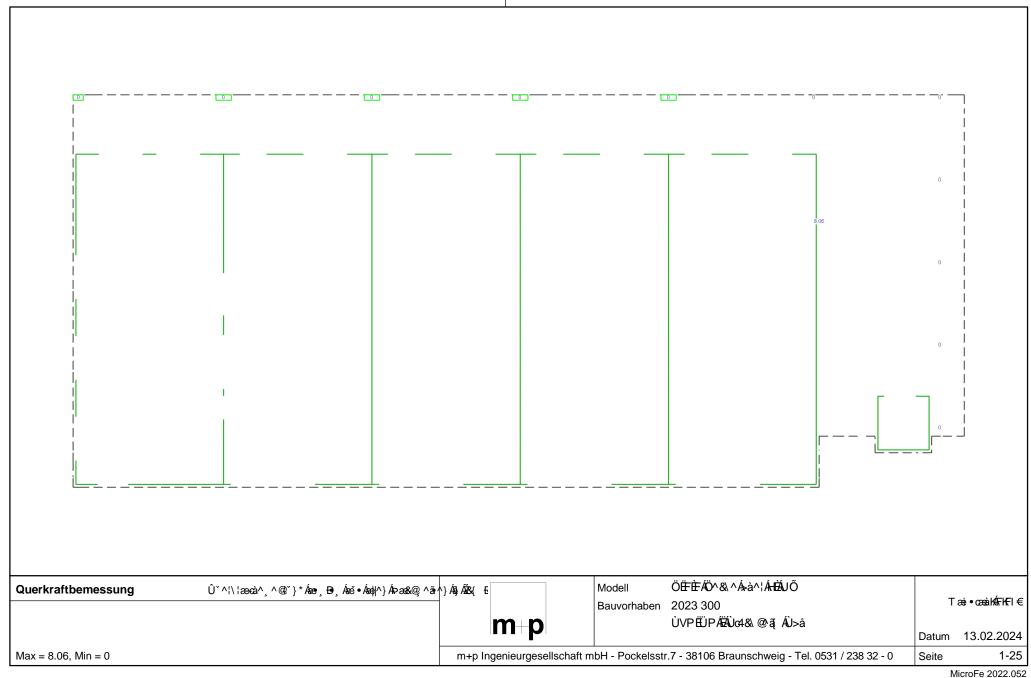
Ew Einwirkungsname

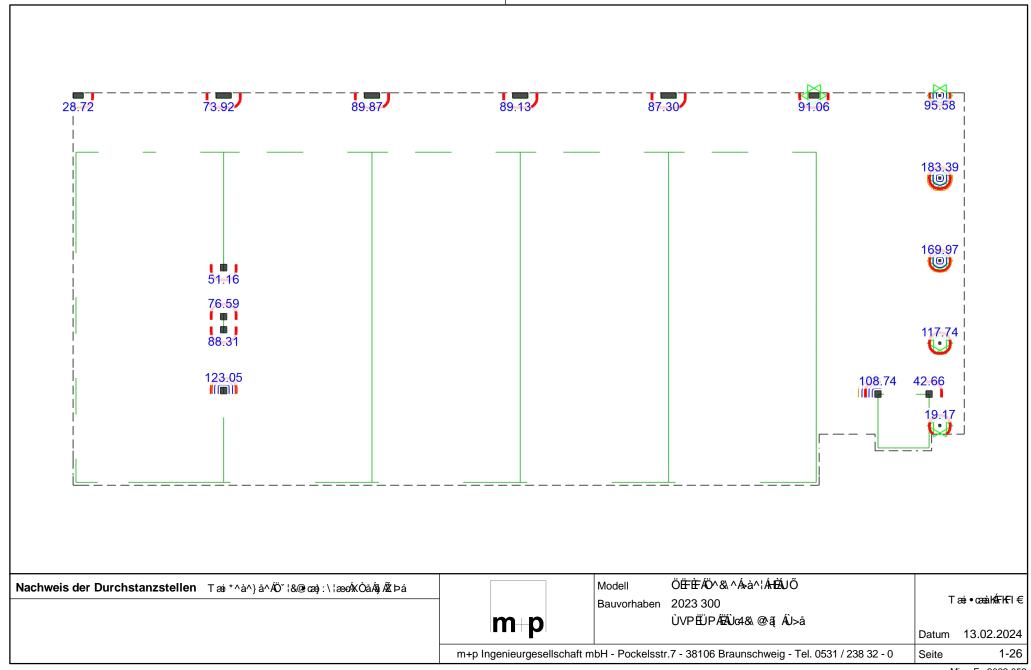

Lkn Lastkombinationsnummer

ç[¦@\|•&@}å^Æç^\ê}å^\|&&@ÆÔä¸ã\`}*

Öð ÁÓ 🌣 🎁 * Áð : ^|} ^ ¦ Ášæ cê|| /Ás } ^ ¦ @ þ Ásiner Einwirkung wird mit diesem


Ausgabeformat nicht dokumentiert.


Ew	Gk	Qk.N
Lkn	Grundkombination	
1	1.35	1.50 !



Q[|ã,ã^}•c~^}ÁMÁ€ĚL€Á&{ Ð

Punkt	Х	у	vEd	vEd,res	vRd,c	vRd,max	asw/sw	Summe	Lkn
		[m]				[kN/m]		28√{ Ð() á	
F01	750.40	10026 r	110.5	110.5	92.2 m	401.6	8.06	8.06	1
		S	-2.1		92.2 m	401.6	0.00		
m: Tą̃å^∙	m: T ājā^•ç^lơḥæ&@@ÖΦeÁDÞÆJJOËFËFEÖ[EÈÈEŒ]kiệàDiki; æi*^à^}å								

Position Auftrags-Nr. 2023 300 D-1.1 Seite: 1-27

Durchstanznachweise

Nachweis der Durchstanzstellen

DS-1

Durchstanznachweis nach DIN EN 1992-1-1

<u>Angaben</u>

Beton C 30/37, Betonstahl B 500MA

Šæ• c^ā, |^ãč } * • √ê&@K

Rechteck	b(r)	=	38.0	cm
	h(s)	=	20.0	cm
Plattendicke	h_0	=	20.0	cm
Tãod ÉÁn cæasãn & @ ÁP `c @ 4 @	d_{m}	=	17.0	cm
Šê} '*•à^¸ ^@`}*	$a_{s,m}$	=	3.35	&(E)
Šê}*•à^¸^@`}*•*¦æå	l,vorh	=	0.20	%
	l,zul	=	1.96	%
Tæi*ÈÄÖ`¦&@eæ);∖¦æec	V_{Ed}	=	28.7	kN
Šæ• c^\@4@} * • ~æ\ q[\		=	1.50	

Nachweis

Keine Durchstanzbewehrung Asw erforderlich.

Ø⊳¦ÁsanÁ, æi*^à^}å^ÁÓ^|æ•č}*••ãčæāā;}Á¸`¦å^ÁsanÁ, ãcd^¦^ÁŠê}*•à^¸^@^`}*Á

asm an der Oberseite à^ l>& • 2&@2 dÈ

ÖāN•^ÁŠê}*•à^ ^@°}*Áã ơÁફ}^\@edàÁå^•Á*^•æf c^}Áê°i^!^}Áܰ}å•&@ ão•Á

a): `[| å} ^} Á } å Ásě i ^ | @eþà Ádieses Rundschnitts zu verankern.

Òā ^ÁÚ > c ^} \[] -ç^! • œ̂|\` } * Á ā å Á ææ ÁÚ > c ^} æð æ æ æ æ

Öā ÁÖ ' &@ æ): \ | æóÁ Òå Á¸ ` | å ^Áse ÁÚ > c ^} æ) • &@ āæ Ásusgewertet.

Mindestbewehrung (NCI Zu 9.4.3(2)) wurde à^¦>& • 3&@ at dE

Kombinationen

Tæi*^à^}å^ÁS[{àã|æeā[}^}Á|æ&@ÁÖOD•ÁÖÞÁFJJ€

Einwirkungsname Ew

Lkn Lastkombinationsnummer

c[| @ | | • & @ } a^ Aç^ | ê } a^ | | a& @ AOa _ a \ ` } * ١

ÖahÁÓnchāāt ` } * Ánā: ^ |} ^ | Ásæ cê || ^ Áa } ^ | @dahÁeiner Einwirkung wird mit diesem

Ausgabeformat nicht dokumentiert.

Gk	Qk.N
Grundkombination	
1.35	1.50 !
	Grundkombination

Rund- schnitt	Abstand [cm]	u [m]	vEd	vRd,c	vRd,max ŽÞÐ/{ á	minAsw	erfAsw Ž%√ á
Ucrit	34.00	1.11	0.227 m	0.542	22-14 (U		<u>22</u> _ u

Auftrags-Nr.	Position	m-p	martens+puller Ingenieurgesellschaft mbH				
2023 300	D-1.1	D-1.1 ÜVPËJPÆÄJØ4&\@ãį ÁJ>å					
DS-2	Durchstan	stanznachweis nach DIN EN 1992-1-1					
<u>Angaben</u>	Beton C 3	0/37, Betonstahl B 50	OOMA				
	Rechteck Plattendicl T ad Haceas Šê} * • à^, Šê} * • à^,	&@ Ár`c @4@ ^@`}* ^@`}*•*¦æå &@ æa):\¦æc	b(r) h(s) h ₀ d _m as,m l,vorh l,zul VEd	= = = = = =	56.0 20.0 20.0 17.0 3.64 0.21 1.96 73.9 1.50	cm cm cm cm &{ £}? % kN	
<u>Nachweis</u>	Ø⊳¦ÁsánÁ, a asm an de Öan•^ÁSê} æ): `[¦å}^ Òa,^ÁÙc-c ÖanÁÖ`¦&@	r Oberseite à^¦>&\●a& *●à^¸^@`}*ÁaróÁa}^¦ }Á`}åÁaĕi^¦@—qàÁdies ^}\[]-ç^¦●@: \`}*Á; ₽æa;:\¦æoÁXÒåÁ,`¦å^,	••ãcčapeā[}Á, č¦å^Ásåã^Á;	ĭi^¦^} Æ erankern È ausgewe	ܡ}å∙&@;ä ı.		
Kombinationen	Tæi*^à^}	å^ÁS[{àð]ædā[}^}Ája	æ&@ÁÖOÞÁÖÞÁFJJ€				
	Ew	Einwirkungsnan	ne				

Lkn !	Lastkombinationsnummer ç[@ • & @ } å^ Æş^ ê } å^ & @ Æ Æ Å Å Å Å Å Å Å Å Å Å Å Å Å Å Å Å Å
	Áð : ^ } ^¦ÁŠæ cê ^Á) } ^¦@фàÁeiner Einwirkung wird mit diesem nicht dokumentiert.

Lkn Grundkombination
1 1.35 1.50 !

Rund-	Abstand	u	vEd	vRd,c	vRd,max	minAsw	erfAsw
schnitt	[cm]	[m]			ŽDĐ(á		Ž&{ á
Ucrit	34.00	1.87	0.349 m	0.542			

Position Auftrags-Nr. 2023 300 D-1.1 ÙVPËÜPÆÄÙ¢4&\@`ā ÁÙ>å Seite: 1-29 **DS-3** Durchstanznachweis nach DIN EN 1992-1-1 Angaben Beton C 30/37, Betonstahl B 500MA Šæ• c^ā, |^āc`} * • √ê&@K Rechteck b(r) 56.0 cm h(s) 20.0 cm Plattendicke h_0 20.0 cm Tãod ÉÁn cægaã & @ Áp c @ 4 @ . d_{m} 17.0 cm Šê}*•à^, ^@*}* Šê}*•à^, ^@*}*•*¦æå a_{s,m} 3.97 &{ Ð 0.23 % I,vorh 1.96 % I,zul Tæi*ÈÄÖ`¦&@eæ);∖¦æec V_{Ed} 89.9 kΝ Šæ• c^¦@4@{}*•~æ\d[¦ 1.50 Keine Durchstanzbewehrung Asw erforderlich. Nachweis Ø>¦ÁåaðiÁ, æi*^à^}å^ÁÓ^|æ•č}*••ãčæāj}Á, `¦å^ÁåaðiÁ, ãdd^¦^ÁŠê}*•à^, ^@`}*Á asm an der Oberseite à^ l>& • 2&@2 dE ÖāN•^ÁŠê}*•à^、^@^`}*ÁãróÁ§}^¦@aþàÁå^•Át^•æ(c^)Áê`i^¦^}ÁÜ`}å•&@,ãæ•Á a): `[| a) ^} Á } a Áse i ^ | @eta Ádieses Rundschnitts zu verankern.

Oa ^AÛOc ^} \[] -ç^! • œ!\` } * Á ā a Á ā @Ase AÛOc ^} a) • &@ ācAsusgewertet.

Oa ÁÖ | &@ ca): \| æAKOå Á ` | a ^Áse ÁUOc ^} a) • &@ ācAsusgewertet. Mindestbewehrung (NCI Zu 9.4.3(2)) wurde à^¦>& • 3&@ à dÈ Kombinationen Tæi: *^à^}å^ÁS[{àã;æeāi}^}Á;æ&@ÁÖOD•ÁÖÞÁFJJ€ Ew Einwirkungsname Lkn Lastkombinationsnummer ! c[| @ | | • & @ } a^Ac^| ê } a^| | a& @ AOa _ a\ ` } *

Ew Gk Qk.N Grundkombination Lkn

34.00

1.87

1	1.35	1.50	!			
Rund- schnitt	Abstand [cm]	u [m]	vEd vRd,c	vRd,max Ž ⊅ ₽} { á	minAsw	erfAsw Ž&(á

0.542

Ausgabeformat nicht dokumentiert.

0.424 m

Öðl ÁÓ v ð ð ð * Á ð : ^|} ^ ¦ Á ð e cê|| Áð } ^ ¦ @ d à Áeiner Einwirkung wird mit diesem

Ucrit

Position Auftrags-Nr. ÙVPËJPÆÄJO4& @ã ÁJ>å 2023 300 D-1.1 Seite: 1-30 DS-4 Durchstanznachweis nach DIN EN 1992-1-1 Angaben Beton C 30/37, Betonstahl B 500MA Šæ• c^ā, |^ãc`} * • √ê&@K Rechteck b(r) 56.0 cm h(s) 20.0 cm Plattendicke h_0 20.0 cm Tãnd ÉÁ casaã & @ Áp c @ 4 @ d_{m} 17.0 cm Šê}*•à^, ^@*}* Šê}*•à^, ^@*}*•*¦æå a_{s,m} 3.94 &{ Ð 0.23 % I,vorh 1.96 % l,zul Tæi*ÉÄÖ`¦&@@æ):\¦æc V_{Ed} 89.1 kΝ Šæ• c^¦@4@{}*•~æ\d[¦ 1.50 Keine Durchstanzbewehrung Asw erforderlich. **Nachweis** Ø>¦ÁåaðiÁ, æi*^à^}å^ÁÓ^|æ•č}*••ãčæāj}Á, `¦å^ÁåaðiÁ, ãdd^¦^ÁŠê}*•à^, ^@`}*Á asm an der Oberseite à^ | > & • 2& @2 dE ÖāN•^ÁŠê}*•à^、^@^`}*ÁãróÁ§}^¦@aþàÁå^•Át^•æ(c^)Áê`i^¦^}ÁÜ`}å•&@,ãæ•Á a): `[¦å}^}Á'}åÁsě i ^¦@spàÁdieses Rundschnitts zu verankern.
Òā ^ÁÜ>c ^}\[] -ç^!•œ̂!\`}*Á; ãåÁý æ‰sé\-&&•æådè
ÖæÁÖ`¦&@æà;\¦æóÁXÒåÁ; ¦å^Ásé; ÁÜ>c^}æð; &@; æósausgewertet. Mindestbewehrung (NCI Zu 9.4.3(2)) wurde à^¦>& • & œ tÈ Kombinationen Tæi*^à^}å^ÁS[{àã}æaã[}^}Á;æ&@ÄÖOD•ÁÖÞÁFJJ€ Ew Einwirkungsname Lkn Lastkombinationsnummer c[| @ | | • & @ } a^Ac^| ê } a^| | a& @ AOa _ a\ ` } *

Öðl ÁÓ v ð ð ð * Á ð : ^|} ^ ¦ Á ð e cê|| Áð } ^ ¦ @ d à Áeiner Einwirkung wird mit diesem

Ew	Gk	Qk.N	
Lkn	Grundkombination		
1	1.35	1.50 !	

Ausgabeformat nicht dokumentiert.

Rund-	Abstand	u	vEd	vRd,c	vRd,max	minAsw	erfAsw
schnitt	[cm]	[m]			ŽDĐ(á		Ž&{ á
Ucrit	34.00	1.87	0.421 m	0.542			

Position Auftrags-Nr. ÙVPËÜPÄÄÛ¢4&\@`ã ÁÛ>å 2023 300 D-1.1 Seite: 1-31 DS-5 Durchstanznachweis nach DIN EN 1992-1-1 Angaben Beton C 30/37, Betonstahl B 500MA Šæ• c^ā, |^ãc`} * • √ê&@K Rechteck b(r) 56.0 cm h(s) 20.0 cm Plattendicke h_0 20.0 cm Tãod ÉÁn cægaã & @ Áp c @ 4 @ . d_{m} 17.0 cm Šê}*•à^, ^@*}* Šê}*•à^, ^@*}*•*¦æå a_{s,m} 3.90 &{ Ð 0.23 % I,vorh 1.96 % l,zul Tæi*ÉÄÖ`¦&@@æ):\¦æc V_{Ed} 87.3 kΝ Šæ• c^¦@4@{}*•~æ\d[¦ 1.50 Keine Durchstanzbewehrung Asw erforderlich. **Nachweis** Ø>¦ÁsanÁ, æi*^à^}å^ÁÓ^|æ•č}*••ãčæāā;}Á¸`¦å^ÁsanÁ, ãcd^¦^ÁŠê}*•à^¸^@`}*Á asm an der Oberseite à^ | > & • 2& @2 dE ÖāN•^ÁŠê}*•à^、^@^`}*ÁãróÁ§}^¦@aþàÁå^•Át^•æ(c^)Áê`i^¦^}ÁÜ`}å•&@,ãæ•Á a): `[¦å}^}Á'}åÁsě i ^¦@spàÁdieses Rundschnitts zu verankern.
Òā ^ÁÜ>c ^}\[] -ç^!•œ̂!\`}*Á; ãåÁý æ‰sé\-&&•æådè
ÖæÁÖ`¦&@æà;\¦æóÁXÒåÁ; ¦å^Ásé; ÁÜ>c^}æð; &@; æósausgewertet. Mindestbewehrung (NCI Zu 9.4.3(2)) wurde à^¦>& • & œ tÈ Kombinationen Tæi*^à^}å^ÁS[{àã}æaã[}^}Á;æ&@ÄÖOD•ÁÖÞÁFJJ€ Ew Einwirkungsname Lkn Lastkombinationsnummer c[| @ | | • & @ } a^Ac^| ê } a^| | a& @ AOa _ a\ ` } *

Öðl ÁÓ v ð ð ð * Á ð : ^|} ^ ¦ Á ð e cê|| Áð } ^ ¦ @ d à Áeiner Einwirkung wird mit diesem Ausgabeformat nicht dokumentiert.

Rund-	Abstand	u	vEd	vRd,c	vRd,max	minAsw	erfAsw
schnitt	[cm]	[m]			ŽDĐ(á		Ž&{ á
Ucrit	34.00	1.87	0.412 m	0.542			

Position Auftrags-Nr. ÙVPËJPÆÄJO4& @ã ÁJ>å 2023 300 D-1.1 Seite: 1-32 DS-6 Durchstanznachweis nach DIN EN 1992-1-1 Angaben Beton C 30/37, Betonstahl B 500MA Šæ• c^ā, |^ãc`} * • √ê&@K Rechteck 38.0 b(r) cm h(s) 20.0 cm Plattendicke h_0 20.0 cm Tãod ÉÁn cægaã & @ Áp c @ 4 @ . d_{m} 17.0 cm Šê}*•à^, ^@*}* Šê}*•à^, ^@*}*•*¦æå a_{s,m} 3.56 &{ Ð 0.21 % I,vorh 1.96 % I,zul Tæi*ÉÄÖ`¦&@@æ):\¦æc V_{Ed} 91.1 kΝ Šæ• c^¦@4@{}*•~æ\d[¦ 1.50 Keine Durchstanzbewehrung Asw erforderlich. Nachweis Ø>¦ÁåaðiÁ, æi*^à^}å^ÁÓ^|æ•č}*••ãčæāj}Á, `¦å^ÁåaðiÁ, ãdd^¦^ÁŠê}*•à^, ^@`}*Á asm an der Oberseite à^ | > & • 2& @2 dE ÖāN•^ÁŠê}*•à^、^@^`}*ÁãróÁ§}^¦@aqàÁå^•Át^•æ(c^}Áê`i^¦^}ÁÜ`}å•&@,ãæ•Á a): `[| a) ^} Á } a Áse i ^ | @eta Ádieses Rundschnitts zu verankern.

Oa ^AÛOc ^} \[] -ç^! • œ!\` } * Á ā a Á ā @Ase AÛOc ^} a) • &@ ācAsusgewertet.

Oa ÁÖ | &@ ca): \| æAKOå Á ` | a ^Áse ÁUOc ^} a) • &@ ācAsusgewertet. Mindestbewehrung (NCI Zu 9.4.3(2)) wurde à^¦>& • & œ tÈ

Kombinationen Tæi: *^à^}å^ÁS[{àã;æeāi}^}Á;æ&@ÁÖOD•ÁÖÞÁFJJ€

> Ew Einwirkungsname

Lkn Lastkombinationsnummer

Ţ c[| @ | | • & @ } a^Ac^| ê } a^| | a& @ AOa _ a\ ` } *

Öðl ÁÓ v ð ð ð * Á ð : ^|} ^ ¦ Á ð e cê|| Áð } ^ ¦ @ d à Áeiner Einwirkung wird mit diesem Ausgabeformat nicht dokumentiert.

Ew Gk Qk.N Grundkombination Lkn 1.35 1.50 ! 1

Rund-	Abstand	u	vEd	vRd,c	vRd,max	minAsw	erfAsw
schnitt	[cm]	[m]			Ž⊃Đ(á		Ž&{ á
Ucrit	34.00	1.85	0.435 m	0.542			

Auftrags-Nr.	Position	m-p	martens-	-puller schaft mbH			
2023 300	D-1.1	ÙVPËÜPÄÄÛ				Se	eite: 1-33
<u>DS-7</u>	Durchstar	nznachweis nach DIN	EN 1992-1	-1			
<u>Angaben</u>	Beton C 3	30/37, Betonstahl B 5	SOOMA				
	Wandend Plattendic TãdEAcæi Šê} * • à^, Šê} * • à^, Tæi * ÉÖ̈	cke §&@Ápčc@4@		a b h ₀ d _m as,m l,vorh l,zul VEd	= = = = = = = = = = = = = = = = = = = =	24.0 24.0 20.0 17.0 3.80 0.22 1.96 51.2 1.35	cm cm cm cm &(E) % kN
<u>Nachweis</u>	Ø⊳¦ÁsanÁ, asm an d Öar•^Áse) æ): `[¦å} Òa,^ÁÙ⊳c ÖarÁÖ ¦&	rchstanzbewehrung A æi *^à^} å^ÁÓ^ æcc} er Oberseite à^¦>&\•á .*•à^, ^@`} *Á\$cá\$} ^}Á} åÁ\$ĕ i ^ @•àÁdie :^}\[] -ç^!•œ̂!\`} *Á @œa):\ æóÁXÒåÁ¸ `lå⁄ ewehrung (NCI Zu 9.4	*••ã čæā[}Á] 38.@žādÈ ^¦@aţàÁs^•Á* ses Rundso āåÁj38.@Ás^ ^Áæ[ÁJo-c^	. `¦å^ÁsarÁ, ^•æ(e^}Ás :hnitts zu v ¦>&\•a&@a* }æ)•&@ião	· erankern È ausgewe	Ü`}å∙&@}á ı.	•
Kombinationen	Tæi*^à^	}å^ÁS[{àãjæaāj}^}Á,	æ&@#ÖΦ#ÒÞ	ÁFJJ€			
	Ew Lkn !	Einwirkungsna Lastkombinatio ç[@ • &@ } å	onsnummer	B&@ÁÒājā	\~}*		
	Öã\ÁÓ^¢\ā	jā*}*Ánāj:^ }^¦ÁŠæec-	ê ^Á§;}^¦@æ	àÁeiner Eir	nwirkung	wird mit d	iesem

Lkn Grundkombination 1 1.35 1.50 !	Ew	Gk	Qk.N		
1 1.35 1.50 !	Lkn	Grundkombination			
	1	1.35	1.50 !		

Rund-	Abstand	u	vEd	vRd,c	vRd,max	minAsw	erfAsw
schnitt	[cm]	[m]			ŽD-E0{ á		Ž 8{ á
Ucrit	34.00	1.79	0.227 m	0.542			

Position Auftrags-Nr. ÙVPËJPÆÄJO4& @ã ÁJ>å 2023 300 D-1.1 Seite: 1-34

DS-8 Durchstanznachweis nach DIN EN 1992-1-1

Angaben Beton C 30/37, Betonstahl B 500MA

Šæ• c^ā, |^āc`} * • √ê&@K

Wandecke	a	=	24.0	cm
	b	=	24.0	cm
Plattendicke	h_0	=	20.0	cm
Tãod ÉÁn cææãa & @ ÁÞ c @ 4 @	d_m	=	17.0	cm
Šê} *•à^, ^@`}*	a _{s,m}	=	3.44	&{ Đ)
Šê∫*•à^(^@`∫*•*¦æå	l,vorh	=	0.20	%
	l,zul	=	1.96	%
Tæi*ÈÄÖˇ¦&@œa):\¦æec	VEd	=	108.7	kN
Šæ• c^\@4@}*•~æ\d\		=	1.20	

Nachweis Durchstanzbewehrung Asw ist erforderlich.

Ø>¦ÁåaðiÁ, æi*^à^}å^ÁÓ^|æ•č}*••ãčæāj}Á, `¦å^ÁåaðiÁ, ãdd^¦^ÁŠê}*•à^, ^@`}*Á

asm an der Oberseite à^ | > & • 2& @2 dE

ÖāN•^ÁŠê}*•à^、^@^`}*ÁãróÁ§}^¦@aqàÁå^•Át^•æ(c^}Áê`i^¦^}ÁÜ`}å•&@,ãæ•Á

a): `[| a) ^} Á } a Áse i ^ | @eta Ádieses Rundschnitts zu verankern.

Oa ^AÛOc ^} \[] -ç^! • œ!\` } * Á ā a Á ā @Ase AÛOc ^} a) • &@ ācAsusgewertet.

Oa ÁÖ | &@ ca): \| æAKOå Á ` | a ^Áse ÁUOc ^} a) • &@ ācAsusgewertet.

Mindestbewehrung (NCI Zu 9.4.3(2)) wurde à^¦>& • & œ tÈ

Kombinationen Tæi: *^à^}å^ÁS[{àã;æeāi}^}Á;æ&@ÁÖOD•ÁÖÞÁFJJ€

> Ew Einwirkungsname

Lkn Lastkombinationsnummer

c[| @ | | • & @ \ a^Ac^| e \ a^| | a \ @ A \ a \ | a \ * \ \ *

Öðl ÁÓ v ð ð ð ' * Á ð : ^|} ^ ¦ Á ð e cê|| Áð } ^ ¦ @ d à Áeiner Einwirkung wird mit diesem Ausgabeformat nicht dokumentiert.

Ew Gk Qk.N Grundkombination Lkn 1.35 1.50 !

Rund- schnitt	Abstand [cm]	u [m]	vEd	vRd,c	vRd,max ŽÞ₽) { á	minAsw	erfAsw Ž&{ á
U1	8.50	0.61	1.251			0.46	2.58
U2	21.25	0.81	0.943			0.61	1.44
U3	34.00	1.01	0.757			0.76	1.03
U4	46.75	1.21	0.632			0.90	1.03
Ucrit	34.00	1.01	0.757 >	0.542			
			m		0.759		
Uout	59.60	1.42	0.542	0.542			

Breite des zu bewehrenden Bereiches Iw = 46.8 cm

Ó^ā^ā^ā^{ A (ād^\^) AŠê}*•à^. ^@*)*•*^@edoÁee { ÁMÁFÏ È Á& E) Ása} Ása^¦Á Oberseite innerhalb des \ | aa &@ \ AU \ a & & a a & A e | ^A ^a ^A Durchstanzbewehrung erforderlich.

Position Auftrags-Nr. ÙVPËÜPÄÄÛ¢4&\@`ã ÁÛ>å 2023 300 D-1.1 Seite: 1-35 DS-9 Durchstanznachweis nach DIN EN 1992-1-1 Angaben Beton C 30/37, Betonstahl B 500MA Šæ• c^ā, |^āc`} * • √ê&@K Wandecke а 24.0 cm b 24.0 cm Plattendicke h_0 20.0 cm Tãod ÉÁn cægaã & @ Áp c @ 4 @ . d_{m} 17.0 cm Šê}*•à^, ^@*}* Šê}*•à^, ^@*}*•*¦æå a_{s,m} 3.35 &{ Ð 0.20 % I,vorh 1.96 % l,zul Tæi*ÉÄÖ`¦&@@æ):\¦æc V_{Ed} 42.7 kΝ Šæ• c^¦@4@{}*•~æ\d[¦ 1.20 Nachweis Keine Durchstanzbewehrung Asw erforderlich. Ø>¦ÁsanÁ, æi*^à^}å^ÁÓ^|æ•č}*••ãčæāā;}Á¸`¦å^ÁsanÁ, ãcd^¦^ÁŠê}*•à^¸^@`}*Á asm an der Oberseite à^ l>& • 3&@2 dÈ ÖāN•^ÁŠê}*•à^、^@^`}*ÁãróÁ§}^¦@aqàÁå^•Át^•æ(c^}Áê`i^¦^}ÁÜ`}å•&@,ãæ•Á a): `[¦å}^}Á'}åÁsě i ^¦@spàÁdieses Rundschnitts zu verankern.
Òā ^ÁÜ>c ^}\[] -ç^!•œ̂!\`}*Á; ãåÁý æ‰sé\-&&•æådè
ÖæÁÖ`¦&@æà;\¦æóÁXÒåÁ; ¦å^Ásé; ÁÜ>c^}æð; &@; æósausgewertet. Mindestbewehrung (NCI Zu 9.4.3(2)) wurde à^¦>& • 3&@ à dÈ Kombinationen Tæi*^à^}å^ÁS[{àã}æaã[}^}Á;æ&@ÄÖOD•ÁÖÞÁFJJ€ Ew Einwirkungsname Lkn Lastkombinationsnummer c[| @ | | • & @ | a ^ Ac ^ | ê | a ^ | | a & @ A D a _ a \ ` } * ÖaNÁÓ ∧ Alaarri x * Ánaar • Ali ∧! Ásaan ca all ∧ Áai i ∧! @anha Án inner Einwirk ung wird mit diesem

	raa } Ara : শ্ৰাসিকিটে ভেল্পিকা } শ্ৰিষ্টা কৰি Einwirkung wird mit diesem eformat nicht dokumentiert.
_	

Ew	Gk	Qk.N	
Lkn	Grundkombination		
1	1.35	1.50 !	

Rund-	Abstand	u	vEd	vRd,c	vRd,max	minAsw	erfAsw
schnitt	[cm]	[m]			ŽD-E0{ á		Ž&{ á
Ucrit	34.00	1.01	0.297 m	0.542			

Auftrags-Nr.	Position	Ingenieurgesellschaft mbH	
2023 300	D-1.1	ÙVPËÜPÆÄÛ¢4&\@Aį ÁÛ>å	Seite: 1-36

DS-10 Durchstanznachweis nach DIN EN 1992-1-1

Angaben Beton C 30/37, Betonstahl B 500MA

> Šæ• c^ā, |^āc`} * • √ê&@K Rechteck b(r) h(s) Plattendicke h_0

20.0 cm Tãnd ÉÁ casaã & @ Áp c @ 4 @ d_{m} 17.0 cm Šê}*•à^, ^@*}* Šê}*•à^, ^@*}*•*¦æå $a_{s,m}$ 3.78 & Đ 0.22 % I,vorh 1.96 % l,zul Tæi*ÈÄÖ`¦&@eæ):\¦æec V_{Ed} 95.6 kΝ Šæ• c^¦@4@{}*•~æ\d[¦ 1.50

8.9

8.9

cm

cm

Durchstanzbewehrung Asw ist erforderlich. **Nachweis**

Ø>¦ÁsanÁ, æi*^à^}å^ÁÓ^|æ•č}*••ãčæāā;}Á¸`¦å^ÁsanÁ, ãcd^¦^ÁŠê}*•à^¸^@`}*Á

asm an der Oberseite à^ l>& • 3&@2 dÈ

ÖāN•^ÁŠê}*•à^、^@^`}*ÁãróÁ§}^¦@aqàÁå^•Át^•æ(c^}Áê`i^¦^}ÁÜ`}å•&@,ãæ•Á

a): `[¦å}^}Á'}åÁsě i ^¦@spàÁdieses Rundschnitts zu verankern.
Òā ^ÁÜ>c ^}\[] -ç^!•œ̂!\`}*Á; ãåÁý æ‰sé\-&&•æådè
ÖæÁÖ`¦&@æà;\¦æóÁXÒåÁ; ¦å^Ásé; ÁÜ>c^}æð; &@; æósausgewertet.

Mindestbewehrung (NCI Zu 9.4.3(2)) wurde à^¦>& • & œ tÈ

Kombinationen Tæi*^à^}å^ÁS[{àãjæaãj}^}Ájæ&@ÄÖO⊅ÁÖÞÁFJJ€

> Ew Einwirkungsname

Lkn Lastkombinationsnummer

c[| @ | | • & @ } a^Ac^| ê } a^| | a& @ AOa _ a\ ` } *

Öðl ÁÓ v ð ð ð ' * Á ð : ^|} ^ ¦ Á ð e cê|| Áð } ^ ¦ @ d à Áeiner Einwirkung wird mit diesem

Ausgabeformat nicht dokumentiert.

Ew	Gk	Qk.N		
Lkn	Grundkombination			
1	1.35	1.50 !		

Rund-	Abstand	u	vEd	vRd,c	vRd,max	minAsw	erfAsw
schnitt	[cm]	[m]			Ž⊃Đ({á		Ž&{ á
U1	8.50	0.64	1.309			0.48	1.86
U2	21.25	1.04	0.807			0.78	1.04
Ucrit	34.00	1.45	0.583 >	0.542			
			m		0.759		
Uout	37.55	1.56	0.542	0.542			

Breite des zu bewehrenden Bereiches Iw = 21.3 cm

Ó^ ãÁ^ ā ^ { Á acd^ | ^ } ÁŠê | * • à^ _ ^ @* | * • * ^ @edoÁse { ÁMÁFI Ì È Á&{ E) Ása} Ása^ | Á Oberseite innerhalb des \ | aaa &@ | ÁÜ | } å• &@ aao Á ê | ^Á^a ^A

Durchstanzbewehrung erforderlich.

Position Auftrags-Nr. 2023 300 D-1.1 Seite: 1-37

DS-11 Durchstanznachweis nach DIN EN 1992-1-1

Angaben Beton C 30/37, Betonstahl B 500MA

Šæ• c^ā, |^āc`} * • √ê&@K

Rechteck	b(r)	=	8.9	cm
	h(s)	=	8.9	cm
Plattendicke	h_0	=	20.0	cm
TãodÉAcæaã&@APc@4@	d_{m}	=	17.0	cm
Šê} *•à^ , ^@* } *	a _{s,m}	=	3.69	&(E)
Šê}*•à^¸^@`}*•*¦æå	l,vorh	=	0.22	%
	l,zul	=	1.96	%
Tæi*ÈÄÖˇ¦&@eæ);:\¦æec	V_{Ed}	=	183.4	kN
Šæ¢^¦@4@}*•æ4q¦		=	1.50	

Nachweis Durchstanzbewehrung Asw ist erforderlich.

Ø>¦ÁsanÁ, æi*^à^}å^ÁÓ^|æ•č}*••ãčæāā;}Á¸`¦å^ÁsanÁ, ãcd^¦^ÁŠê}*•à^¸^@`}*Á

asm an der Oberseite à^ | >& • 2&@2 dÈ

ÖāN•^ÁŠê}*•à^、^@^`}*ÁãróÁ§}^¦@aqàÁå^•Át^•æ(c^}Áê`i^¦^}ÁÜ`}å•&@,ãæ•Á

a): `[¦å}^}Á'}åÁsě i ^¦@spàÁdieses Rundschnitts zu verankern.
Òā ^ÁÜ>c ^}\[] -ç^!•œ̂!\`}*Á; ãåÁý æ‰sé\-&&•æådè
ÖæÁÖ`¦&@æà;\¦æóÁXÒåÁ; ¦å^Ásé; ÁÜ>c^}æð; &@; æósausgewertet.

Mindestbewehrung (NCI Zu 9.4.3(2)) wurde à^¦>& • & œ tÈ

Kombinationen Tæi*^à^}å^ÁS[{àãjæaãj}^}Ájæ&@ÄÖO⊅ÁÖÞÁFJJ€

> Ew Einwirkungsname

Lkn Lastkombinationsnummer

c[| @ | | • & @ } a^Ac^| ê } a^| | a& @ AOa _ a\ ` } *

Öðl ÁÓ v ð ð ð ' * Á ð : ^|} ^ ¦ Á ð e cê|| Áð } ^ ¦ @ d à Áeiner Einwirkung wird mit diesem

Ausgabeformat nicht dokumentiert.

Ew	Gk	Qk.N
Lkn	Grundkombination	
1	1.35	1.50 !

Rund-	Abstand	u	vEd	vRd,c	vRd,max	minAsw	erfAsw
schnitt	[cm]	[m]			ŽD-E0{ á		Ž&{ á
U1	8.50	0.89	1.819			0.66	4.39
U2	21.25	1.69	0.957			1.26	2.46
Ucrit	34.00	2.49	0.649 >	0.542			
			m		0.759		
Uout	41.85	2.99	0.542	0.542			

Breite des zu bewehrenden Bereiches Iw = 21.3 cm

Ó^ ãÁ^ ā ^ { Á acd^ | ^ } ÁŠê | * • à^ _ ^ @ * | * • * ^ @edoÁse { ÁMÁF JÈ Á& ED Ása} Á&^ | Á Oberseite innerhalb des \\ aa &@ \ AU \ a & & a & & a & A & A Durchstanzbewehrung erforderlich.

Auftrags-Nr.	Position	Ingenieurgesellschaft mbH	
2023 300	D-1.1	ÙVPËÜPÆÄÜ¢&\@`ā(AÛ>å	Seite: 1-38

DS-12 Durchstanznachweis nach DIN EN 1992-1-1

Angaben Beton C 30/37, Betonstahl B 500MA

Šæ• c^āj |^ãc`} * • √ê&@K

Rechteck	b(r)	=	8.9	cm
	h(s)	=	8.9	cm
Plattendicke	h_0	=	20.0	cm
Tãod ÈÁn cassãn & @ Áp c @ 4 @	d_{m}	=	17.0	cm
Šê} *•à^¸ ^@*}*	a _{s,m}	=	3.69	&{ E()
Šê; *•à^¸ ^@^`; *•*¦æå	l,vorh	=	0.22	%
	l,zul	=	1.96	%
Tæi*ÈÄÖˇ¦&@eæ):\¦æe	V_{Ed}	=	170.0	kN
Šæ• c^¦@4@}*•-æa•({¦		=	1.50	

Nachweis Durchstanzbewehrung Asw ist erforderlich.

Ø>¦ÁsanÁ, æi*^à^}å^ÁÓ^|æ•č}*••ãčæāā;}Á¸`¦å^ÁsanÁ, ãcd^¦^ÁŠê}*•à^¸^@`}*Á

asm an der Oberseite à^ l>& • 3&@2 dÈ

ÖāN•^ÁŠê}*•à^、^@^`}*ÁãróÁ§}^¦@aqàÁå^•Át^•æ(c^}Áê`i^¦^}ÁÜ`}å•&@,ãæ•Á

a): `[¦å}^}Á'}åÁsě i ^¦@spàÁdieses Rundschnitts zu verankern.
Òā ^ÁÜ>c ^}\[] -ç^!•œ̂!\`}*Á; ãåÁý æ‰sé\-&&•æådè
ÖæÁÖ`¦&@æà;\¦æóÁXÒåÁ; ¦å^Ásé; ÁÜ>c^}æð; &@; æósausgewertet.

Mindestbewehrung (NCI Zu 9.4.3(2)) wurde à^¦>& • &@a cÈ

Kombinationen Tæi*^à^}å^ÁS[{àãjæaãj}^}Ájæ&@ÄÖO⊅ÁÖÞÁFJJ€

> Ew Einwirkungsname

Lkn Lastkombinationsnummer

ç[| @ | | • & @ } a ^ Aç ^ | ê } a ^ | | a& @ ADa ; a \ ` } *

Öðl ÁÓ v ð ð ð ' * Á ð : ^|} ^ ¦ Á ð e cê|| Áð } ^ ¦ @ d à Áeiner Einwirkung wird mit diesem Ausgabeformat nicht dokumentiert.

Ew Qk.N Grundkombination Lkn 1.35 1.50 !

Rund-	Abstand	u	vEd	vRd,c	vRd,max	minAsw	erfAsw
schnitt	[cm]	[m]			Ž>Đ{ á		Ž&{ á
U1	8.50	0.89	1.686			0.66	3.53
U2	21.25	1.69	0.887			1.26	1.98
Ucrit	34.00	2.49	0.602 >	0.542			
			m		0.759		
Uout	38.40	2.77	0.542	0.542			

Breite des zu bewehrenden Bereiches Iw = 21.3 cm

Ó^ ãÁ^ ā, ^{ Á; ãcd^!^} ÁŠê}*•à^. ^@*}*•*^@edoÁæe { ÁMÁFÍ Ě Á&{ E) Áæ} Áå^¦Á Oberseite innerhalb des \\ aa &@ \ AU \ a & & a & & a & A & A Durchstanzbewehrung erforderlich.

Position Auftrags-Nr. ÙVPËÜPÄÄÛ¢4&\@`ã ÁÛ>å 2023 300 D-1.1 Seite: 1-39 **DS-13** Durchstanznachweis nach DIN EN 1992-1-1 Angaben Beton C 30/37, Betonstahl B 500MA Šæ• c^ā, |^ãc`} * • √ê&@K Rechteck b(r) 8.9 cm h(s) 8.9 cm Plattendicke h_0 20.0 cm Tãod ÉÁn cægaã & @ Áp c @ 4 @ . d_{m} 17.0 cm Šê}*•à^, ^@*}* Šê}*•à^, ^@*}*•*¦æå a_{s,m} 3.49 &{ Ð 0.21 % I,vorh 1.96 % l,zul Tæi*ÉÄÖ`¦&@@æ):\¦æc V_{Ed} 117.7 kΝ Šæ• c^¦@4@{}*•~æ\d[¦ 1.50 Keine Durchstanzbewehrung Asw erforderlich. **Nachweis** Ø>¦ÁsanÁ, æi*^à^}å^ÁÓ^|æ•č}*••ãčæāā;}Á¸`¦å^ÁsanÁ, ãcd^¦^ÁŠê}*•à^¸^@`}*Á asm an der Oberseite à^ | > & • 2& @2 dE ÖāN•^ÁŠê}*•à^、^@^`}*ÁãróÁ§}^¦@aqàÁå^•Át^•æ(c^}Áê`i^¦^}ÁÜ`}å•&@,ãæ•Á a): `[¦å}^}Á'}åÁsě i ^¦@spàÁdieses Rundschnitts zu verankern.
Òā ^ÁÜ>c ^}\[] -ç^!•œ̂!\`}*Á; ãåÁý æ‰sé\-&&•æådè
ÖæÁÖ`¦&@æà;\¦æóÁXÒåÁ; ¦å^Ásé; ÁÜ>c^}æð; &@; æósausgewertet. Mindestbewehrung (NCI Zu 9.4.3(2)) wurde à^¦>& • & œ tÈ Kombinationen Tæi*^à^}å^ÁS[{àãjæaãj}^}Ájæ&@ÄÖO⊅ÁÖÞÁFJJ€ Ew Einwirkungsname Lkn Lastkombinationsnummer c[| @ | | • & @ } a^Ac^| ê } a^| | a& @ AOa _ a\ ` } * Öðl ÁÓ v ð ð ð * Á ð : ^|} ^ ¦ Á ð e cê|| Áð } ^ ¦ @ d à Áeiner Einwirkung wird mit diesem Ausgabeformat nicht dokumentiert.

Ew	Gk	Qk.N	
Lkn	Grundkombination		
1	1.35	1.50 !	

Rund-	Abstand	u	vEd	vRd,c	vRd,max	minAsw	erfAsw
schnitt	[cm]	[m]			ŽĎ-E(){ á		Ž 8{ á
Ucrit	34.00	2.49	0.417 m	0.542			

Position Auftrags-Nr. ÙVPËÜPÄÄÛ¢4&\@`ã ÁÛ>å 2023 300 D-1.1 Seite: 1-40 **DS-14** Durchstanznachweis nach DIN EN 1992-1-1 Angaben Beton C 30/37, Betonstahl B 500MA Šæ• c^ā, |^ãc`} * • √ê&@K Rechteck b(r) 8.9 cm h(s) 8.9 cm Plattendicke h_0 20.0 cm Tãnd ÉÁ casaã & @ Áp c @ 4 @ d_{m} 17.0 cm Šê}*•à^, ^@*}* Šê}*•à^, ^@*}*•*¦æå a_{s,m} 3.35 &{ Ð 0.20 % I,vorh 1.96 % l,zul Tæi*ÉÄÖ`¦&@@æ):\¦æc V_{Ed} 19.2 kΝ Šæ• c^¦@4@{}*•~æ\d[¦ 1.50 Keine Durchstanzbewehrung Asw erforderlich. **Nachweis** Ø>¦ÁåaðiÁ, æi*^à^}å^ÁÓ^|æ•č}*••ãčæāj}Á, `¦å^ÁåaðiÁ, ãdd^¦^ÁŠê}*•à^, ^@`}*Á asm an der Oberseite à^ | > & • 2& @2 dE ÖāN•^ÁŠê}*•à^、^@^`}*ÁãróÁ§}^¦@aqàÁå^•Át^•æ(c^}Áê`i^¦^}ÁÜ`}å•&@,ãæ•Á a): `[¦å}^}Á'}åÁsě i ^¦@spàÁdieses Rundschnitts zu verankern.
Òā ^ÁÜ>c ^}\[] -ç^!•œ̂!\`}*Á; ãåÁý æ‰sé\-&&•æådè
ÖæÁÖ`¦&@æà;\¦æóÁXÒåÁ; ¦å^Ásé; ÁÜ>c^}æð; &@; æósausgewertet. Mindestbewehrung (NCI Zu 9.4.3(2)) wurde à^¦>& • & œ tÈ Kombinationen Tæi*^à^}å^ÁS[{àãjæaãj}^}Ájæ&@ÄÖO⊅ÁÖÞÁFJJ€ Ew Einwirkungsname Lkn Lastkombinationsnummer c[| @ | | • & @ } a^Ac^| ê } a^| | a& @ AOa _ a\ ` } * Öðl ÁÓ v ð ð ð ' * Á ð : ^|} ^ ¦ Á ð e cê|| Áð } ^ ¦ @ d à Áeiner Einwirkung wird mit diesem Ausgabeformat nicht dokumentiert.

Ew	Gk	Qk.N	
Lkn	Grundkombination		
1	1.35	1.50 !	

Rund-	Abstand	u	vEd	vRd,c	vRd,max	minAsw	erfAsw
schnitt	[cm]	[m]			ŽDĐ(á		Ž&{ á
Ucrit	34.00	1.98	0.086 m	0.542			

Position Auftrags-Nr. ÙVPËJPÆÄJc4& @ã ÁJ>å 2023 300 D-1.1 Seite: 1-41 **DS-15** Durchstanznachweis nach DIN EN 1992-1-1 Angaben Beton C 30/37, Betonstahl B 500MA Šæ• c^ā, |^ãc`} * • √ê&@K Wandende 24.0 а cm b 24.0 cm Plattendicke h_0 20.0 cm Tãnd ÉÁ casaã & @ Áp c @ 4 @ d_{m} 17.0 cm Šê}*•à^, ^@*}* Šê}*•à^, ^@*}*•*¦æå a_{s,m} 4.36 &{ Ð 0.26 % I,vorh 1.96 % l,zul Tæi*ÉÄÖ`¦&@@æ):\¦æc V_{Ed} 76.6 kΝ Šæ• c^¦@4@{}*•~æ\d[¦ 1.35 Keine Durchstanzbewehrung Asw erforderlich. Nachweis Ø>¦ÁåaðiÁ, æi*^à^}å^ÁÓ^|æ•č}*••ãčæāj}Á, `¦å^ÁåaðiÁ, ãdd^¦^ÁŠê}*•à^, ^@`}*Á asm an der Oberseite à^ | > & • 2& @2 dE ÖāN•^ÁŠê}*•à^、^@^`}*ÁãróÁ§}^¦@aqàÁå^•Át^•æ(c^}Áê`i^¦^}ÁÜ`}å•&@,ãæ•Á a): `[| a) ^} Á } a Áse i ^ | @eta Ádieses Rundschnitts zu verankern.

Oa ^AÛOc ^} \[] -ç^! • œ!\` } * Á ā a Á ā @Ase AÛOc ^} a) • &@ ācAsusgewertet.

Oa ÁÖ | &@ ca): \| æAKOå Á ` | a ^Áse ÁUOc ^} a) • &@ ācAsusgewertet. Mindestbewehrung (NCI Zu 9.4.3(2)) wurde à^¦>& • & œ tÈ Kombinationen Tæi: *^à^}å^ÁS[{àã;æeāi}^}Á;æ&@ÁÖOD•ÁÖÞÁFJJ€ Ew Einwirkungsname Lkn Lastkombinationsnummer c[| @ | | • & @ } a^Ac^| ê } a^| | a& @ AOa _ a\ ` } * Öðl ÁÓ v ð ð ð ' * Á ð : ^|} ^ ¦ Á ð e cê|| Áð } ^ ¦ @ d à Áeiner Einwirkung wird mit diesem Ausgabeformat nicht dokumentiert.

Ew	Gk	Qk.N	
Lkn	Grundkombination		
1	1.35	1.50 !	

Rund-	Abstand	u	vEd	vRd,c	vRd,max	minAsw	erfAsw
schnitt	[cm]	[m]			Ž⊅Đ({ á		Ž&{ á
Ucrit	34.00	1.79	0.340 m	0.542			_

Position Auftrags-Nr. ÙVPËÜPÄÄÛ¢4&\@`ã ÁÛ>å 2023 300 D-1.1 Seite: 1-42 **DS-16** Durchstanznachweis nach DIN EN 1992-1-1 Angaben Beton C 30/37, Betonstahl B 500MA Šæ• c^ā, |^ãc`} * • √ê&@K Wandende а 24.0 cm b 24.0 cm Plattendicke h_0 20.0 cm Tãnd ÉÁ casaã & @ Áp c @ 4 @ d_{m} 17.0 cm Šê}*•à^, ^@*}* Šê}*•à^, ^@*}*•*¦æå a_{s,m} 4.95 &{ Ð 0.29 % I,vorh 1.96 % l,zul Tæi*ÉÄÖ`¦&@@æ):\¦æc V_{Ed} 88.3 kΝ Šæ• c^¦@4@{}*•~æ\d[¦ 1.35 Keine Durchstanzbewehrung Asw erforderlich. **Nachweis** Ø>¦ÁsanÁ, æi*^à^}å^ÁÓ^|æ•č}*••ãčæāā;}Á¸`¦å^ÁsanÁ, ãcd^¦^ÁŠê}*•à^¸^@`}*Á asm an der Oberseite à^ | > & • 2& @2 dE ÖāN•^ÁŠê}*•à^、^@^`}*ÁãróÁ§}^¦@aqàÁå^•Át^•æ(c^}Áê`i^¦^}ÁÜ`}å•&@,ãæ•Á a): `[¦å}^}Á'}åÁsě i ^¦@spàÁdieses Rundschnitts zu verankern.
Òā ^ÁÜ>c ^}\[] -ç^!•œ̂!\`}*Á; ãåÁý æ‰sé\-&&•æådè
ÖæÁÖ`¦&@æà;\¦æóÁXÒåÁ; ¦å^Ásé; ÁÜ>c^}æð; &@; æósausgewertet. Mindestbewehrung (NCI Zu 9.4.3(2)) wurde à^¦>& • & œ tÈ Kombinationen Tæi*^à^}å^ÁS[{àãjæaãj}^}Ájæ&@ÄÖO⊅ÁÖÞÁFJJ€ Ew Einwirkungsname Lkn Lastkombinationsnummer c[| @ | | • & @ } a^Ac^| ê } a^| | a& @ AOa _ a\ ` } * Öðl ÁÓ v ð ð ð ' * Á ð : ^|} ^ ¦ Á ð e cê|| Áð } ^ ¦ @ d à Áeiner Einwirkung wird mit diesem Ausgabeformat nicht dokumentiert.

Ew	Gk	Qk.N
Lkn	Grundkombination	
1	1.35	1.50 !

Rund-	Abstand	u	vEd	vRd,c	vRd,max	minAsw	erfAsw
schnitt	[cm]	[m]			ŽD-E0{ á		Ž&{ á
Ucrit	34.00	1.79	0.392 m	0.542			

Auftrags-Nr.	Position	│ ■ ■ │ │ │ Ingenieurgesellschaft mbH	
2023 300	D-1.1	ÙVPËÜPÄÄÜ¢&\@ã ÁÙ>å	Seite: 1-43

DS-17 Durchstanznachweis nach DIN EN 1992-1-1

Angaben Beton C 30/37, Betonstahl B 500MA

Šæ• c^ā, |^āc`} * • √ê&@K

Wandende	a	=	24.0	cm
	b	=	24.0	cm
Plattendicke	h_0	=	20.0	cm
Tãod ÉÁn cææãa & @ ÁÞ c @ 4 @	d_m	=	17.0	cm
Šê} *•à^, ^@`}*	a _{s,m}	=	4.10	&(D)
Šê∮*•à^¸^@`∮*•*¦æå	l,vorh	=	0.24	%
	l,zul	=	1.96	%
Tæi*ÈÄÖˇ¦&@œa):\¦æec	VEd	=	123.1	kN
Šæ• c^\@4@}*•~æ\d\		=	1.35	

Nachweis Durchstanzbewehrung Asw ist erforderlich.

Ø>¦ÁsanÁ, æi*^à^}å^ÁÓ^|æ•č}*••ãčæāā;}Á¸`¦å^ÁsanÁ, ãcd^¦^ÁŠê}*•à^¸^@`}*Á

asm an der Oberseite à^ l>& • 3&@2 dÈ

Öā^•^ÁŠê}*•à^¸^@`}*ÁārơÁş}^\!@æ¢àÁå^•Á¹^•æ{ c^}Áê`i^¦^}ÁÜ`}å•&@;ãæ•Á

a): `[¦å}^}Á'}åÁsě i ^¦@spàÁdieses Rundschnitts zu verankern.
Òā ^ÁÜ>c ^}\[] -ç^!•œ̂!\`}*Á; ãåÁý æ‰sé\-&&•æådè
ÖæÁÖ`¦&@æà;\¦æóÁXÒåÁ; ¦å^Ásé; ÁÜ>c^}æð; &@; æósausgewertet.

Mindestbewehrung (NCI Zu 9.4.3(2)) wurde à^¦>& • & œ tÈ

Kombinationen Tæi*^à^}å^ÁS[{àãjæaãj}^}Ájæ&@ÄÖO⊅ÁÖÞÁFJJ€

> Ew Einwirkungsname

Lkn Lastkombinationsnummer

ç[| @ | | • & @ } a ^ Aç ^ | ê } a ^ | | a& @ ADa ; a \ ` } *

Öðl ÁÓ v ð ð ð ' * Á ð : ^|} ^ ¦ Á ð e cê|| Áð } ^ ¦ @ d à Áeiner Einwirkung wird mit diesem Ausgabeformat nicht dokumentiert.

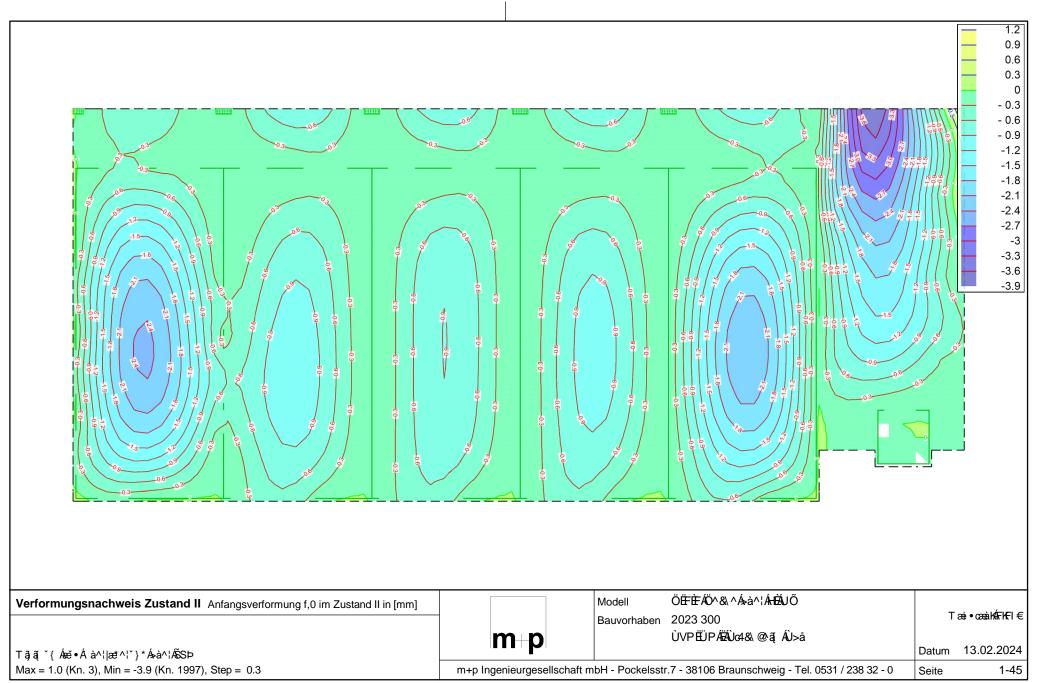
Ew	Gk	Qk.N	
Lkn	Grundkombination		
1	1.35	1.50 !	

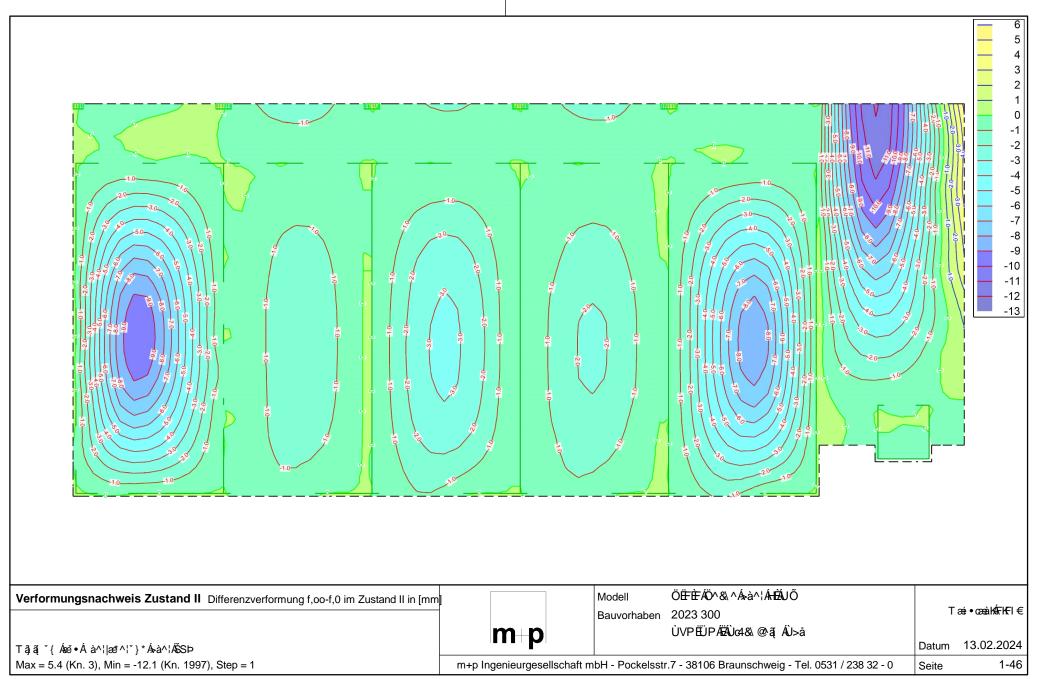
Rund-	Abstand	u	vEd	vRd,c	vRd,max	minAsw	erfAsw
schnitt	[cm]	[m]			ŽD-E0{ á		Ž&{ á
U1	8.50	0.99	0.990			0.74	1.82
U2	21.25	1.39	0.704			1.03	1.03
Ucrit	34.00	1.79	0.546 >	0.542			
			m		0.759		
Uout	34.45	1.80	0.542	0.542			

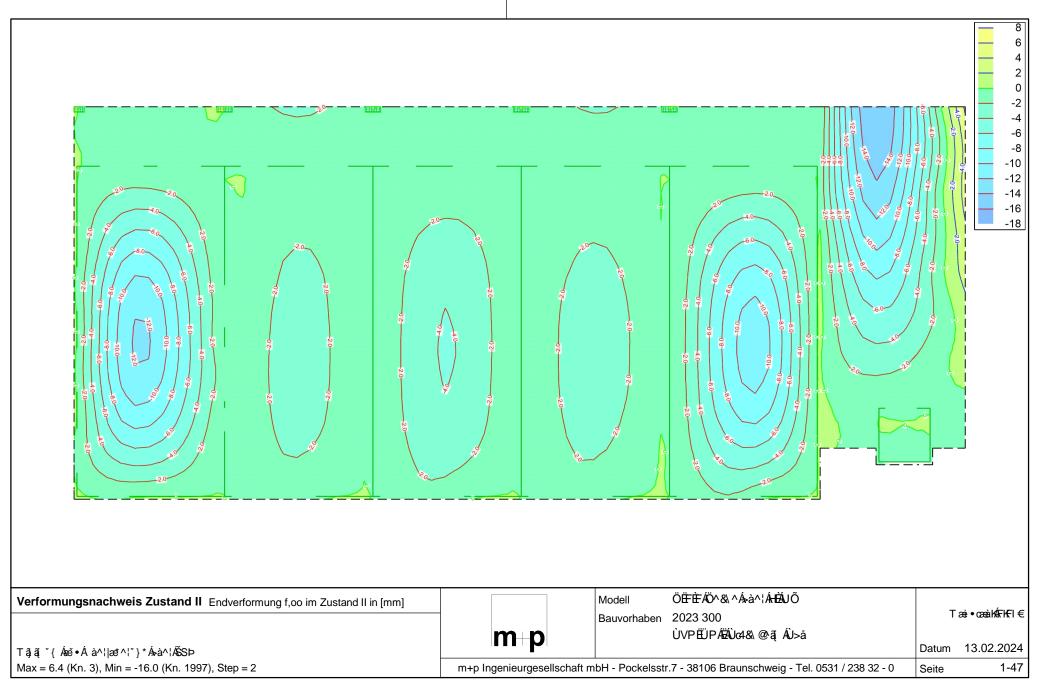
Breite des zu bewehrenden Bereiches Iw = 21.3 cm

 $\dot{O} \hat{a} \hat{A} \hat{a} \wedge \{ \dot{A} \hat{a} \hat{a} \hat{c} \wedge | \hat{A} \hat{b} \hat{c} \} * \bullet \hat{a} \wedge | \hat{A} \hat{c} \rangle + \bullet \hat{a} \wedge | \hat{A} \hat{c} \rangle + \bullet \hat{a} \wedge | \hat{A} \hat{c} \rangle + \bullet \hat{a} \wedge | \hat{A} \hat{c} \rangle + \bullet \hat{a} \wedge | \hat{A} \hat{c} \rangle + \bullet \hat{a} \wedge | \hat{A} \hat{c} \rangle + \bullet \hat{a} \wedge | \hat{A} \hat{c} \rangle + \bullet \hat{a} \wedge | \hat{A} \hat{c} \rangle + \bullet \hat{a} \wedge | \hat{A} \hat{c} \rangle + \bullet \hat{a} \wedge | \hat{A} \hat{c} \rangle + \bullet \hat{a} \wedge | \hat{A} \hat{c} \rangle + \bullet \hat{a} \wedge | \hat{A} \hat{c} \rangle + \bullet \hat{a} \wedge | \hat{A} \hat{c} \rangle + \bullet \hat{a} \wedge | \hat{A} \hat{c} \rangle + \bullet \hat{a} \wedge | \hat{a} \rangle + \bullet | \hat{a} \rangle$ innerhalb des \ | aa &@ | AÜ | | å & & a a A e | ADurchstanzbewehrung erforderlich.

Auftrags-Nr. Position



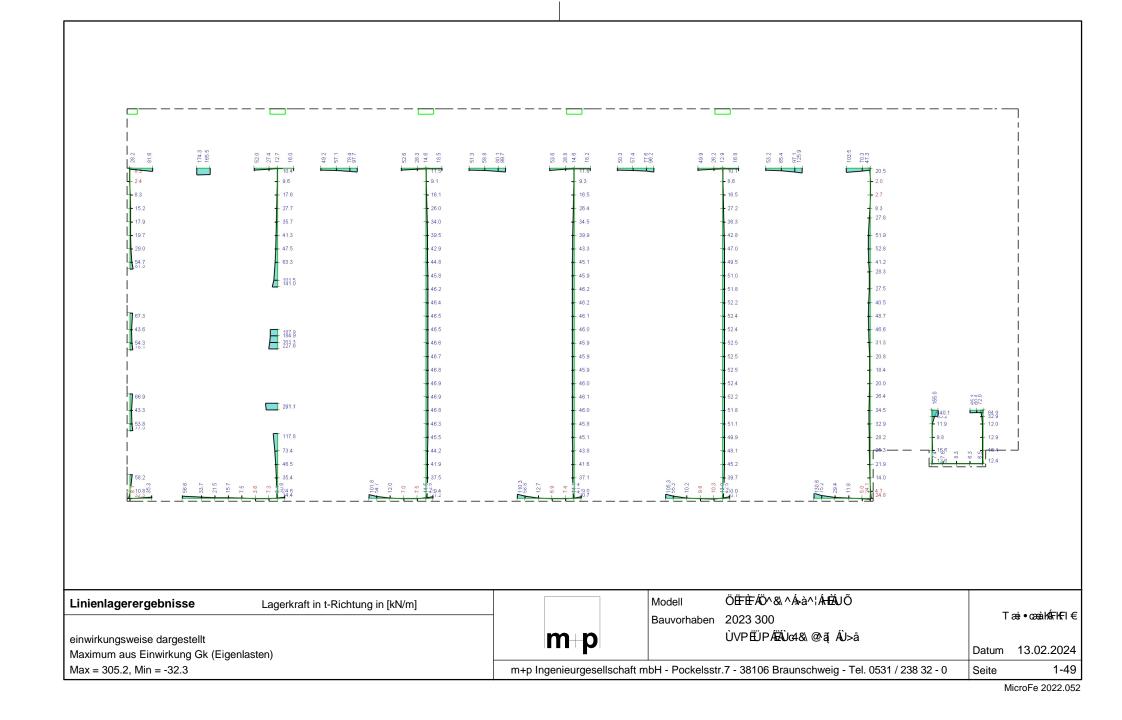

Seite: 1-44

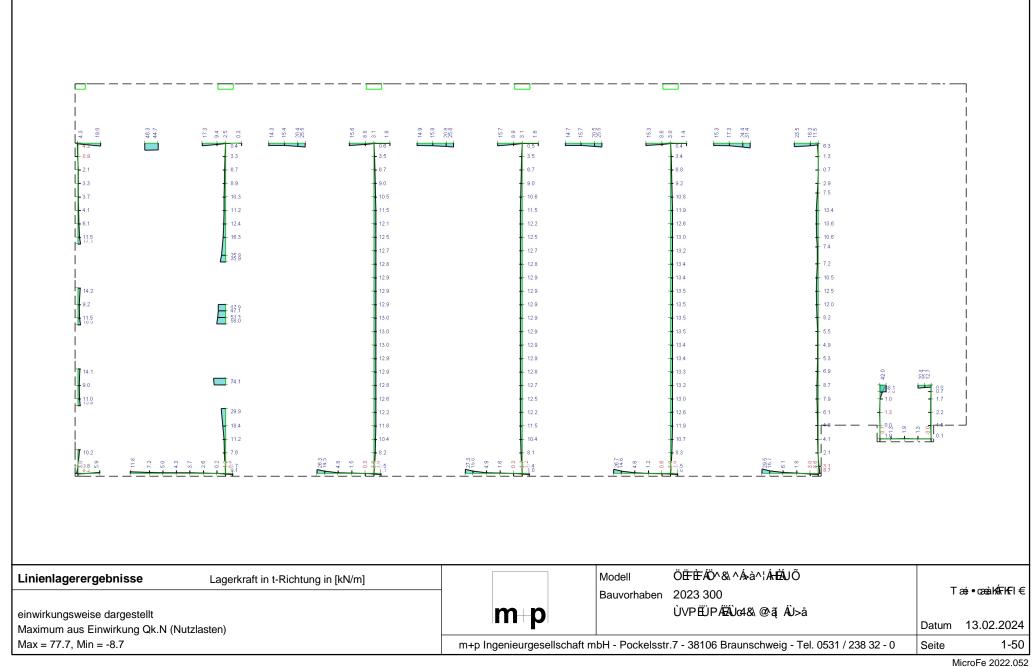

2023 300

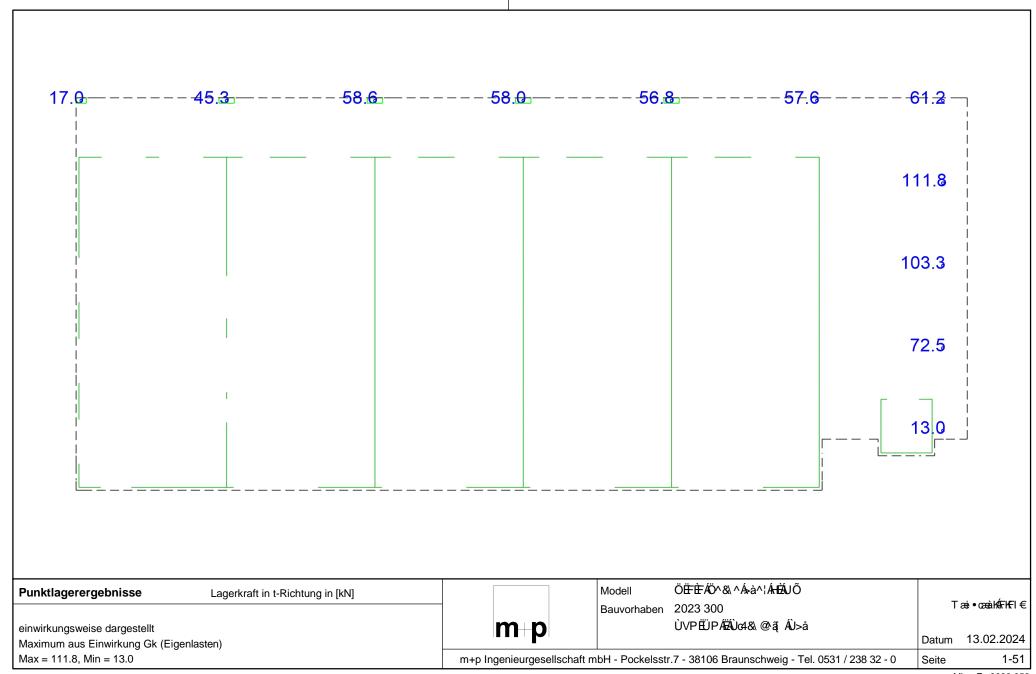
D-1.1

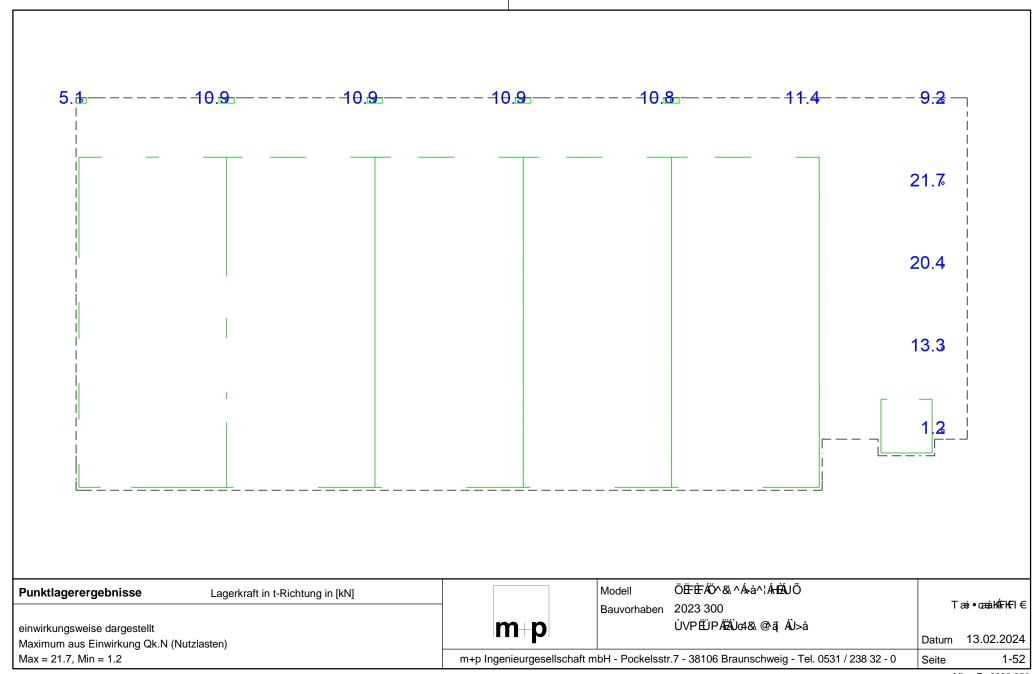
Nachweise (GZG)

Auftrags-Nr. Position



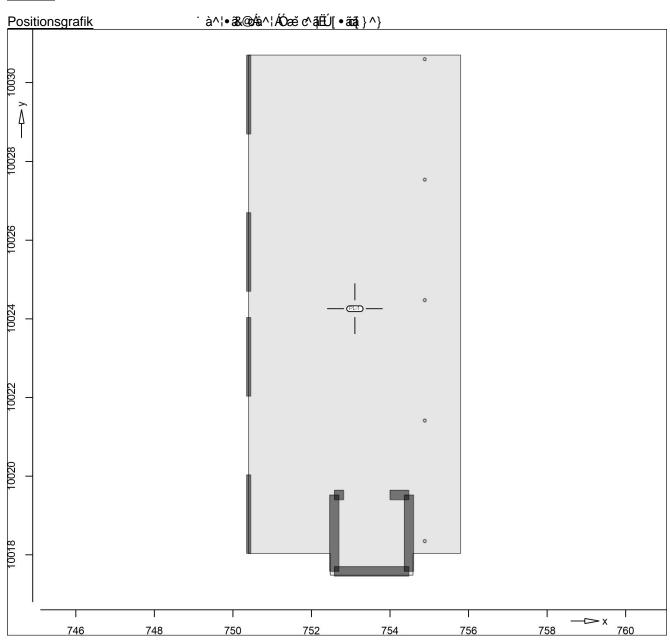

Seite: 1-48


2023 300


D-1.1

5 i ZU[Yf_f} ZhY

2023 300 D-1.2


Seite: 1-53

Pos. D-1.2 8 YW YbgnghYa ~ VYf' "C; '!'6 YfY]W 'HF < 'Ž'h Yfa]gW Y'HfYbbi b[

<u>System</u>

Positionsplan Positionsplan

Bauteile Bauteil-Positionen

<u>Platten</u> Platten-Positionen Position Winkel Stahlbeton Art Material Dicke Šê} * • Žγá Quer [cm] PL-1 0.0 C 30/37 Q 20.0 iso B 500MA B 500SA

Winkel: iso: Q: Bewehrungsrichtung r isotropes Material Õ^• �^ ð • \ 4¦} ` } * ÁÛ ` æ: ã:

Auftrags-Nr. Position 2023 300 D-1.2

ÙVPËÜPÄÄÜ¢4&\@ã ÁÛ>å

Seite: 1-54

Expositionsklasse *^{ êi ÁÖΦÁÒÞÁFJJŒËĒÁæàÀÈ


Koordinaten Position Χ [m] [m] PL-1 750.40 10030.70 755.79 10030.70 755.79 10018.03 754.58 10018.03 754.58 10017.48 10017.48 752.48 10018.03 752.48 10018.03 750.40

<u>Auflager</u> Auflager-Positionen

2023 300 D-1.2

AAAUc4&\@a; AU>å Seite: 1-55

<u>Ùc>c ^} æ* ^ </u>	Ùo>c^} æ*^¦ËÚ[•ããa[}	^}		
<u>Stahl</u>	Position	Šê} * ^	Material	Profil
	ST-7ST-11	3.00	S 235	ROHR 88.9-14.2
<u>Federsteifigkeiten</u>	Position	K _{R,r} [kNm/rad]	K _{R,s} [kNm/rad]	K _{T,t} [kN/m]
	ST-7ST-11	frei	frei	+/- 233100
<u>Linienlager</u>	Position	K _{R,r} [kNm/rad/m]	K _{R,s} [kNm/rad/m]	K _{T,t} [kN/m/m]
	LIRB-1LIRB-4	frei	frei	+/- 250000

Auftrags-Nr.	Position	Ingenieurgesellschaft mbH	
2023 300	D 1 2	LIVDÜDÆÜN≪N ØN ÆNÎLÅ	Soito: 1 56

2023 300	D-1.2 ÙVP	EÜPÄÄÜd&\@`ãį/	Û>å		Seite: 1-56
<u>Wandlager</u>	Wandlager-Positionen				
Stahlbeton	Position		Šê} * ^	Materia	
	W-200	[m] 3.00	[m] 0.24	C 25/30	[cm] Q 24.0
	W-201	3.00	0.48	B 500M C 25/30 B 500M	Q 24.0
	W-202	3.00	1.94	C 25/30 B 500M	Q 24.0
	W-203	3.00	1.90	C 25/30	Q 24.0
	W-204	3.00	1.94	B 500M C 25/30 B 500M	Q 24.0
	Q: Õ^• c^ā,•\4¦} * ÂÛ* æb: ãc			B SOOIVI	A
<u>Federsteifigkeiten</u>	Position	K _{R,r} [kNm/rad/m]	[kNm/r	K _{R,s}	K _{T,t} [kN/m/m]
	W-200W-204	frei	Į ((() ()	frei +/-	2480000
<u>Material</u>	Materialkennwerte				
Stahlbeton DIN EN 1992-1-1	Position	Materi	al Wicht	e E _{cm} G	$\begin{array}{c} f_{ck} \\ f_{ctm} \end{array}$
			ŽÞ₽	á ŽÞÐ[{á	ŽÞÐ(á
	W-200W-204	C 25/30	Q 25.0	0 31000 12900	25.00 2.60
	PL-1	C 30/37	Q 25.0	0 33000	30.00
	Q: $\tilde{O}^{\bullet} c^{\bullet} \tilde{a}^{\bullet} \setminus 4 \}^{*} \}^{*} \hat{AU}^{*} ad: \tilde{a}c$			13750	2.90
Betonstahl DIN EN 1992-1-1	Position	Materi		G	f _{yk} f _{tk,cal}
	PL-1, W-200W-204	B 500M	<u>Ž</u> Þ₽() A 78.5		ŽÞ₽(á 500.00
	·	D 300W		77000	525.00
	PL-1	B 500S	A 78.5	0 200000 77000	500.00 525.00
<u>Stahl</u> DIN EN 1993-1-1	Position	Materi	al Wicht	e E G	f_{yk}
BIIV 21V 1000 1 1			ŽÞÐ	á ŽÞÐ[{á	Ž Þ-₽(á
	ST-7ST-11	S 23	55 78.5	0 210000 81000	235.00
Auswertung	Geometrische Auswertu	ung der Positione	n		
<u>Ø</u> ê&@\}_	Ø ê&@}~4¦{ ðt^ÁÓæĕc^ð	ËÚ[•ããã[}^}			
Stahlbeton	Position		Dicke [cm]	Ø ê&@ Ž á	Volumen ∛ á
	PL-1		20.0	69.45	<u>Ž</u> á 13.89
<u>Ù</u> cc ^} æ*^¦	Ù&c^} Á&^¦ÁÙ&c^} æ*/	\¦ËÚ[•ãã[}^}			
<u>Stahl</u>	Position		Profil	Mantelfl. [m²]	Volumen [m³]
	ST-7ST-11	ROHR 8	8.9-14.2	0.84	0.01

Seite: 1-57

Auftrags-Nr. Position

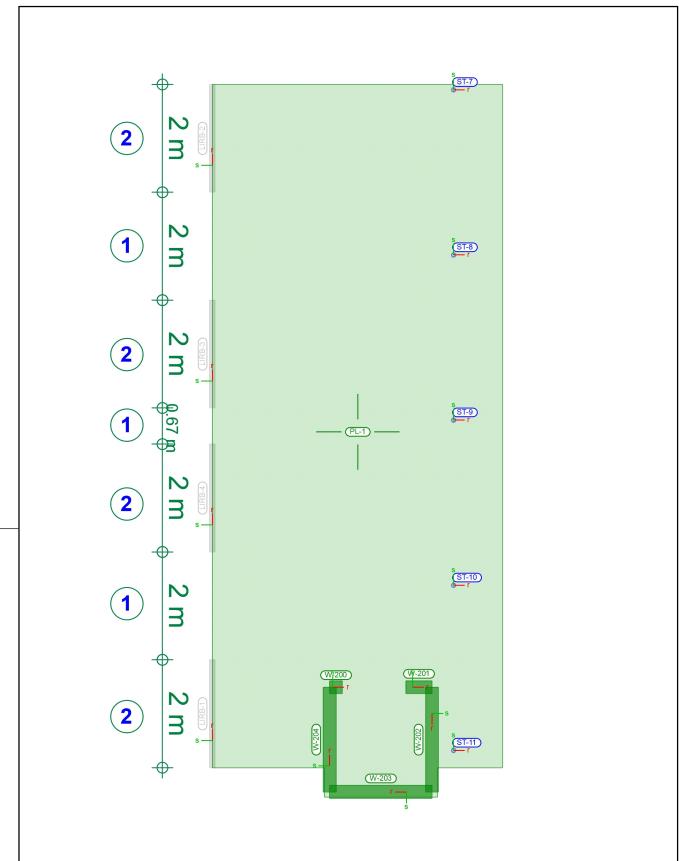
Position

D-1.2

Position

D-1.2

Position

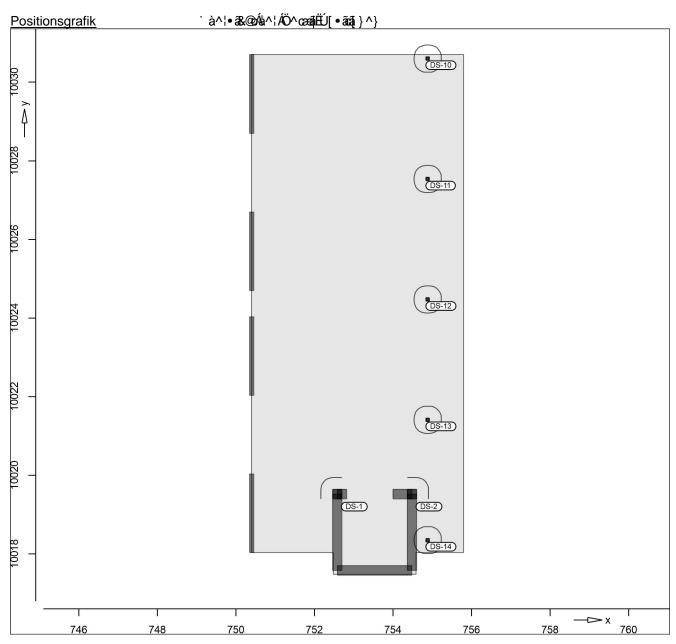

D-1.2

Auftrags-Nr. Position

D-1.2

D-1.2

Stahlbeton	Position	Dicke [cm]	P4@ [cm]	Ø ê&@ [m²]	Volumen [m³]
	W-200	24.0	300.0	0.71	0.17
	W-201	24.0	300.0	1.45	0.35
	W-202	24.0	300.0	5.82	1.40
	W-203	24.0	300.0	5.70	1.37
	W-204	24.0	300.0	5.82	1.40


Pautail Pacitionen	
Bauteil-Positionen	

	Modell	ÖËFÈĞÖ^&\ ^Áşà^¦ÁHĞUŐÆĞVÜP		Tæi∙cæàk√kFkÏ€
	Bauvorhaben	2023 300		
m-p		ÙVPËÜPÆÄÚd4&\@ā, ÁÚ>å	Datum	13.02.2024
	m+p Ing	enieurgesellschaft mbH - Pockelsstr.7 - 38106 Braunschweig	Seite	1-58

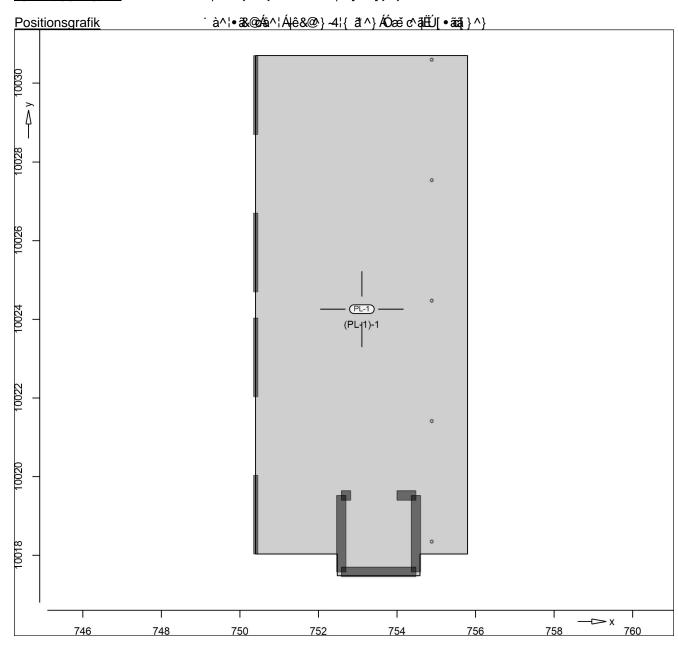
Detailplan Detailplan

<u>Details</u> Detail-Positionen

<u>Durchstanzstellen</u>	Position	Le	l von	MinBew	Rundsch	beta
	DS-1	u	inten	ja	nein	1.20
	DS-2	u	ınten	ja	nein	1.20
	DS-10	u	inten	ja	nein	1.50
	DS-11	u	inten	ja	nein	1.50
	DS-12	u	inten	ja	nein	1.50
	DS-13	u	inten	ja	nein	1.50
	DS-14	u	inten	ja	nein	1.50
	unten: MinBew: Rundsch:	Lasteinleitung erfolgt von unten Mindestbewehrung nach NCI Zu 9.4.3(2)? Rundschnitt am Rand erweitern?	ı	,		

Geometrie Õ^[{ ^d â Âs^! ÁSæ c^ā | ^ãc } * • √ê &@

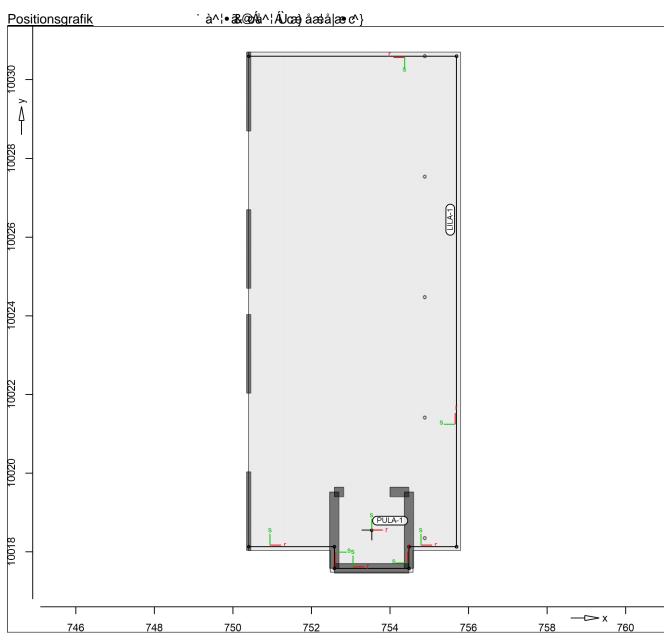
Auftrags-Nr.	Position	m -p	martens+puil Ingenieurgesellschaft n			
2023 300	D-1.2	ÙVPËÜPĀÄÛ	04&\@^ā[ÁÛ>å			Seite: 1-60
	Position	Тур		Winkel Ž⁄á	b(r)/D [cm]	h(s) [cm]
	DS-10	Re		0.00	8.9	8.9
	DS-11	Re		0.00	8.9	8.9
	DS-12	Re		0.00	8.9	8.9
	DS-13	Re		0.00	8.9	8.9
	DS-14 Re: Rechteck	Re		0.00	8.9	8.9
	Position	Тур	Winkel2 <i>Ž</i> ⁄á	Winkel Ž⁄á	Breite [cm]	Šê} * ^ [cm]
	DS-1	Wk	270.00	0.00	24.0	24.0
	DS-2 Wk: Wandecke	Wk	270.00	180.00	24.0	24.0
Koordinaten	Position				X [m]	Y [m]
	DS-1			7	52.58	10019.52
	DS-2				54.48	10019.52
	DS-10				54.88	10030.60
	DS-11				54.88	10027.54
	DS-12				54.88	10024.47
	DS-13				54.88	10021.41
	DS-14				54.88	10018.35


Belastungen

@a ÂJ>å Seite: 1-61

Lastplan Lasten des FE-Modells

<u>Bauteillasten</u> Bauteilbezogene Lasten


Eigengewicht	Position	EW	Lastfall	Art	g
					[kN/m²]
	PL-1	Gk	LF-1	PGr	5.00
	PGr: Gravitations	last; positive Laste	en wirken senkrecht nac	ch unten	
<u>Ù[}•cãt^Á</u> ncê}åãt^ÁŠæec	Position	EW	Lastfall	Art	g
					[kN/m ²]
	PL-1	Gk	LF-1	PGr	3.40
	PGr: Gravitations	last; positive Laste	en wirken senkrecht nac	ch unten	

Auftrags-Nr. Position ÙVPËÜPĀÄÛc4&\@ã ÁÛ>å 2023 300 D-1.2 Seite: 1-62

Nutzlast Position EW Lastfall je Lastfeld Art Qk.N (PL-1)-1
Gravitationslast; positive Lasten wirken senkrecht nach unten PL-1 PGr 2.00

PGr:

Standardlasten Standardlasten im FE-Modell

<u>Punktlasten</u>	Position	EW	Lastfall	Art	P,M [kN],[kNm]
	PULA-1	Aufzug	7		
		Gk	LF-1	PGr	25.00
	PGr: Gravitations	slast; positive Laste	en wirken senkrecht nac	ch unten	
Winkel	der gedrehten	globalen Koc	ordinatensystem	Э	
	Position	3	,		
					Ž∕á
	PULA-1				0.00

Auftrags-Nr.	Position	martens+puller Ingenieurgesellschaft mbH
2023 300	D-1.2	ÙVPËJPÆÄJØ4&\@@{Aj}\Aj>å Seite: 1-63
<u>Linienlasten</u>	Position	EW Lastfall Art p _A ,m _A p _E ,m _E [kN/m],[kNm/m]
	LILA-1 pGr: Gravitatio	Attika Gk LF-1 pGr 5.00 5.00 onslast; positive Lasten wirken senkrecht nach unten
Einwirkungen		
<u>DIN EN 1990</u>	Einwirkungen	n nach DIN EN 1990
	S> :^	Beschreibung Typisierung
	Gk	Eigenlasten Ùœ} åæ̂ ^ÁÒa̞ ͺ ā\`}*^}
	Qk.N	Nutzlasten Sæc^*[¦ā^ÁDÆÉY[@]EÁ}åÁŒ -^}c@⇔jo+¦ê*{^
<u>Šæroê∥^</u>	Šæ• œê ^Á`} å <i>i</i>	Ása^¦^}ÁZ~[¦å}~}*Á~Ása^}ÁÖāj¸āl\~}*^}
Gk Qk.N	LF-1 (PL-1)-1	
Bemessung (GZT+GZG)	<u>!</u>	
Biegung Pl-As-erf-Iso	Plattenbiegeb	pemessung nach DIN EN 1992-1-1
<u>PL-1</u>	Ó^{ ^••`}*Á	⇒¦ÁÚ ææ°ÁÇÙcæ@pà^q{}DÁÚŠËF
Mat./Querschnitt	Beton <i>C 30/3</i> Õ^∙ ৫³₫ •\4¦} Betonstahl <i>B</i>	ˇ} * ÂÛˇæh:ãc
	Dicke konsta	nt h = 20.00 cm
Expositionsklasse	•	ÞÁFJJŒËËÊVæÌÀÈ
	Position PL-1	Seite KI Kommentar oben XC3 { êi â ^ Æ/^ &@^
		WF Pêˇ-æð Áj å^¦Ájê} * ^¦^Áz^ãóÁ feuchter Beton
		unten XC1 d[&\^} Áţå^\Áţœ̂} åãt Ájæ∙ WO Weitgehend trockener Beton
Bewehrung	Vorgaben zui Betondeckun	
		$\&_{def,u}D \&_{def,o} = 10 / 15 $ mm $c_{nom,u}/c_{nom,o} = 20 / 35 $ mm
	Bewehrungsa	abstand $d'_{ru/su} = 30 / 30 $ mm
	Bewehrungsr	
Grundbewehrung	Seite	Tænc^ÉÁÚcêà^ d'r a _{sg,r} d's a _{sg,s} <Ž({æ9Ž&(á [mm] Ž&(Ð(á [mm] Ž&(Ð)á
	Unten Oben	30 2.27 30 2.27 30 3.35 30 3.35
	Oben	30 3.35 30 3.35

Nachweisparameter

Kombinationen

 $T \; \tilde{\textbf{a}} \; \mathring{\textbf{a}} \wedge \bullet \; \grave{\textbf{ca}} \wedge \, \mathring{\textbf{c}} \wedge \; \mathring{\textbf{c}}^* \; \} \; ^* \; \mathring{\textbf{A}} \hspace{-.1cm} \mathring{\textbf{D}} \; \overset{\cdot}{\textbf{E}} \; \overset{\cdot}{\textbf{E}} \; \overset{\cdot}{\textbf{D}} \hspace{-.1cm} \mathring{\textbf{A}} \hspace{-.1cm} \mathring{\textbf{A}} \hspace{-.1cm} \mathring{\textbf{A}} \hspace{-.1cm} \wedge \hspace{-.1cm} \mathring{\textbf{A}} \hspace{-.1cm$

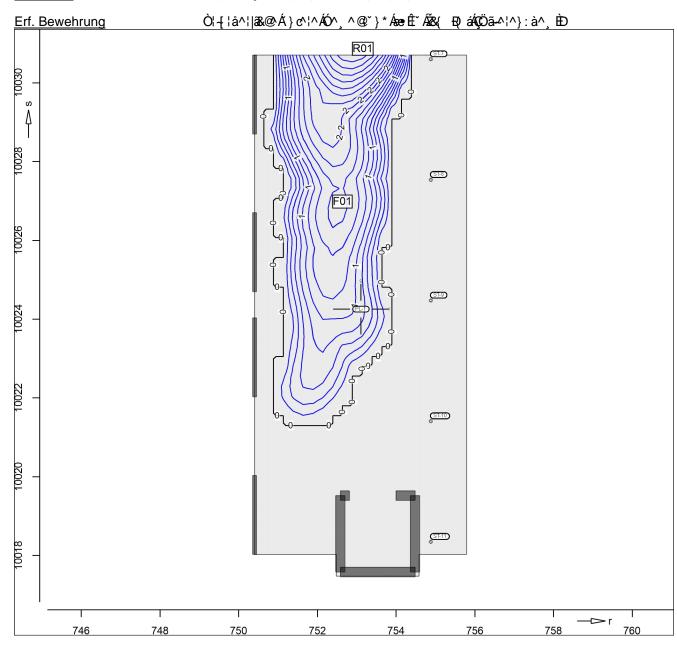
Tæi*^à^}å^ÁS[{àãjæaāj}^}Ájæ&@#ÖQDÁÖÞÁFJJ€

nach DIN EN 1992-1-1

Auftrags-Nr. Position | Position

Ew Einwirkungsname
Lkn Lastkombinationsnummer
! c[|@||• &@} å^k\delta^| å^\|\delta &@ \delta\delta_j \delta\` \} *

Ew	Gk	Qk.N		
Lkn	Grundkombination			
1	1.35	1.50 !		



2023 300 D-1.2

Seite: 1-65

as,r,unten

Šê}*•à^¸^@`}*ÁşÁËÜ&&@`}*ÁşÁ}¢^¦^¦ÆŠæ*^

Q[|ã,ã\}•č.^}ÁMÁ€ÌÈЭ€Á&{ Ð

Achsabstand erf. Bewehrung: $d'_{ru} = 30 \text{ mm}$ Achsabstand vorh. Bewehrung: $d'_{ru} = 30 \text{ mm}$ \tilde{O}_{t}^{1} a^{2} a^{2} a^{2} a^{2} a^{2} a^{2} a^{2} a^{2} a^{2}

			, , a.a. ₃		η — _η			
Punkt	X	У	$m_{r,Ed}$	$m_{s,Ed}$	$m_{rs,Ed}$	m_{Ed}	a _{s,ru}	Lkn
		[m]				[kNm/m]	Ž&{ Ð()á	
F01	752.39	10027	30.21	6.53	0.93	31.13	1.65	1
R01	752.89	10031	38.81	0.45	4.98	43.79	3.59	1

D-1.2

ÙVPËÜPÄÄÛ¢4&\@@ã ÁÛ>å

Seite: 1-66

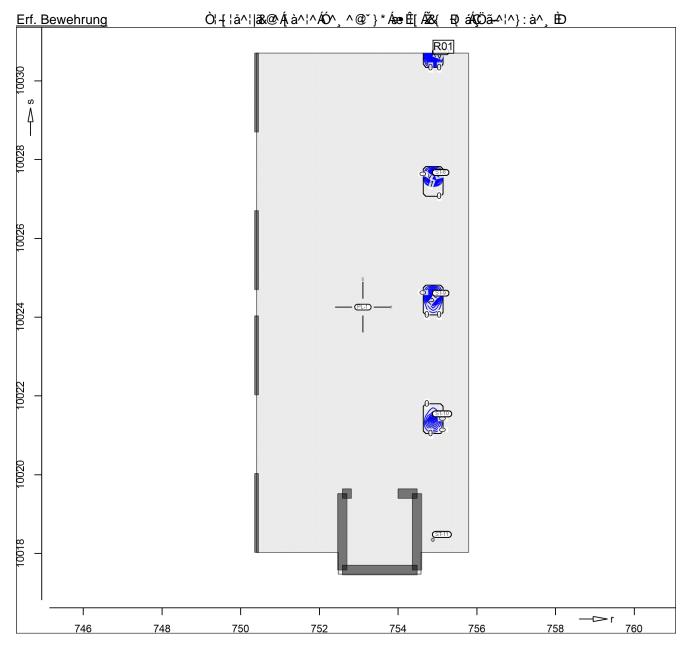
as,s,unten

Šê}*•à^¸^@*}*Á§ÁÉÜæ&@*}*Á§Á}¢^!^!AŠæ*^

Q[|ã,ã\}•č.^}ÁMÁ€È€FÁ&{ Ð

Achsabstand erf. Bewehrung: $d'_{su} = 30 \text{ mm}$ Achsabstand vorh. Bewehrung: $d'_{su} = 30 \text{ mm}$ $\tilde{O}_{su}^{\dagger} + \tilde{a}_{su}^{\dagger} + \tilde{a}_{s$

		-						
Punkt	X	У	$m_{r,Ed}$	$m_{s,Ed}$	$m_{rs,Ed}$	m_{Ed}	a _{s,su}	Lkn
		[m]				[kNm/m]	Ž&{ Ð()á	
F01	754.64	10030	-0.72	14.04	6.61	20.65	0.11	1
R01	750.40	10022	0.03	9.85	-11.06	20.90	0.15	1


D-1.2

ÙVPËÜPÄÄÛ¢4&\@@ã ÁÛ>å

Seite: 1-67

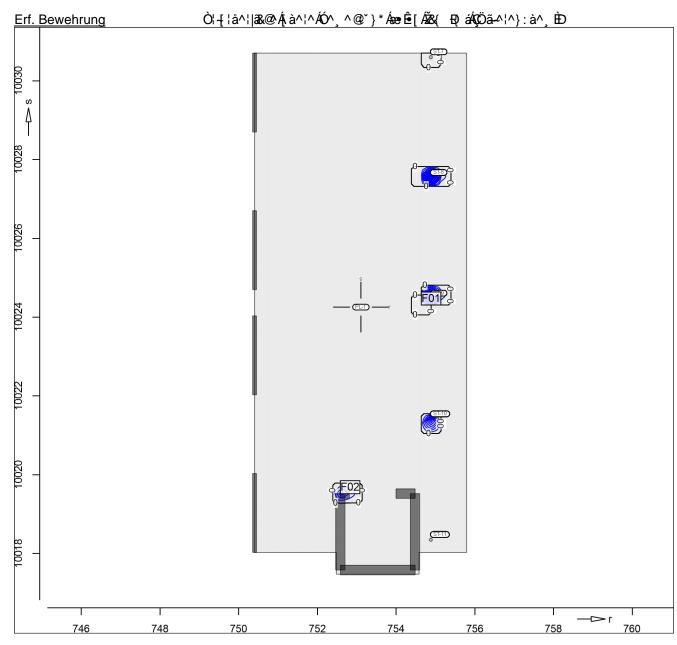
as,r,oben

Šê}*•à^¸^@`}*ÁŞÁËÜ&&@`}*ÁŞÁ\A`à^\^\ÁŠæ*^

Q[|ã,ã^}•č.^}ÁMÁ€ÈĖÁ&{ Ð

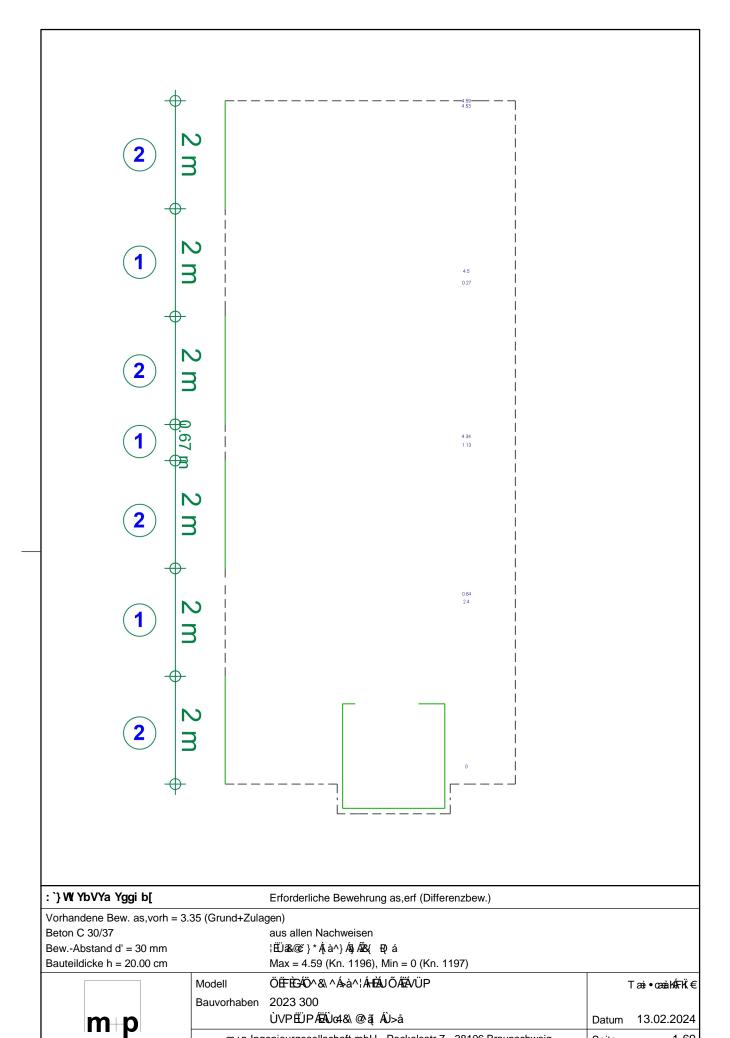
Achsabstand erf. Bewehrung: $d'_{ro} = 30 \text{ mm}$ Achsabstand vorh. Bewehrung: $d'_{ro} = 30 \text{ mm}$ $\tilde{O}()^3 \hat{a}^3 \hat{A}^3 \hat{$

Punkt	Х	y [m]	$m_{r,\text{Ed}}$	$m_{s,\text{Ed}}$	$m_{\text{rs},\text{Ed}}$	m _{Ed} [kNm/m]	a _{s,ro} Ž&∢ Ðoá	Lkn
ST-7		[111]	-50.27	-22.09	6.39	-56.66	4.53	1
ST-8			-55.34	-59.87	1.10	-56.45	4.50	1
ST-9			-52.18	-57.69	3.30	-55.48	4.34	1
ST-10			-37.54	-38.43	5.44	-42.99	2.40	1
R01	754.89	10031	-50.37	-3.60	6.66	-57.03	4.59	1

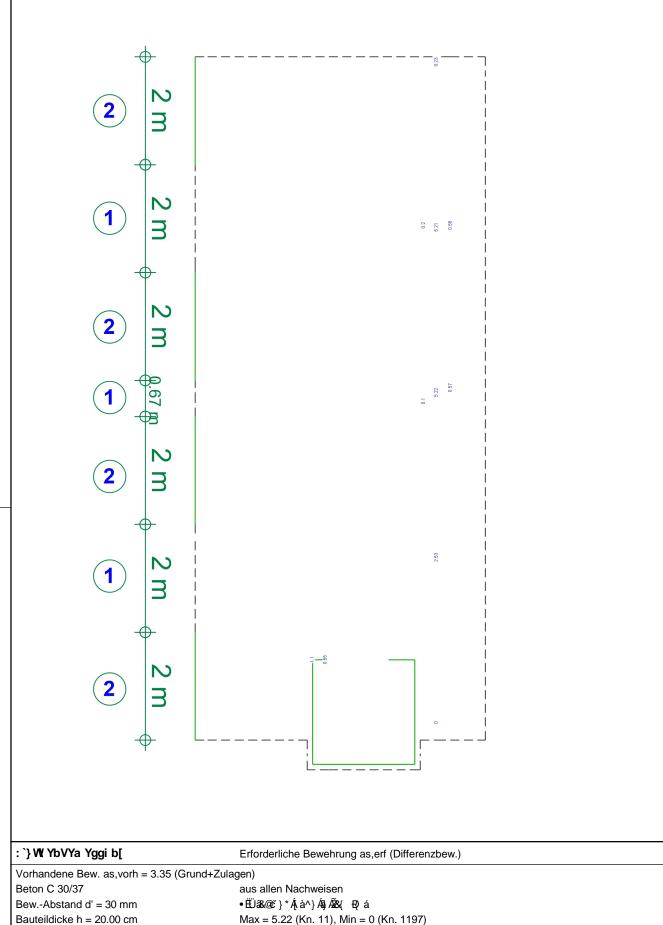

D-1.2

ÙVPËJPÄÄJC4& @ ą̃ ÁJ>å

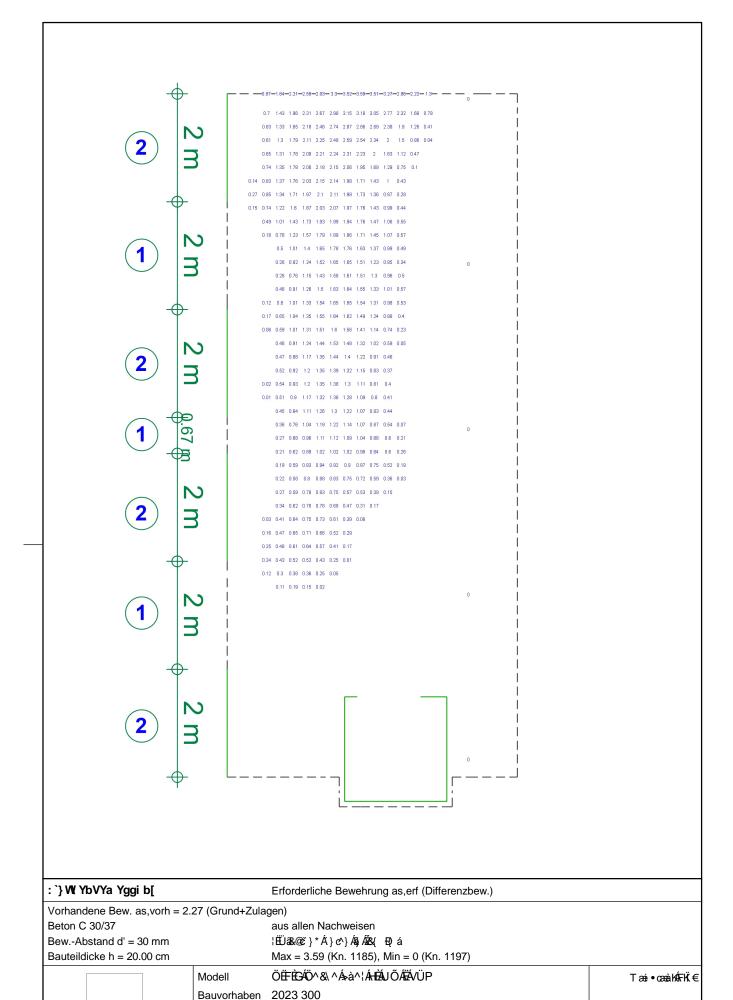
Seite: 1-68


as,s,oben

Šê}*•à^¸^@`}*ÁşÁ;ÉÜæ&@`}*ÁşÁ;à^¦^¦ÆŠæ*^


Q[|ã,ã^}•č.^}ÁMÁ€ÈH€Á&{ Ð

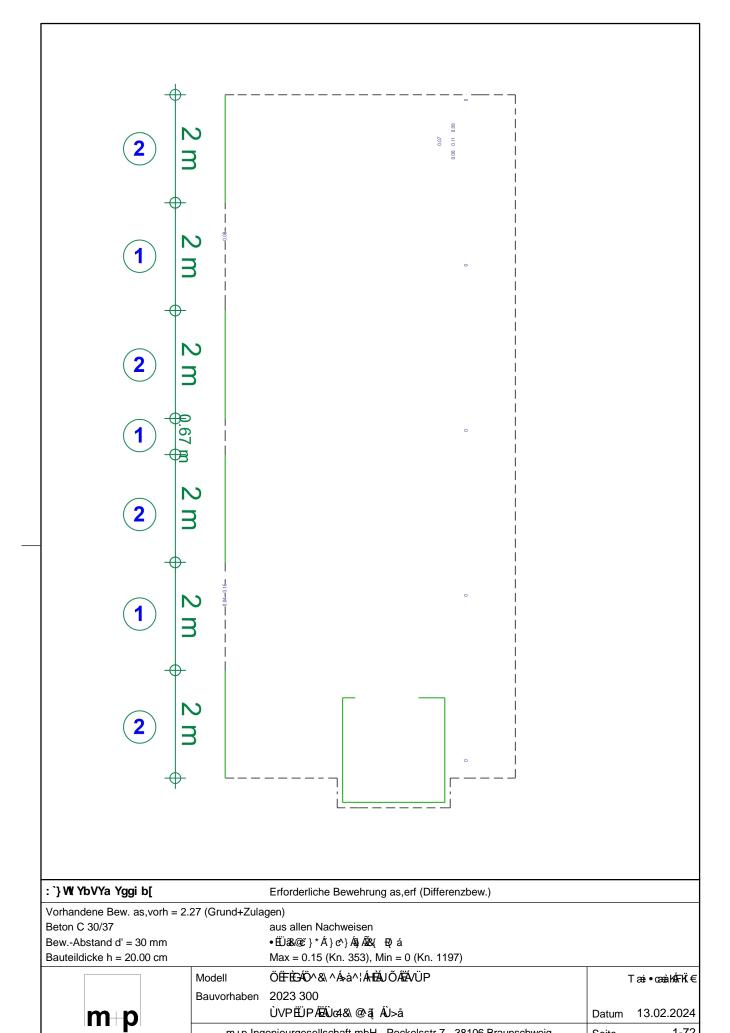
Achsabstand erf. Bewehrung: $d'_{so}=30$ mm Achsabstand vorh. Bewehrung: $d'_{so}=30$ mm $\tilde{O}()^*$ \tilde{a} | Punkt | Х | У | $m_{r,Ed}$ | $m_{s,Ed}$ | $m_{rs,Ed}$ | m_{Ed} | $a_{s,so}$ | Lkn |
|-------|--------|-------|------------|------------|-------------|----------|------------|-----|
| | | [m] | | | | [kNm/m] | Ž&{ Ð()á | |
| ST-7 | | | -50.27 | -22.09 | 6.39 | -28.48 | 0.23 | 1 |
| ST-8 | | | -55.34 | -59.87 | 1.10 | -60.97 | 5.21 | 1 |
| ST-9 | | | -52.18 | -57.69 | 3.30 | -60.99 | 5.22 | 1 |
| ST-10 | | | -37.54 | -38.43 | 5.44 | -43.87 | 2.53 | 1 |
| F01 | 754.64 | 10024 | -12.85 | -19.85 | 7.69 | -27.53 | 0.10 | 1 |
| F02 | 752.58 | 10020 | -23.54 | -33.88 | 0.54 | -34.41 | 1.10 | 1 |


m+p Ingenieurgesellschaft mbH - Pockelsstr.7 - 38106 Braunschweig

1-69

ndene Bew. as,vorh = 3.35 (Grund+Zula	gen)					
C 30/37		aus allen Nachweisen					
Abstand d' = 30 mm		• ËÜ 3&@č}*Áj à^}Áş Ãg&(Đ) á					
Idicke h = 20.00 cm		Max = 5.22 (Kn. 11), Min = 0 (Kn. 1197)					
Mo	odell	ÖËFÈGÆÖ^&\^Ásà^¦ÁsHÀUŐÆÆVÜP	-	Γæi•œaàkÁFKڏ€			
Ва	uvorhaben	2023 300					
m-p		ÙVPËÜPÆÄÛ¢4&\@`ãį ÁÛ>å	Datum	13.02.2024			
	m+p Inge	enieurgesellschaft mbH - Pockelsstr.7 - 38106 Braunschweig	Seite	1-70			

m-p



ÙVPËÜPÆÄÛ¢4&\@@ã, ÁÛ>å

m+p Ingenieurgesellschaft mbH - Pockelsstr.7 - 38106 Braunschweig

13.02.2024

Datum

m+p Ingenieurgesellschaft mbH - Pockelsstr.7 - 38106 Braunschweig

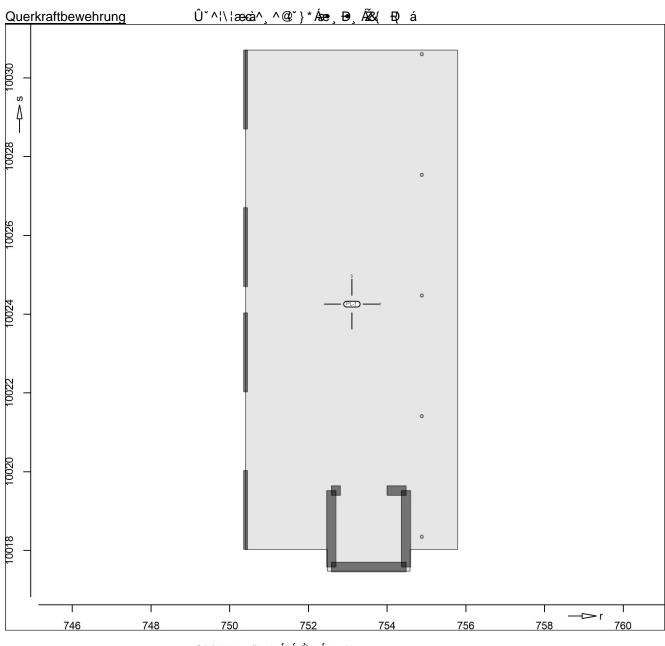
Seite: 1-73

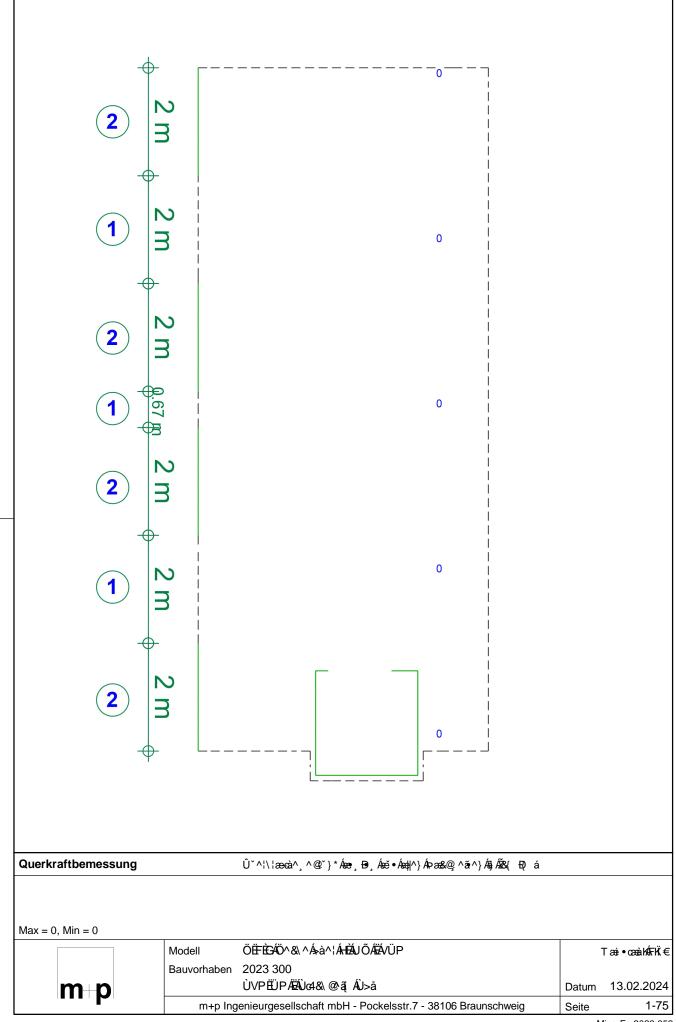
Querkraft Pl-As-Iso

Querkraftbemessung Plattenbereiche

<u>PL-1</u>

Querkraftbemessung der Platte (Isolinien)


Querkraftbemessung nach DIN EN 1992-1-1


Beton C 30/37, Betonstahl B 500SA Õ^• & 4;} * ÁÛ * æ: ãc

Druckstrebenneigung wurde vom Programm optimiert.

Mindestbewehrung (9.3.2) wurde nicht ermittelt.

Dicke konstant h = 20.00 cm

Auftrags-Nr. Position

Seite: 1-77

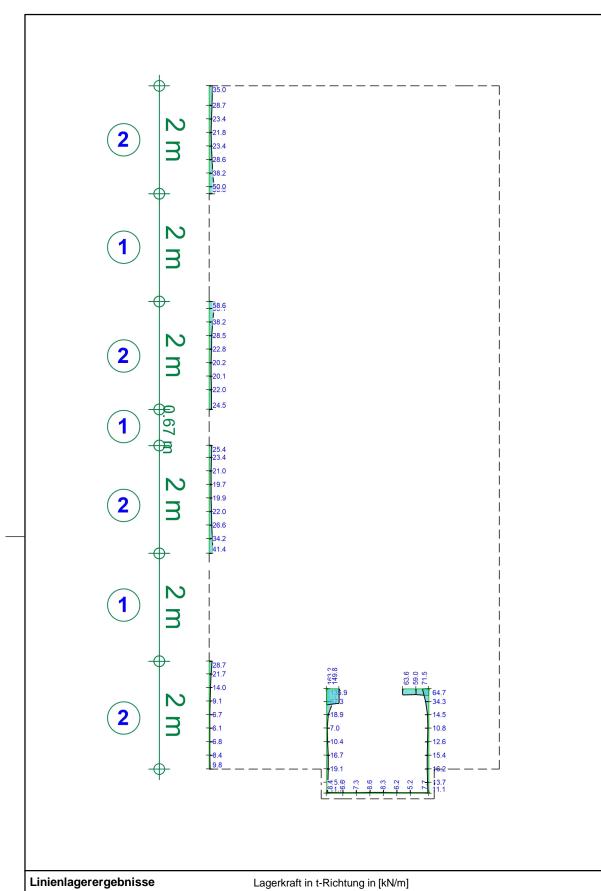
2023 300

D-1.2

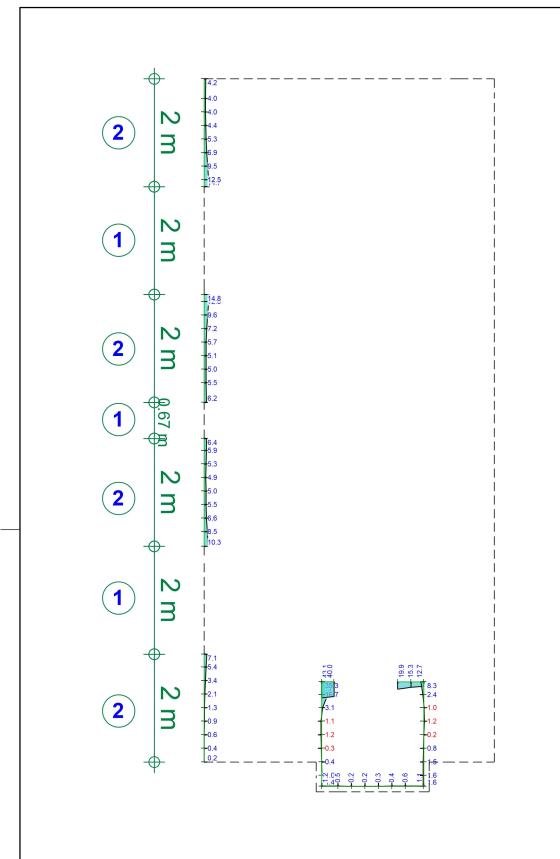
Nachweise (GZG)

1.5 1.2 0.9

Auftrags-Nr. Position

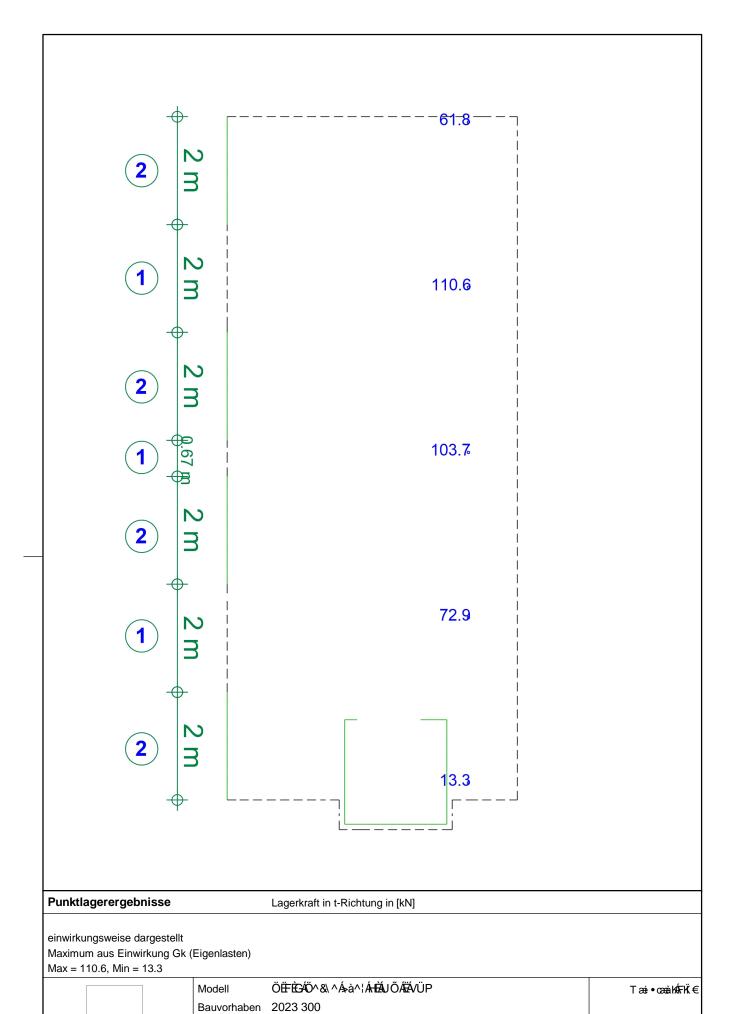


Seite: 1-81


2023 300

D-1.2

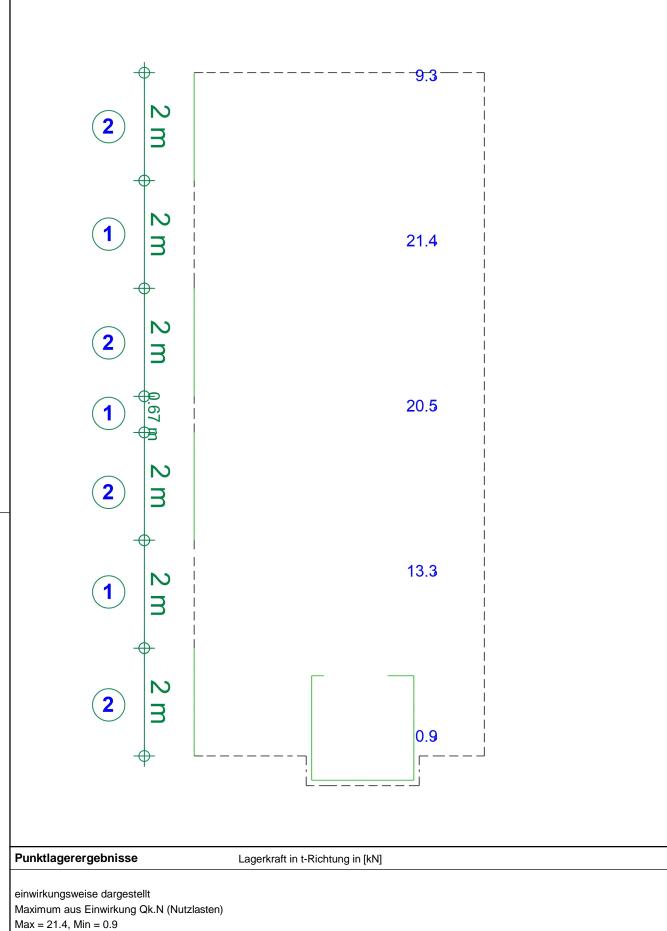
5 i ZU[Yf_f} ZhY



einwirkungsweise dargestellt				
Maximum aus Einwirkung Gk (Eigenlasten)			
Max = 163.2, Min = 5.2				
	Modell	ÖËFÈÐÖ^&\ ^Áàà^¦ÁrÐÐJŐÆÐVÜP		Tæi•cæàkÁFKï€
	Bauvorhaben	2023 300		
m⊣p		ÙVPËÜPÄÄÄÜ¢4&\@ã(ÁÙ>å	Datum	13.02.2024
	m+p Ina	enieurgesellschaft mbH - Pockelsstr.7 - 38106 Braunschweig	Seite	1-82

Linienlagerergebnisse		Lagerkraft in t-Richtung in [kN/m]		
einwirkungsweise dargestellt Maximum aus Einwirkung Qk Max = 43.1, Min = -1.2	.N (Nutzlasten)			
	Modell	ÖËFÈGÁÖ^&\^Ásà^¦ÁrÈÁUŐÆÉVÜP		Tæi•cæàkÁFKÏ€
m+p	Bauvorhaben	2023 300 ÙVPËÜPÄÄÜd&\@ãį ÁÙ>å	Datum	13.02.2024
'' P	m+p Ing	enieurgesellschaft mbH - Pockelsstr.7 - 38106 Braunschweig	Seite	1-83

m p


ÙVPËÜPÆÜÛ¢4&\@^ã; ÁÛ>å

m+p Ingenieurgesellschaft mbH - Pockelsstr.7 - 38106 Braunschweig

1-84

13.02.2024

Datum

num aus Einwirkung Qk. i = 21.4, Min = 0.9	N (Nutzlasten)			
	Modell	ÖËFÈÐÖ^&\^Áàà^¦ÁŧÐĎUÕÆÖVÜP		Tæi•cæàkÁFKÏ€
	Bauvorhaben	2023 300		
m-p		ÙVPËJPÆÄJø4&\@ãį ÁĴ>å	Datum	13.02.2024
	m+p Ing	enieurgesellschaft mbH - Pockelsstr.7 - 38106 Braunschweig	Seite	1-85

Auftrags-Nr. Position

2023 300 D-1.2 ÚVPËÜPÆÄÚd4&\@ã ÁÚ>å Seite: 1-86

Thermische Trennung Deckenplatte

(1) Kein thermisches Trennelement

oder

Isokorb XT Typ Z-R0-X120-H200-5.0 o.glw. (>bertrêgt keine Krêfte)

eq = 0.056 W/mK

(2) Isokorb XT Typ Q-V7-R0-X120-H200-6.0 o.glw.

Beanspruchung $g_{k,max} = 58,6 \text{ kN/m}$

 $q_{k,max} = 14.8 \text{ kN/m}$

Keine Biegebeanspruchung.

 V_{ed} MÁTÊHÍ ÁÁÍÌ ÊÍÁ ÞÐĮ ÁÉÁFEÍÁÁFI ÊÍÁ ÞÐĮ ÁMÁ101,3 kN/m

Y ê|{ ^åe}{ { ^|^{ }c | Isokorb XT Typ Q-V7-R0-X120-H200-6.0 o.glw.

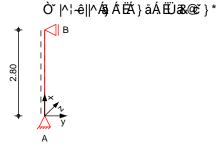
Betonfestigkeit C30/37

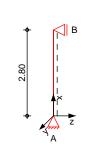
eq = 0,110 W/mK

 $V_{Rd} = 117,5 \text{ kN/m}$

Nachweis $V_{ed} = 101,3 \text{ kN/m} < 117,5 \text{ kN/m} = V_{Rd}$

Elemente Ò੍ਰੈ : ^|^|^{ ^} dê} * ^ÁFÊ€€Á(

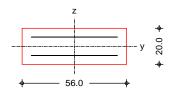



ÙVPËÜPÄÄÜ¢4&\@ã ÁÛ>å Seite: 1-87

Pos. ST-1.1

GhV"!Gh~ mY

System M 1:120


Abmessungen Mat./Querschnitt

Geschoss	I	Material	b _y /b _z
	[m]		[cm]
3. OG	2.80	C 25/30	56/20

Auflager

Lager	X	$K_{T,z}$	$K_{R,y}$	$K_{T,y}$	$K_{R,z}$
•	[m]	[kN/m]	[kNm/rad]	[kN/m]	[kNm/rad]
В	2.80	fest	frei	fest	frei
Α	0.00	fest	frei	fest	frei

M 1:20

Abschnitt 1

Einwirkungen

Einwirkungen nach DIN EN 1990:2010-12

Gk

Eigenlasten

ٜ} åã* ^ÁÒã; ã\`} * ^}

Qk.N

Nutzlasten

Sæe^*[¦ā^Á0ÆÆÁY[@];ËÁ}åÁ0E-^}c@ea|o•¦ê*{^ Wind

Qk.W

Windlasten

Qk.W

min/max Werte

Ò||ê c^| \} * ^}

Lastansatz ung>nstig (fw) Öðl∕Ásæ c\}Ás^¦ÁÒðj, ðl\`}*Á, ^¦å^}Áş Á;}*>} •æt ^¦ÁLaststellung wirkend

fw

angesetzt.

Belastungen

Belastungen auf das System

Grafik

Belastungsgrafiken (einwirkungsbezogen)

Auftrags-Nr. Position ST-1.1 ÙVPËÜPÄÄÜ¢4&\@ã ÁÛ>å 2023 300 Seite: 1-88 Einwirkungen Gk Qk.N Qk.N Gk Qk.W 80.0 20.0 20.0 Gleich- und Blocklasten Streckenlasten in x-Richtung Ges. Komm. а S qo [m] [m] [kN/m] [kN/m] Einw. Gk 3. OG Eigengew 0.00 2.80 2.80 Punktlasten Einzellasten in x-Richtung Ges. Komm. F_{x} а еу ez [kN] [cm] [m] [cm] Einw. Gk 3. OG 2.80 80.00 0.0 0.0 Einw. Qk.N 3. OG 2.80 20.00 0.0 0.0 Streckenlasten Gleich- und Blocklasten in z-Richtung Ges. Komm. а s q_{u} qo [m] [m][kN/m][kN/m]3. OG Einw. Qk.W 2.80 0.00 1.00 3. OG 0.00 1.20 2.00 <u>Imperfektionen</u> Grafik Figur 7 w_z[cm] Figur 13 w_z[cm] Tabelle Figur 7 Х Wyu \mathbf{W}_{zu} Wyk W_{zk} [m] [cm] [cm] [cm] [cm] 3. OG 2.80 0.00 0.00 0.00 0.00 0.00 1.40 0.00 0.68 * 0.01 * 0.00 0.00 * 0.00 * 0.00 * 0.00 * Figur 13 Wyu \mathbf{W}_{zu} W_{zk} Х Wyk [m] [cm] [cm] [cm] [cm] 3. OG 2.80 0.00 0.00 0.00 0.00 0.48 * 1.70 0.00 0.00 0.00 1.40 0.00 0.44 0.00 0.00 0.00 * 0.00 * 0.00 * 0.00 0.00 *

Ungewollte Ausmitte affin zur Biegelinie bzw. affin zur Knickfigur bei Kombinationen ohne] |æ} { êi ð ^Áx^¦-{|{ `} * Á^}\\^&@Á`¦ÁÜcc ^} æ&@^È

Auftrags-Nr.	Position	m+ı	martens+	puller chaft mbH		
2023 300	ST-1.1	ÙVPËJPÆ	ÄÛ04&\@`ã ÁÛ>	å	Seit	e: 1-89
	Figur <u>[-]</u> 7 13	Richtung [-] z z	0.0		x [m] 1.40 1.70	ei [cm] 0.69 0.48
Kombinationen	Kombinatior Darstellung	nsbildung nach D der mai gebende	IN EN 1990 en Kombinatior	nen		
•œ̂} åã̂ t͡ð̞[¦>à^¦* È Brand	Ek Imp. 10 2 15 7 39 13	(* *EW) 1.35*Gk 1.35*Gk 1.00*Gk	+1.50*0 +1.50*0 +0.30*0	Qk.N	+0.90*Qk.W +0.20*Qk.W	
Ó^{ \ \ &@ \ ac* 4i ^}	nach Th. II.	Ordnung				
Nicht-Linear	nichtlineare	Berechnung nac	h Th. II. Ordnu	ng		
<u>Grafik</u>	Ù&@) ãcc*¦4i /	^} ÁÇV()			
	$N_{x,d}[kN] \\$	$M_{y,d}[kNm]$	$M_{z,d}[kNm] \\$	$V_{y,d}[kN] \\$	$V_{z,d}[kN] \\$	
	-149	3.47	86.0-	1.13	5.86	
<u>Tabelle</u>	Ù&@; ãc* ¦4i /	^} ÁÇV{)			
	х	$N_{x,d,min} \\ N_{x,d,max}$	Ek	$\begin{array}{cc} M_{y,d,min} & Ek \\ M_{y,d,max} \end{array}$	$\begin{matrix} V_{z,d,r} \\ V_{z,d,m} \end{matrix}$	

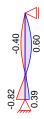
	X	$N_{x,d,min}$	Ek	$M_{y,d,min}$	Εk	$V_{z,d,min}$	Ek
		$N_{x,d,max}$		$M_{y,d,max}$		$V_{z,d,max}$	
	[m]	[kN]		[kNm]		[kN]	
3. OG	2.80	-138.00	7	0.00	1	-3.75	11
		-80.00	17	0.00	1	1.10	8
	1.40	-143.29	5	-1.00	8	-0.79	11
		-83.92	17	3.36	11	0.02	8
	1.10	-144.43	5	-0.96	8	-0.36	16
		-84.76	17	3.47	11	0.35	7
	0.00	-148.58	5	0.00	1	-1.14	8
		-87.84	17	0.00	1	5.86	11

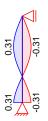
	X	$M_{z,d,min}$	Ek	$M_{z,d,max}$	Ek	$V_{y,d,min}$	Ek	$V_{y,d,max}$	Ek
	[m]	[kNm]		[kNm]		[kN]		[kN]	
3. OG	2.80	0.00	1	0.00	1	-1.09	13	1.09	14
	1.40	-0.98	13	0.98	14	-0.02	13	0.02	14
	0.00	0.00	1	0.00	1	-1.13	6	1.13	5

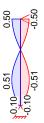
<u>Brandfall</u>

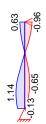
2023 300

ST-1.1


ÙVPËÜPÄÄÛ¢4&\@@ã ÁÛ>å


Nicht-Linear nichtlineare Berechnung nach Th. II. Ordnung


<u>Grafik</u> Ù&@ ãct ¦4i ^} ÁÇN{ ⊗||^} å^D


 $N_{x,d}[kN] \hspace{1cm} M_{y,d}[kNm] \hspace{1cm} M_{z,d}[kNm] \hspace{1cm} V_{y,d}[kN] \hspace{1cm} V_{z,d}[kN] \\$

Seite: 1-90

<u>Tabelle</u>

Ù&@; ãct | 4i ^} ÁÇW(@>||^} å^D

	Х	$N_{x,d,min}$	Ek	$M_{y,d,min}$	Ek	$V_{z,d,min}$	Ek
		$N_{x,d,max}$		$M_{y,d,max}$		$V_{z,d,max}$	
	[m]	[kN]		[kNm]		[kN]	
3. OG	2.80	-86.00	29	0.00	25	-0.96	39
		-80.00	25	0.00	25	0.63	32
	1.80	-88.80	29	-0.40	32	-0.06	40
		-82.80	25	0.60	39	0.01	31
	0.50	-92.44	29	-0.29	39	-0.56	32
		-86.44	25	0.21	32	1.14	39
	0.00	-93.84	29	-0.82	39	-0.13	32
		-87.84	25	0.39	32	0.94	39

	Х	$M_{z,d,min}$	Ek	$M_{z,d,max}$	Ek	$V_{y,d,min}$	Ek	$V_{y,d,max}$	Ek
	[m]	[kNm]		[kNm]		[kN]		[kN]	
3. OG	2.80	0.00	25	0.00	25	-0.50	37	0.50	38
	1.80	-0.31	37	0.31	38	-0.01	30	0.01	29
	0.80	-0.02	30	0.02	29	-0.51	30	0.51	29
	0.00	-0.31	30	0.31	29	-0.10	30	0.10	29

Bem.-verformungen

nach Th. II. Ordnung

Nicht-Linear

nichtlineare Berechnung nach Th. II. Ordnung

Grafik

X^|-{|{ `} * ^} AQ aai * ^ a^} a^D

Komb. 10

w _{y,d} [cm]	$w_{z,d}[cm]$	_{y,d} [mrad]

z,d[mrad]

Seite: 1-91

0.00

0.00

2023 300

ST-1.1

ÙVPËÜPÄÄÜ¢4&\@ã ÁÛ>å

Komb. 15

 $w_{z,d}[cm]$

 $_{y,d}$ [mrad]

<u>Tabelle</u>

Komb. 10

Gesch.	X	Wz,d	y,d	W y,d	z,d
	[m]	[cm]	[mrad]	[cm]	[mrad]
3. OG	2.80	0.00	-0.20 *	0.00	7.77 *
	1.40	0.02	-0.01	-0.68 *	0.01
	1.30	0.02 *	0.01	-0.68	-0.81
	0.00	0.00	0.23 *	0.00	-7.74 *
	2.80	0.00	-7.96 *	0.00	0.00

-0.02

7.95 *

0.00

0.00

0.70 *

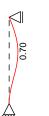
0.00

Komb. 15

Brandfall Nicht-Linear

nichtlineare Berechnung nach Th. II. Ordnung

y,d[mrad]


1.40

0.00

Grafik

Komb. 39

w_{z,d}[cm]

<u>Tabelle</u>

Komb. 39

Gescn.	Х	$W_{z,d}$	y,d	W _{y,d}	z,d
	[m]	[cm]	[mrad]	[cm]	[mrad]
3. OG	2.80	0.00	-9.98 *	0.00	0.00
	1.70	0.70 *	-0.40	0.00	0.00
	0.80	0.33	6.46 *	0.00	0.00
	0.00	0.00	-0.04	0.00	0.00

Mat./Querschnitt

Material- und Querschnittswerte

Querschnitte

Q	Тур	Bewehr	b/D	h/Di	Cmin	С
		anordnung	[cm]	[cm]	[mm]	[mm]
1	Recht	Asu=Aso	56.0	20.0	20	15
Q	Expositions	klassen			C _{nom}	CV
					[mm]	[mm]
1	XC1				35	35

B 500SA

0.0

25.5

0.0

Auftrags-Nr.	Position	martens+puller
2023 300	ST-1.1	ÙVPËJPÆÄJG4&\@@`ā(AJ>å
Materialien	Q Beton	Betonstahl min

C 25/30

2.80

1.20

0.00

*^{ êi ÁÖ OD ÁÖ ÞÁFJJ GËFËFÉÁN HÈ ÉÁN HÈ ÉÁ È ÉÁ È ÉÁ Ì Bemessung (GZT)

Ó¦ ~ &@ &@ ~ ãc* | 4i ^} Komb. 10

nach nichtlinearer Theorie

Х	N_{u}	Myu	M_{zu}	s	С	
[m]	[kN]	[kNm]	[kNm]	Žáá	Žšá	
2.80	1767.6	0.0	0.0	-2.00	-2.00	0.06
1.20	1307.5	30.9	8.7	-0.48	-3.50	0.09
1.10	1305.5	31.0	8.4	-0.48	-3.50	0.09
0.00	1767.6	0.0	0.0	-2.00	-2.00	0.07
Х	Nu	Myu	Mzu	s	С	
[m]	[kN]	[kNm]	[kNm]	Žáá	Žáá	

[%]

0.30

0.0

0.0

0.0

Seite: 1-92

ŽÞÐ á

25.0

0.08

0.10

0.08

max

[%]

2.50

-2.00

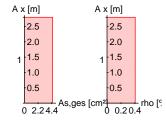
-3.50

-2.00

4.50

-2.00

-0.83


-2.00

Erforderliche	
Bewehrung	

Komb. 15

VC	on x	bis x	Q	Тур	Bew.Art	d'	As,ges	
	[m]	[m]				[cm]	Z&{ á	[%]
	0.00	2.80	1	R	Asu=Aso	4.9	4.52	0.40

Erf. Bewehrung M 1:120

Brandfall

- *^{ êi Ánd|*^{ ^a},^{ Áx^|-æ@^} Á æ&@ÄÖ@PÁÖÞÁFJJŒËEB Berechnungsgrundlagen: spezifische Wêrme vom Beton (3.3.2)

1767.6

1408.6

1767.6

- Feuchte des Betons 3.0%Wêrme>bertragungskoeffizient 25 W/m K
- thermische Leitfêhigkeit des Betons: obere Grenze
 Emissionswert der Betonoberflêche 0.7
- Festigkeitsred. Bewehrung f>r Klasse NBewehrung kaltverformt
- quarzhaltige Betonzuschlêge
- St>tze am Fui eingespannt

Steifigkeiten im Brandfall

Q	t _{req}	Seiten	EA	Ely	Elz
	[min]	[-]	[kN]	ŽÞ{ á	ŽÞ{ á
1	90	r/l/o/u	534512 29	809.06	9838.46

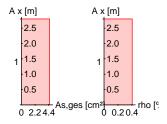
Temperaturprofil Bewehrung

	· • · • · · · · · · · · · · · · · · · ·					
Q	Υ	Z	R		Es, /Es	fy, /fy
	[cm]	[cm]	[cm]	Ž∕á	[-]	[-]
1	-23.10	-5.10		560	0.30	0.51
	23.10	-5.10		560	0.30	0.51
	-23.10	5.10		560	0.30	0.51
	23.10	5.10		560	0.30	0.51

2023 300 ST-1.1 ÙVPËÜPÆÄJv4&\@a ÂJ>å Seite: 1-93

Óľ	8@	&@	ãc*	¦4i	٨}
0	G.	CK (SE	an c	171	ſ

nach	nichtlinearer	Theorie


Kom	b. 39
IVOITI	D. OO

Х	Nu	Myu	Mzu	
[m]	[kN]	[kNm]	[kNm]	
2.80	923.8	0.0	0.0	0.09
1.80	841.2	5.6	0.0	0.11
1.20	868.1	3.8	0.0	0.10
0.00	815.6	-7.2	0.0	0.12

Erforderliche Bewehrung

0.00	2.80	1 R	Δειι=Δεο	49	4 52	0.40
[m]	[m]			[cm]	Ž&{ á	[%]
von x	bis x	Q T	yp Bew.Art	ď'	As,ges	

Erf. Bewehrung M 1:120

Nachweise (GZT) Querkraftbemessung

Komb. 10

Komb. 10

Komb. 10

Þæ&@ ^ã^Áq ÁŌ¦^}:: ˇ•æ) åÁå^¦ÁV¦æť÷ê@t\^ãn∕jæ&@ÁÖΦÞÁFJJŒËËË

Х	$V_{\text{Ed},y}$	$V_{Rd,c}$	$V_{Rd,max,y}$	Nx		Z	erf asw
	$V_{Ed,z}$	$V_{Rd,c}$	$V_{Rd,max,z}$				
[m]	[kN]	[kN]	[kN]	[kN]	Ž×á	[cm]	Ž&{ Ð()á
2.80	0.86	106.23	279.23	108.00	18.4	43.8	6.32 M
	2.89	106.23	139.23	108.00	18.4	7.80	
1.20	0.17	107.66	279.23	114.05	18.4	43.8	6.32 ^M
	0.47	107.66	139.23	114.05	18.4	7.80	
0.00	0.90	108.73	279.23	118.58	18.4	43.8	6.32 ^M
	4.95	108.73	139.23	118.58	18.4	7.80	
	x [m] 2.80 1.20	x VEd,y VEd,z [m] [kN] 2.80 0.86 2.89 1.20 0.17 0.47 0.00 0.90	X VEd,y VRd,c VRd,c VEd,z VRd,c [m] [kN] [kN] 2.80 0.86 106.23 2.89 106.23 1.20 0.17 107.66 0.47 107.66 0.00 0.90 108.73	X VEd,y VEd,z VRd,c VRd,max,y VEd,z VRd,c VRd,max,z VRd,c VRd,max,z VRd,max,z [m] [kN] [kN] [kN] 2.80 0.86 106.23 279.23 2.89 106.23 139.23 1.20 0.17 107.66 279.23 0.47 107.66 139.23 0.00 0.90 108.73 279.23	X VEd,y VEd,z VRd,c VRd,max,y VEd,z VRd,c VRd,max,z VRd,c VRd,max,z VRd,max,z IkN] Ik	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

м: Mindestquerkraftbew. nach Abs. NDP Zu 9.2.2(5)

Bewehrungswahl

von x	bis x	Q	Тур	BewLage		n	ds
[m]	[m]						[mm]
0.00	2.80	1	Rechteck	je Ecke		1	» %&
von x	bis x	Q	Тур	Cnom	n	As,ges	
[m]	[m]			[mm]		Ž&{ á	[%]
0.00	2.80	1	Rechteck	35	4	4.52	0.40

Querschnitt 1 M 1:20

Vorhandene Bewehrung

Vorhandene
Querkraftbewehrung

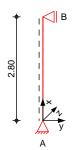
von x	bis x	Q	Тур	ds	S	Schnitt		A_{sw}
[m]	[m]			[mm]	[cm]		Ž&{	₽)á
0.00	2.80	1	Rechteck	8	14	2		7.18

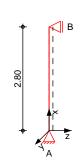
Auftrags-Nr. Position ÙVPËÜPÄÄÛ¢4&\@`ã ÁÛ>å 2023 300 ST-1.1 Seite: 1-94 OE -|æ* ^ | * | 4 i ^ } Áse{ Á Einw $F_{x,k}$ $M_{y,k}$ $M_{z,k}$ $F_{y,k}$ $F_{z,k}$ Úc>c ^}\[]~ [kN] [kNm] [kNm] [kN] [kN] Gk 0.0 0.0 0.0 0.0 0.0 Qk.N 0.0 0.0 0.0 0.0 0.0 Qk.W 0.0 0.0 0.0 0.0 1.9 OE -|æ* ^ | * | 4 i ^ } Áæ (Á Einw $\mathsf{F}_{\mathsf{x},\mathsf{k}}$ $F_{y,k}$ $F_{z,k} \\$ $M_{y,k}$ $M_{z,k} \\$ Ùc>c ^} ~ i [kN] [kNm] [kNm] [kN] [kN] Gk 87.8 0.0 0.0 0.0 0.0 Qk.N 20.0 0.0 0.0 0.0 0.0 0.0 Qk.W 0.0 0.0 0.0 3.3 Anteile aus Th. II Ordnung Einw $M_{y,k} \\$ $M_{z,k}$ $F_{y,k}$ $F_{z,k}$ [kNm] [kNm] [kN] [kN] Gk 0.0 0.0 0.0 0.0 Qk.N 0.0 0.0 0.0 0.0 Qk.W 0.0 0.0 0.0 0.0 Zusammenfassung Zusammenfassung der Nachweise Nachweise im Grenzzustand der Tragfêhigkeit Nachweise (GZT) Nachweis [-] Ùœàããéc OK Ó¦ « & @ & @ act | 4i ^} OK 0.10 Querkraftbemessung OK Brand OK Bewehrungswahl OK Nachweise (Brand) Brandfall im Grenzzustand der Tragfêhigkeit Nachweis Ó| * &@ &@ act | 4i ^} OK

2023 300

ST-1.2

ÙVPËÜPÄÄÛ¢4&\@@ã ÁÛ>å


Pos. ST-1.2


GHU `gh mY

System

ٜ@Pcc^ÉÖOPÁÖÞÁFJJHÉFÉFKÆF€ÉG

M 1:100

Abmessungen Mat./Querschnitt

Prof	Material	1
		[m]
ROHR 88.9-14.2	S 235	2.80

Auflager

Lager	Х	$K_{T,z}$	$K_{R,y}$	$K_{T,y}$	$K_{R,z}$	Gabell.
	[m]	[kN/m]	[kNm/rad]	[kN/m]	[kNm/rad]	
В	2.80	fest	frei	fest	frei	fest
Α	0.00	fest	frei	fest	frei	fest

S} & |ê} *^}

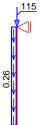
 $L_{cr,y} = 2.80 \text{ m}$

Sa]] |ê} * ^ Lagerung

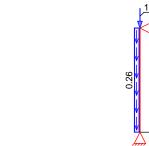
 $L_{cr,z} = 2.80 \text{ m}$ $L_{cr,LT} = 2.80 \text{ m}$

Belastungen

unten: Gabel, oben: Gabel


Grafik

Belastungen auf das System


Einwirkungen

Belastungsgrafiken (einwirkungsbezogen)

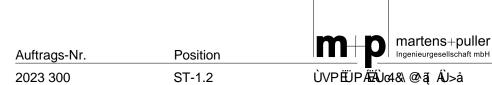
Gk

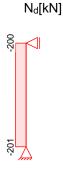
Gk

Qk.N

Seite: 1-95

Qk.N

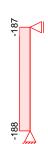

Qk.W



Auftrags-Nr.	Position	Ingenieurge	esellschaft mbH			
2023 300	ST-1.2	ÙVPËÜPÄÄÛ¢4&\@ã	ÁÙ>å		Se	ite: 1-96
Streckenlasten in x-Richtung	Gleichlasten Komm.	a [m]	S [m]	q. [kN/m		q _o [kN/m]
Einw. <i>Gk</i>	Eigengew	[m] 0.00	[m] 2.80	[KIN/III	<u> </u>	0.26
Punktlasten in x-Richtung	Einzellasten Komm.	a [m]		F _x [kN]	ey [om]	e _z
Einw. <i>Gk</i> Einw. <i>Qk.N</i>		[m] 2.80 2.80		115.00 30.00	0.0 0.0	[cm] 0.0 0.0
Streckenlasten in z-Richtung	Gleichlasten Komm.	a [m]	s [m]	q _ı [kN/m		q₀ [kN/m]
Einw. <i>Qk.W</i>		0.00	2.80	[KIN/III	<u> </u>	5.00
Kombinationen		ildung nach DIN EN 1990 r mai gebenden Kombina				
•œ̂} åðt͡ िं ि् ¦>à^¦*È	Ek (* 2 1.35*0 3 1.35*0 4 1.35*0 5 1.35*0	Gk +1.50*C Gk +1.50*C	Qk.W Qk.N	+0.90*C +1.50*C		
Ó^{ È & @ ãc * ¦4 i ^}	Ó^{ ^••`}*••&	&@,ãcc*¦4i^}Á√@^[¦ãn\ÁDÉÁU¦	å}			
<u>Grafik</u>	Schnittgr4i en	(je Kombination)				
Komb. 2	N _d [kN]					
	-200					
Komb. 3	$N_d[kN]$	$M_{y,d}[kNm]$		$V_{z,d}[kN]$		
	-155	7.34		-10.5		

Seite: 1-97

Komb. 4


 $M_{y,d}[kNm]$

 $V_{z,d}[kN]$

Komb. 5

 $N_d[kN]$

 $M_{y,d}[kNm]$

 $V_{z,d}[kN]$

Tabelle

Schnittgr4i en (je Kombination)

Komb. 2	
Komb. 3	
Komb. 4	
Komb. 5	

Ges.	X	N_d	$M_{y,d}$	$V_{z,d}$
	[m]	[kN]	[kNm]	[kN]
	2.80	-200.25 *	0.00	0.00
	0.00	-201.24 *	0.00 *	0.00 *
	2.80	-155.25 *	0.00	-10.50 *
	1.35	-155.76	7.34 *	0.39
	0.00	-156.24 *	0.00 *	10.50 *
	2.80	-200.25 *	0.00	-6.30 *
	1.35	-200.76	4.40 *	0.23
	0.00	-201.24 *	0.00 *	6.30 *
	2.80	-186.75 *	0.00	-10.50 *
	1.35	-187.26	7.34 *	0.39
	0.00	-187.74 *	0.00 *	10.50 *

Bem.-verformungen

Bemessungsverformungen Theorie I. Ordnung

\$^\$\dag{\text{\$\dag{\ta}}}}}}}} \end{\text{\$\dag{\text{\$\dag{\text{\$\dag{\text{\$\dag{\text{\$\end{\text{\$\dag{\text{\$\dag{\text{\$\dag{\text{\$\dag{\text{\$\drighta}}}}}}} \end{\text{\$\dag{\text{\$\dag{\text{\$\dag{\text{\$\dag{\text{\$\dag{\text{\$\dag{\text{\$\dag{\text{\$\dag{\text{\$\dag{\text{\$\dag{\text{\$\dag{\text{\$\dag{\\entimed{\text{\$\dag{\text{\$\dag{\text{\$\dag{\text{\$\dag{\text{\$\dag{\text{\$\dag{\text{\$\dag{\text{\$\dag{\text{\$\dag{\text{\$\dag{\text{\$\dag{\text{\$\dag{\text{\$\drig}}}}}}}} \end{\text{\$\det{\exittt{\$\dag{\text{\$\din{\text{\$\din{\text{\$\din{\text{\$\din{\text{\$\din{\text{\$\din{\text{\$\din{\text{\$\din{\text{\$\din{\text{\$\din{\text{\$\din{\text{\$\din{\ti}}}}}}}} \end{\text{\$\din{\text{\$\din{\text{\$\din{\text{\$\din{\text{\$\din{\text{\$\din{\text{\$\din{\text{\$\din{\text{\$\din{\text{\$\din{\text{\$\din{\text{\$\din{\text{\$\}}}}}}} \end{\text{\$\din{\text{\$\din{\text{\$\din{\text{\$\din{\text{\$\}}}}}} \end{\text{\$\din{\text{\$\din{\text{\$\din{\text{\$\din{\text{\$\din{\text{\$\din{\text{\$\din{\text{\$\din{\text{\$\din{\text{\$\din{\text{\$\din{\text{\$\din{\text{\$\din{\text{\$\din{\text{\$\din{\text{\$\din{\text{\$\exititt{\$\din{\text{\$\din{\text{\$\din{\text{\$\din{\text{\$\din{\tik}}}}}} \end{\text{\$\din{\text{\$\din{\text{\$\din{\text{\$\din{\tikt{\$\din{\tiin}}}}} \end{\text{\$\din{\tiin}}}}} \end{\text{\$\din{\text{\$\din{\text{\$\din{\text{\$\}}}}}}} \enotinintif{\text{\$\di

Mat./Querschnitt

Material- und Querschnittswerte nach DIN EN 1993

<u>Grafik</u>

Querschnittsgrafik

M 1:15

Position Auftrags-Nr. ÙVPËJPÆÄJc4& @ã ÁJ>å 2023 300 ST-1.2 Seite: 1-98 Þæ&@, ^ãr^Áq, ÁÕ¦^}:: ˇ•æa) åÁå^¦ÁV¦æt-ê@t\^ãaÁ,æ&@ÁÖOÞÁÖÞÁFJJH Nachweise (GZT) Quersch.-klasse Ek QSvorhC/t grenzC/t vorhc/t grenzC/t Х Steg & EDEX^¦@ê|c}ã• KL Gurt Gurt Steg [m] [-] [-] [-] [-] ->¦Á'¦æ*-ê@*\^ã•}æ&@^ã 2.80 4 6.26 50.00 6.26 50.00 1 1.35 5 1 6.26 50.00 6.26 50.00 0.00 4 1 6.26 50.00 6.26 50.00 *>\ÁÛœà₫ãê∙}æ*&@^ã 1.35 1 6.26 50.00 6.26 50.00 * Þæ&@^ãrÁs^¦ÁÓã*^ËÁ}åÁÛ`^¦\¦æcdæ*÷ê@ā*\^ãc Nachweis E-E $V_{z,d} \\$ Abs. 6.2 Х Ek $N_{x.d}$ $M_{y,d}$ d $M_{z,d}$ $V_{y,d}$ d v,d [kN] [kNm] [kN] [N/mm²][-] [m] 2.80 4 -200.25 0.00 -6.30 60.14 0.26 0.00 0.00 3.65 60.47 1.35 5 -187.26 7.34 0.82 * 0.39 191.61 0.00 0.00 0.23 191.61 4 0.00 -201.24 0.00 6.30 60.43 0.26 0.00 0.00 3.65 60.76 Ùcæàãjãnêc Þæ&@^ãÁå^¦ÁÙæàãããêc Festhaltungen x-Koordinaten [m] bzgl. Stabanfang 0.00 GL, 2.80 GL Stab 0 GL: Gabellager Globale Beiwerte Angriffspunkt der Last: 0.00 cm Z_p = Teilsicherheitsbeiwert: 1.10 m,1 Zwischenwerte Druck Ek KL_My Х KL_{Nv} C_{my} **k**yy _у KL_{Nz} KL_{Mz} C_{mz} k_{zy} [-] [m] [-] [-] [-] [-] 5 KLa 1.35 1.11 0.95 1.29 KL a 1.11 **Nachweis** Ek $N_{x,d}$ Х $M_{y,d}$ у N_{Rd} $M_{y,Rd}$ [m][kN] [-] [kNm] [-] $(L_{cr,y} = 2.80m, L_{cr,z} = 2.80m)$ 1.00 * 1.35 5 -187.26 0.59 7.34 711.41 0.59 17.13 Ô@dadc^\ã@&@Á}åÁÓ^{^••`}*•æ`-\æ*^\\\ê-c^ Char. Auflagerkr. Aufl. $F_{x,k}$ $F_{z,k}$ $F_{y,k}$ [kN] [kN] [kN] Einw. Gk Ā 115.73 0.00 0.00 В 0.00 0.00 0.00 Einw. Qk.N Ā 30.00 0.00 0.00 В 0.00 0.00 0.00

Auftrags-Nr.	Posi	tion		Inge	enieurgesell	schaft mbH			
2023 300	ST-1	1.2	ÙVPËÜP	ÆÄÛ¢4&\	@łą̃ÁÙ:	>å		Sei	te: 1-99
		Aufl.		F _{x,k} [kN]			F _{z,k} [kN]		F _{y,k} [kN]
Einw. Qk.W		A B		0.00 0.00			7.00 7.00		0.00 0.00
Ó^{ ÉÉeĕ †æť^¦\¦ê-e^ •œ} åãt िकृ[¦>à^¦*È		Aufl.	F _{x,d,min} F _{x,d,max} [kN]	EK		F _{z,d,min} F _{z,d,max} [kN]	EK	F _{y,d,m} F _{y,d,m} ,	ax
		A B	115.73 201.24 0.00	6 2 1		0.00 10.50 0.00	1 3 1	0.0 0.0 0.0	0 1 0 1
			0.00	1		10.50	3	0.0	
Ø″iEÄEÄS[]~] ænec^		Þæ&@^ãÁs^¦ÁÓ	ā^*^ËÁ\}åÁû	j*^¦\¦æ	adæt-ê@	Zãi∖^ãc			
Material		Beton C 25/30 Stahl S 235 Anschlussbeiwe	ert				$f_{cd} = R,d = J$	14.17 235.00 0.6667	N/mm² N/mm² [-]
Nachweise		A _{pl} [cm ²]	x=a/t	t [mı	t _{erf} m]	t _{gew} [mm]	N _{ed} [kN]	N _{Rd} [kN]	
Komb. 2		Ø i] æec^ 241.34 Kopfplatte	2.880	,	14	15	201.2	227.9	0.88
Komb. 2		241.34	2.880		14	15	200.3	227.9	0.88
Ù&@, ^ã. } æ@:		N _{ed} [kN]	Q _{yd} [kN]	Q _{zd} [kN]	a [mm]	W	W,V [N/mm²]	wrd [N/mm²]	
Komb. 5		Øˇ i] æ&^ 187.7 Kopfplatte	0.0	-10.5	4	0.80	169.1	207.8	0.81
Komb. 5		186.8	0.0	-10.5	4	0.80	168.2	207.8	0.81
Abmessungen		ÓµÆJ€ÝFJ€ÝFÍ Ù&@^ã;}æ@Áad	ÊÄà^¦•œa)á 1/{{	åÁzM È	&{ ÊÁsy=	5.0cm,			
<u>Grafik</u>		Ø ê&@^&a^•Á/ËÙd	ἔ{{^╠~~	ãçæ(^}œ					
M 1:5		Kopfplatte	•		Ø +	′i] æec^	190	+	
	190	50 90	50	50 + 90 + 50 + 190 + 190 + 190		50	90 50	20 + 00 + 20	
		+ 50 + 90	♦ 50		 	50	90 \$ 50	→	

Auftrags-Nr.	Position	Ingenieurgesellschaft mbH	
2023 300	ST-1.2	ÙVPËJPÄÄJØ4&\@ã ÁÛ>å	Seite: 1-100

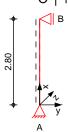
Zusammenfassung der Nachweise

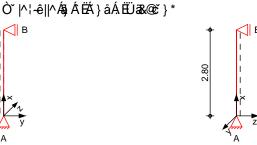
Nachweise im Grenzzustand der Tragfêhigkeit

Nachweis	X		
	[m]		[-]
Nachweis E-E	1.35	OK	0.82
Ùœà ããêc	1.35	OK	1.00
Ø i] æc^	0.00	OK	0.88
Ø'i] æec^ÁÛ&@^ãi}æec	0.00	OK	0.81
Kopfplatte	2.80	OK	0.88
S[j-j æec^ÁÛ&@^ã}æ@c	2.80	OK	0.81

Feuerwiderstand

Anforderungen Laut Brandschutzkonzept keine Feuerwiderstandsklasse erforderlich.

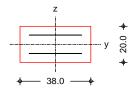



Seite: 1-101

Pos. ST-1.3

GhV"!Ghi hnY

System M 1:120


Abmessungen Mat./Querschnitt

Geschoss	1	Material	b _y /b _z
	[m]		[cm]
3. OG	2.80	C 25/30	38/20

Auflager

Lager	X	$K_{T,z}$	$K_{R,y}$	$K_{T,y}$	$K_{R,z}$
_	[m]	[kN/m]	[kNm/rad]	[kN/m]	[kNm/rad]
В	2.80	fest	frei	fest	frei
Α	0.00	fest	frei	fest	frei

M 1:20

Abschnitt 1

Einwirkungen

Einwirkungen nach DIN EN 1990:2010-12

Gk

Eigenlasten

Qk.N

ٜ} åã* ^ÁÒã; ã\`} * ^} Nutzlasten

Sæe^*[¦ā^Á0ÆÆÁY[@];ËÁ}åÁ0E-^}c@ea|o•¦ê*{^

fw

Qk.W

Wind Windlasten

Qk.W

min/max Werte

Ò||ê c^| \} * ^}

angesetzt.

Belastungen

Belastungen auf das System

Grafik

Belastungsgrafiken (einwirkungsbezogen)

Auftrags-Nr. Position ÙVPËÜPÄÄÜd& @ ą̃ ÁÛ>å 2023 300 ST-1.3 Seite: 1-102 Einwirkungen Gk Gk Qk.N Qk.N $\mathsf{Qk}.\mathsf{W}$ 20.0 20.0 Qk.W

<u>Streckenlasten</u>	Gleich- und E	Blocklasten					
in x-Richtung	Ges.	Komm.	а	S	q_{u}		q_o
_			[m]	[m]	[kN/m]		[kN/m]
Einw. <i>Gk</i>	3. OG	Eigengew	0.00	2.80			1.90
<u>Punktlasten</u>	Einzellasten						
in x-Richtung	Ges.	Komm.	а		Fx	e_y	ez
			[m]		[kN]	[cm]	[cm]
Einw. <i>Gk</i>	3. OG		2.80		80.00	0.0	0.0
Einw. Qk.N	3. OG		2.80		20.00	0.0	0.0
Streckenlasten	Gleich- und E	Blocklasten					
in y-Richtung	Ges.	Komm.	а	S	q_{u}		q_o
			[m]	[m]	[kN/m]		[kN/m]
Einw. <i>Qk.W</i>	3. OG		0.00	2.80			1.00
	3. OG		0.00	1.20			2.00
Streckenlasten	Gleich- und E	Blocklasten					
in z-Richtung	Ges.	Komm.	а	S	qu		q_o
-			[m]	[m]	[kN/m]		[kN/m]
Einw. Qk.W	3. OG		0.00	2.80			1.00
	3. OG		0.00	1.20			2.00

Grafik Figur 7 w_z[cm] Figur 15 w_z[cm]

		m	↑ martens+	-puller		
Auftrags-Nr.	Position		Ingenieurgesells	chaft mbH		
2023 300	ST-1.3	UVPEJPA	ÁÚ04&\@aį ÁÛ>	•å	S	eite: 1-103
Tabelle Figur 7	X	Wyu	Wz		Wyk	Wzk
3. OG	[m] 2.80	[cm] 0.00	[cm 0.00	•	[cm] 0.00	[cm] 0.00
3.00	1.40	0.00	0.69		0.00	0.00 *
	0.00	0.00 *	0.00	O *	0.00 *	0.00 *
Figur 15	X []	Wyu [a]	Wz		Wyk	Wzk
3. OG	<u>[m]</u> 2.80	[cm] 0.00	[cm 0.00		[cm] 0.00	[cm] 0.00
3. 00	1.70	0.00	0.48		0.00	0.00
	1.40	0.00	0.45	5	0.00	0.00
	0.00	0.00 *	0.00	O *	0.00 *	0.00 *
	Kombination	Ausmitte affin zu nen ohne] æ) { ê	r Biegelinie bz i	w. affin zur Kn } * Æ^}∖¦^&@∲	Á`¦ÁÚo⊳c^}æ	
	Figur [-]	Richtung [-]		[-]	x [m]	ei [cm]
	7	Z	0.	99	1.40	0.69
	15	Z	0.	69	1.70	0.48
Kombinationen •œ̂} åã t͡ð̞[¦>à^¦* È	Darstellung <u>Ek Imp.</u> 11 3	nsbildung nach D der mai gebende (* *EW) 1.35*Gk	en Kombination +1.50*0	Qk.W		
	12 10 15 7	1.35*Gk 1.35*Gk	+1.50*(+1.50*(+0.90*Qk.W	Ī
Brand	39 15	1.00*Gk	+0.30*0		+0.20*Qk.W	
Ó^{ \	nach Th. II.	Ordnung				
Nicht-Linear	nichtlineare	Berechnung nac	h Th. II. Ordnu	ıng		
<u>Grafik</u>	Ù&@; ãc*¦4i	^} ÁÇW { @- ^}å^[)			
	$N_{x,d}[kN]$	$M_{y,d}[kNm]$	$M_{z,d}[kNm]$	$V_{y,d}[kN]$	V _{z,d} [k	N]
	-145	3.48	-3.44	5.83	5.86 1.09 1.13	
<u>Tabelle</u>	Ù&@)ãnc*¦4i	^} ÁÇV (((۞ ^}å^[)			
	x	$N_{x,d,min}$	Ek	$M_{y,d,min}$ Ek	\	/ _{z,d,min} Ek
		$N_{x,d,max}$		$M_{y,d,max}$		z,d,max
3. OG	[m] 2.80	[kN] -138.00	5	[kNm]		[kN] -3.76 11
3. UG	∠.0∪	-80.00	ວ 17	0.00 1 0.00 1		-3.76 11 1.09 8
	1.40	-141.59	5	-1.01 8		-0.79 11
		-82.66	17	3.37 11		0.02 8
	1.10	-142.36	5	-0.96 8		-0.36 16
	0.00	-83.23 -145.18	17 5	3.48 11 0.00 1		0.35 7 -1.13 8
	0.00	-145.16 -85.32	5 17	0.00		5.86 11

-85.32 17

0.00

1

5.86 11

Seite: 1-104

	x [m]	M _{z,d,min} [kNm]	Ek	M _{z,d,max} [kNm]	Ek	V _{y,d,min} [kN]	Ek	V _{y,d,max} [kN]	Ek
3. OG	2.80	0.00	1	0.00	1	-3.73	9	1.08	6
	1.40	-3.33	9	0.98	6	-0.79	9	0.01	6
	1.10	-3.44	9	0.93	6	-0.36	14	0.35	5
	0.00	0.00	1	0.00	1	-1.12	6	5.83	9

Brandfall

2023 300

Nicht-Linear nichtlineare Berechnung nach Th. II. Ordnung

ST-1.3

$N_{x,d}[kN]$	$M_{y,d}[kNm]$	$M_{z,d}[kNm]$	$V_{y,d}[kN]$	$V_{z,d}[kN]$
-86.0	0.63	0.32	0.52	3 -1.02
91.3	0.41	0.70	0.97	1.19

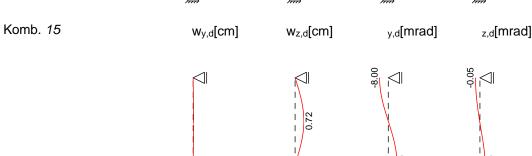
Tabelle

Ù&@ ãct 4i ^} ÁQW @||^} å^D

	X	$N_{x,d,min}$	Ek	$M_{y,d,min}$	Ek	$V_{z,d,min}$	Ek
		$N_{x,d,max}$		$M_{y,d,max}$		$V_{z,d,max}$	
	[m]	[kN]		[kNm]		[kN]	
3. OG	2.80	-86.00	29	0.00	25	-1.02	39
3. OG		-80.00	25	0.00	25	0.67	32
	1.80	-87.90	29	-0.42	32	-0.07	40
		-81.90	25	0.63	39	0.01	31
	0.50	-90.37	29	-0.31	39	-0.59	32
		-84.37	25	0.22	32	1.19	39
	0.00	-91.32	29	-0.86	39	-0.14	32
		-85.32	25	0.41	32	0.95	39

	X	$M_{z,d,min}$	Ek	$M_{z,d,max}$	Ek	$V_{y,d,min}$	Ek	$V_{y,d,max}$	Ek
	[m]	[kNm]		[kNm]		[kN]		[kN]	
3. OG	2.80	0.00	25	0.00	25	-0.78	37	0.52	30
	1.80	-0.48	37	0.32	30	-0.06	38	0.01	29
	0.40	-0.21	30	0.32	37	-0.40	30	0.97	37
	0.00	-0.32	30	0.70	37	-0.10	30	0.90	37

Bem.-verformungen nach Th. II. Ordnung


Nicht-Linear nichtlineare Berechnung nach Th. II. Ordnung

Grafik $X^{+}_{\{\{\ \ \ \}\ }^{*}^{*}$ $A_{\{\ \ ab\ \ \ \ }^{*}$ $A_{\{\ \ ab\ \ \ \ \ \ }^{*}$ $A_{\{\ \ \ ab\ \ \ \ \ \ \ \ }^{*}$

Seite: 1-105

Auftrags-Nr. Position

ÙVPËÜPĀĀÚd& @ā ÁÚ>å 2023 300 ST-1.3 Komb. 11 $w_{y,d}[cm]$ $w_{z,d} [cm] \\$ y,d[mrad] $_{z,d}$ [mrad] Komb. 12 $_{z,d}[mrad]$ $w_{y,d}[cm]$ $w_{z,d}[cm]$ y,d[mrad]

	 	0.72		
/		 	8.00	0.06
<i>7</i>	n han	hn)	∌

<u>Tabelle</u> $X^{+}_{\{ \} }^{*} *^{A}_{\{ ai *^{a} \}} *^{A}_{\{ ai$

	Gesch.	х	$W_{z,d}$	y,d	$\mathbf{W}_{Y,d}$	z,d
		[m]	[cm]	[mrad]	[cm]	[mrad]
Komb. 11	3. OG	2.80	0.00	-8.08 *	0.00	-0.08 *
		1.40	0.73 *	-0.05	0.01	-0.01
		1.30	0.72	0.87	0.01 *	0.00
		0.00	0.00	8.20 *	0.00	0.10 *
Komb. 12		2.80	0.00	7.49 *	0.00	-0.08 *
		1.40	-0.67 *	0.00	0.01	-0.01
		1.30	-0.67	-0.85	0.01 *	0.00
		0.00	0.00	-7.51 *	0.00	0.09 *
Komb. 15		2.80	0.00	-8.00 *	0.00	-0.05 *
		1.40	0.72 *	-0.04	0.00	0.00
		1.30	0.71	0.87	0.00	0.00
		0.00	0.00	8.09 *	0.00	0.06 *

Brandfall

2023 300

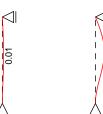
ST-1.3

ÙVPËÜPÄÄÜ¢4&\@ã ÁÛ>å

Seite: 1-106

Nicht-Linear

nichtlineare Berechnung nach Th. II. Ordnung


Grafik

X^|-{|{ `} *^} AQ aa *^a^} a^D

Komb. 39

``	ייב יו	ſ) / Qy Cu	a , c	ע ג

 $w_{y,d}[cm]$ $w_{z,d}[cm]$

y,d[mrad]

 $_{z,d}$ [mrad]

<u>Tabelle</u>

X^|-{|{ `} * ^} AQ aai * ^ a^} a^D

Komb. 39

Gescn.	Х	Wz,d	y,d	Wy,d	z,d
	[m]	[cm]	[mrad]	[cm]	[mrad]
3. OG	2.80	0.00	-10.86 *	0.00	-0.18 *
	1.70	0.76 *	-0.43	0.01	-0.03
	1.50	0.74	2.21	0.01 *	0.01
	0.80	0.36	7.03 *	0.01	0.14
	0.60	0.23	6.51	0.01	0.14 *
	0.00	0.00	-0.04	0.00	0.00

Mat./Querschnitt

Material- und Querschnittswerte

Querschnitte

Q	Тур	Bewehr	b/D	h/Di	Cmin	С
		anordnung	[cm]	[cm]	[mm]	[mm]
1	Recht	Asu=Aso	38.0	20.0	20	15
Q	Expositions	klassen		C _{nom}	CV	
					[mm]	[mm]
1	XC1				35	35

Materialien

Q	Beton	Betonstahl	min	max		
			[%]	[%]	[-]	ŽiÞÐ() á
1	C 25/20	B 500SA	0.30	4.50	2.50	25.0

Bemessung (GZT)

*^{ êi ÁÖ OÞÁÐ ÞÁFJJ GËFËFÐÁN HÈÐÁN ÈÐÁN ÈÐÁN ÈÐÁN È

Ó¦ & @ & @ aac* | 4i ^}

nach nichtlinearer Theorie

Komb.	11	

X	N_{u}	Myu	Mzu	s	С	
[m]	[kN]	[kNm]	[kNm]	Žáá	Žáá	
2.80	1257.6	0.0	0.0	-2.00	-2.00	0.09
1.20	792.5	24.6	-19.0	0.20	-3.50	0.14
1.10	792.7	24.6	-19.1	0.20	-3.50	0.14
0.00	1257.6	0.0	0.0	-2.00	-2.00	0.09
x	Nu	Myu	Mzu	s ×	C	

Komb. 12

	INU	iviyu	IVIZU	S	C	
[m]	[kN]	[kNm]	[kNm]	Žáá	Žáá	
2.80	1257.6	0.0	0.0	-2.00	-2.00	0.09
1.20	946.2	16.5	-22.6	-0.19	-3.50	0.12
1.10	941.2	16.8	-22.7	-0.18	-3.50	0.12
0.00	1257.6	0.0	0.0	-2.00	-2.00	0.09
						_

18.0

0.0

Auftrags-Nr. Position ÙVPËÜPÆÄÛc4&\@@ā ÁÛ>å 2023 300 ST-1.3 Komb. 15 N_{u} Myu M_{zu} Χ Žšá [kN] [kNm] [kNm] [m] 2.80 1257.6 0.0 -2.00 0.0

979.2

1257.6

1.20

0.00

Erforderliche Bewehrung

bis x Q Typ Bew.Art ď As,ges von x Ž&{ á [m] [m] [cm] [%] 2.80 1 R 0.00 Asu=Aso 4.9 4.52 0.60

-11.1

0.0

-0.47

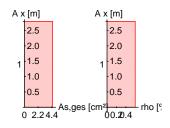
-2.00

Seite: 1-107

0.11

0.15

0.12


С Žšá

-2.00

-3.50

-2.00

Erf. Bewehrung M 1:120

Brandfall

- *^{ êi Ánd|*^{ ^3,^{ ÁX^\-æ@^} Á, æ&@#Ö@ ÁÖÞÁFJJŒËE Berechnungsgrundlagen: spezifische Wêrme vom Beton (3.3.2)
- Feuchte des Betons 3.0%
- Wêrme>bertragungskoeffizient 25 W/m K
- thermische Leitfêhigkeit des Betons: obere Grenze
 Emissionswert der Betonoberflêche 0.7
- Festigkeitsred. Bewehrung f>r Klasse N
- Bewehrung kaltverformt
- quarzhaltige BetonzuschlêgeSt>tze am Fui eingespannt

Steifigkeiten im Brandfall

Q	t _{req}	Seiten	EA	Ely	Elz
	[min]	[-]	[kN]	ŽÞ{ á	ŽÞ{ á
1	90	r/l/o/u	316966 77	497 21	2432 11

Temperaturprofil Bewehrung

Q	Υ	Z	R		Es, /Es	fy, /fy
	[cm]	[cm]	[cm]	Ž∕á	[-]	[-]
1	-14.10	-5.10		558	0.31	0.51
	14.10	-5.10		558	0.31	0.51
	-14.10	5.10		558	0.31	0.51
	14.10	5.10		558	0.31	0.51

Ó| &@ &@ act | 4i ^}

nach nichtlinearer Theorie

Komb. 39

Х	Nu	Муu	Mzu	
[m]	[kN]	[kNm]	[kNm]	
2.80	785.3	0.0	0.0	0.11
1.80	703.9	5.0	-1.3	0.12
1.20	730.4	3.4	-1.2	0.12
0.00	680.0	-6.4	2.9	0.13

Bew.Art

Asu=Aso

ď

[cm]

4.9

Auftrags-Nr. Position ÙVPËÜPÄÄÜ¢4&\@`ã ÁÙ>å 2023 300 ST-1.3

von x

[m]

0.00

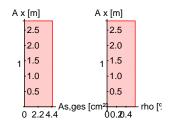
Seite: 1-108

[%]

0.60

 $A_{s,ges}$

Ž&{á


4.52

Frf	Bewehrung

Erforderliche

Bewehrung

M 1:120

bis x

2.80

[m]

Q Typ

1 R

Þæ\$@, ^ã ^Áā, ÁÕ¦^}:: ˇ•æ) å Áå^¦ÁV¦æ* ÷ê @#\^ãn/, æ\$.@#Ö OÞ ÁÒÞ ÁFJJ ŒËË Nachweise (GZT) Querkraftbemessung $V_{Rd,c}$ $V_{Rd,max,y}$ N_{x} z erf asw $V_{Ed,y}$ Х $V_{Rd,max,z}$ $V_{Ed,z}$ VRd,c Žγá Ž&{ Đ() á [m][kN] [kN] [kN] [kN] [cm] Komb. 11 2.80 2.88 25.8 4.83^M 79.95 164.48 108.00 18.4 3.76 79.95 94.48 108.00 18.4 7.80 Komb. 12 1.20 164.48 4.83^{M} 0.47 80.83 112.10 18.4 25.8 7.80 0.65 80.83 94.48 112.10 18.4 Komb. 11 0.00 4.94 81.48 164.48 115.18 18.4 25.8 4.83^{M} 5.86 81.48 94.48 115.18 18.4 7.80

Mindestquerkraftbew. nach Abs. NDP Zu 9.2.2(5)

Bewehrungswahl

von x	bis x	Q	Тур	BewLage		n	ds
[m]	[m]						[mm]
0.00	2.80	1	Rechteck	je Ecke		1	» %&
				-			
von x	bis x	Q	Тур	Cnom	n	As,ges	
[m]	[m]			[mm]		Ž&{ [¯] á	[%]
0.00	2.80	1	Rechteck	35	4	4.52	0.60

Querschnitt 1 M 1:20

Vorhandene Bewehrung

Längsstäbe: 4 Ø12 Querkraftbewehrung: Ø8 Betondeckung: cnom = 35 mm

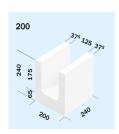
Vorhandene	von x	bis x	Q	Тур	d₅	S	Schnitt	A_{sw}
Querkraftbewehrung	[m]	[m]			[mm]	[cm]		Ž&{ Ð()á
	0.00	2.80	1	Rechteck	8	14	2	7.18

OE |at ^ | * | 4i ^ | Ase A Ù&c^}\[]~

Einw	$F_{x,k}$	$M_{y,k}$	$M_{z,k}$	$F_{y,k}$	$F_{z,k}$
	[kN]	[kNm]	[kNm]	[kN]	[kN]
Gk	0.0	0.0	0.0	0.0	0.0
Qk.N	0.0	0.0	0.0	0.0	0.0
Qk.W	0.0	0.0	0.0	1.9	1.9

Auftrags-Nr.	Position	Inger	nieurgesellschaft mb	Н		
2023 300	ST-1.3	ÙVPËJPÆÄJ04&	®ą̃ÁÙ>å		Seit	e: 1-109
Œ- æ*^!*¦4i^}Áæ(Á Ùo>c^}~i	Einw	F _{x,k} [kN]	M _{y,k} [kNm]	M _{z,k} [kNm]	F _{y,k} [kN]	F _{z,k} [kN]
•	Gk	85.3	0.0	0.0	0.0	0.0
	Qk.N	20.0	0.0	0.0	0.0	0.0
	Qk.W	0.0	0.0	0.0	3.3	3.3
Anteile aus Th. II Ordnung	Einw	M _y [kNn		M _{z,k} Nm]	F _{y,k} [kN]	F _{z,k} [kN]
	Gk	0.	0	0.0	0.0	0.0
	Qk.N	0.	0	0.0	0.0	0.0
	Qk.W	0.	0	0.0	0.0	0.0
Zusammenfassung	Zusammenfass	ung der Nachweise				
Nachweise (GZT)	Nachweise im C	Grenzzustand der Tra	agfêhigkeit			
	Nachweis					[-]
	Ùœàããêc				OK	
	Ó¦`&@&@; act ¦4	j ^}			OK	0.15
	Querkraftbemes	=			OK	00
	Brand	, o u			OK	
	Bewehrungswal	hl			OK	
Nachweise (Brand)	Brandfall im Gre	enzzustand der Trag	fêhigkeit			
	Nachweis					
						[-]
	Ó¦`&@&@`ãc*¦4	i ^}			OK	0.13

RB-1.1 ÙVPËÜPÄÄÜ¢4&\@`ã ÁÙ>å 2023 300

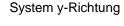

Seite: 1-110

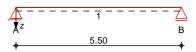
Pos. RB-1.1

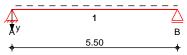
GHV"!F]b[VU_Yb"]b"I !GW(UY'6f" ghi b['@Ui VYb[Ub[

System

Stb.-Ringbalken in U-Schale

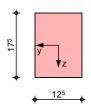



System


M 1:125

Òā, ≁|ådê*^¦ÁQFQĚ ÐFÏ ĚÐÍ €ÈÐ

System z-Richtung



Abmessungen Mat./Querschnitt Feld Material b/h [m][cm] 5.50 C 25/30 12.5/17.5

Grafik

Querschnittsgrafik

M 1:10

Auflager

Lager	Х	b	Art	$K_{T,z}$	$K_{T,y}$	Gabell.
	[m]	[cm]		[kN/m]	[kN/m]	
A	0.00	25.0	weich	fest	fest	fest
В	5.50	25.0	weich	fest	fest	fest

Einwirkungen

Einwirkungen nach DIN EN 1990:2010-12

Gk

Eigenlasten

Ùœ̂}åã*^ÁÒã¸ã\`}*^}

Qk.N

Nutzlasten

Sæe^*[¦ā^ÁOEÁÉÝ[@]EÁ}åÁOE-^}c@enjor¦ê*{^ Wind

fw

Qk.W

Windlasten

Qk.W

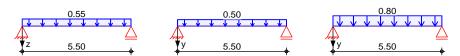
min/max Werte

Ò¦|ê * c^| * } * ^}

Lastansatz ung>nstig (fw)

 \ddot{O} \ddot{A} angesetzt.

Einw. Qk.W



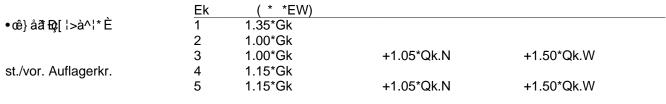
2023 300 RB-1.1 ÚVPËÜPĀĀŪd&\@ā, ÁJ>å Seite: 1-111

Belastungen auf das System

Grafik Belastungsgrafiken (einwirkungsbezogen)

Einwirkungen Gk Qk.N Qk.W

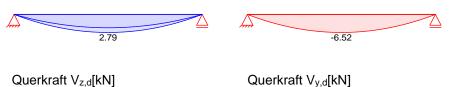
Streckenlasten Gleichlasten in z-Richtung Feld Komm. а S qli qre е [m] [m] [kN/m] [kN/m] [cm] Einw. Gk Eigengew 0.00 5.50 0.55 0.0 Streckenlasten Gleichlasten in y-Richtung Feld Komm. а s qli $q_{\text{re}} \\$ е [kN/m] [kN/m] [m] [m] [cm] Einw. Qk.N 0.00 5.50 0.50 0.0


0.00

5.50

0.80

0.0


Kombinationen Kombinationsbildung nach DIN EN 1990

Ó^{ \(\vec{\text{E}} \) &@ \(\vec{ac} \) \(\dots \

Grafik Schnittgr4i en (Umh>llende)

 $\label{eq:Kombinationen} \text{Moment } M_{y,d}[kNm] \qquad \qquad \text{Moment } M_{z,d}[kNm]$

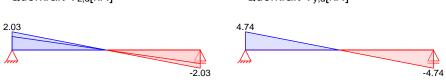
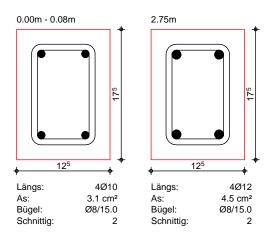
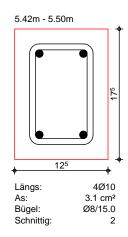


Tabelle Schnittgr4i en (Umh>llende)

	Х	$M_{y,d,min}$	Ek	$V_{z,d,min} \\$	Ek	$M_{z,d,min} \\$	Ek	$V_{y,d,min} \\$	Ek
		$M_{y,d,max}$	Ek	$V_{z,d,max}$	Ek	$M_{z,d,max}$	Ek	$V_{y,d,max}$	Ek
	[m]	[kNm]		[kN]		[kNm]		[kN]	
Feld 1	0.00	0.00	2	1.50	2	0.00	3	0.00	1
		0.00	1	2.03	1	0.00	1	4.74	3
	0.08	0.12	2	1.46	2	-0.39	3	0.00	1
		0.17	1	1.97	1	0.00	1	4.60	3
	2.80	2.07	2	-0.04	1	-6.52	3	-0.09	3




Auftrags-Nr. ÙVPËJPÆÄJc4& @ã ÁJ>å 2023 300 **RB-1.1** Seite: 1-112 $V_{z,d,min}$ Ek $M_{z,d,min}$ Ek $V_{y,d,min}$ Х $M_{y,d,min}$ Ek Ek Ek Ek Ek Ek $M_{y,d,max}$ $V_{z,d,max}$ $M_{z,d,max} \\$ $V_{y,d,max}$ [kNm] [kNm] [kN] [m] [kN] 1 2.79 -0.03 2 0.00 0.00 1 1 0.12 -1.97 -0.39 -4.60 5.42 2 3 3 1 0.17 -1.46 2 0.00 0.00 1 1 1 5.50 0.00 2 -2.031 0.00 3 -4.74 3 0.00 -1.502 0.00 1 1 0.00 Bemessung (GZT) > \A\$^ \AO\^} :: ` • ca; aA\$^\A/\at +ê @t \ ^ān\ aa\$@\OO DAO AO AFJJ CEFEF CEFFEEF Ó^{ ^••`} * Á> | ÁÓā^ * ^ ÉÉAP[| { æ N | ææÉÁ } å Á / [| • ã] • à ^ æ } •] | ` &@ } * ÁDÞ ÁÒ& ^ D Biegung 6.1 N_{xd} M_{yd} M_{zd} T_{Ed} A_s $A_{s,T}$ A_s Ž&{á Ž&{_á_ [m] [kN] [kNm] [kNm] [kNm] Ž&{ á Feld 1 (L = 5.50 m, b/h = 12.5 / 17.5 cm)0.00 0.0 0.0 0.0 0.0 0.00 0.00 0.00 80.0 0.0 0.2 -0.40.0 0.04 0.00 0.14^{M} а 2.75 0.0 2.8 -6.50.0 1.07 0.00 1.07 0.14^{M} 5.42 0.0 0.2 -0.40.0 0.04 0.00 а 5.50 0.0 0.0 0.0 0.0 0.00 0.00 0.00 Ó^{ ^••`}*Á>¦ÁÛ`^¦\¦æďÄ\}åÁ/[¦•ã|}•à^æ)•]¦`&@}* Querkraft erf asw,z erf asw,T 6.2 Х $V_{Ed,z}$ T_{Ed} a_{sw} $V_{\text{Ed},y}$ erf asw,y [kN] [kNm] Ž&{ Ð()á Ž&{ Đ(á Ž&{ Ð() á [m] (L = 5.50 m, b/h = 12.5 / 17.5 cm)Feld 1 0.00 2.0 0.0 1.04^{M} 0.00 2.50^{M} 4.7 1.46^{M} $1.04^{\,M}$ 80.0 2.0 0.0 0.00 2.50^{M} а 4.6 1.46^{M} -2.0 1.04^{M} 2.50^{M} 5.42 0.0 0.00 а -4.6 1.46^{M} 1.04^{M} -2.0 2.50^{M} 5.50 0.0 0.00 1.46^{M} -4.7 ã ÁÕ¦^}:: ˇ•æ) åÁå^¦ÁV¦æt ÷ê@t\^ãA∫æ&@lÖΦD ÁÐÞÁFJJŒHHKGEFFEEF Nachweise (GZT) Þæ&@ ^ãrÁå^¦ÁÖ¦ X •d^à^}dæt-ê@t\^ãc Druckstreben $V_{Rd,max,z}$ 6.3.2 $V_{Ed,z}$ T_{Ed} z $T_{Ed,max}$ $V_{\text{Ed},y}$ $V_{Rd,max,y}$ Žá [m][kN] [kNm] [kN] [kNm] [-] Feld 1 (L = 5.50 m, b/h = 12.5 / 17.5 cm)0.00 2.0 18.4 40.6 1.9 0.21 0.0 4.7 18.4 29.0 1.9 0.08 2.0 18.4 40.6 0.0 1.9 0.21 4.6 18.4 29.0 1.9 5.42 2.0 0.0 18.4 40.6 1.9 0.21 4.6 18.4 29.0 1.9 5.50 2.0 0.0 18.4 40.6 1.9 0.21 4.7 18.4 29.0 1.9 Bewehrungswahl Anz. $d_{s,L}$ A_{s,ges} $d_{s,B}$ n Х S $a_{\text{\tiny SW}}$ Ž& [mm] Ž& [m] [mm] [cm] ₽a Feld 1 (L = 5.50 m, b/h = 12.5 / 17.5 cm)2 0.00 4 3.14 <Ì 6.70 <F€ 15 <FG 2.75 4 2 4.52 < Ì 15 6.70 5.42 < F€ 2 4 3.14 < Ì 15 6.70

2023 300 RB-1.1

Seite: 1-113

Feld 1 M 1:5

Œ †æ* ^!\ ¦ê-e^

Ô@dadc\a~a~&@Á}åÁÓ^{^••`}*•ač~dæt^\\lê-c^

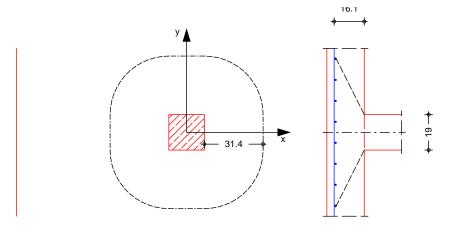
Char. Auflagerkr.

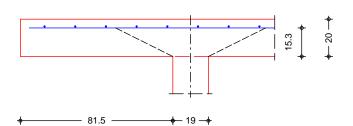
Onar. Adhagona.	Aufl.	$M_{x,k,min}$	$F_{z,k,min}$	$F_{y,k,min}$
		$M_{x,k,max}$	$F_{z,k,max}$	$F_{y,k,max}$
		[kNm]	[kN]	[kN]
Einw. <i>Gk</i>	A	0.00	1.50	0.00
		0.00	1.50	0.00
	В	0.00	1.50	0.00
		0.00	1.50	0.00
Einw. Qk.N	A	0.00	0.00	1.38
		0.00	0.00	1.38
	В	0.00	0.00	1.38
		0.00	0.00	1.38
Einw. Qk.W	A	0.00	0.00	2.20
		0.00	0.00	2.20
	В	0.00	0.00	2.20
		0.00	0.00	2.20
Ó^{EEeĕ-∤æ*^¦\¦ê-e^				
	Aufl.	$M_{x,d,min}$	$F_{z,d,min}$	$F_{y,d,min}$
		$M_{x,d,max}$	$F_{z,d,max}$	$F_{y,d,max}$
		[kNm]	[kN]	[kN]
Grundkombinationen	A	0.00	1.50	0.00

Auftrags-Nr.	Position	martens+pulle			
2023 300	RB-1.1	ÙVPËJPÆÄJG4&\@`āį ÁJ>å			Seite: 1-114
	Aufl. —————	M _{x,d,min} M _{x,d,max} [kNm] 0.00 0.00	F _{z,d,min} F _{z,d,max} [kN] 2.03 1.50		F _{y,d,min} F _{y,d,max} [kN] 4.74 0.00
	_	0.00	2.03		4.74
Zusammenfassung	Zusamment	fassung der Nachweise			
Nachweise (GZT)	Nachweise	im Grenzzustand der Tragfêhigkeit			
	Nachweis			Ort	[-]
	Biegung Querkraft Druckstrebe Bewehrung			(OK OK OK OK

2023 300

DST-1.1


ÙVPËÜPÄÄÜ¢4&\@`ã ÁÙ>å


Pos. DST-1.1

GHJ\ `VYhcb!8 i fW ghJbnbUW k Y]g GHJ\ `gh mY

System M 1:20

Üæ}å•c>c^ÊÄÖ^&\^}]|ææc^Á(@}^Á\$~}`}*^}

Deckenplatte

Dicke
vorh. Biegebew.
OE&@iaaà•œê}å^
{ ãnd^\^Ancexeãn &@Ap c @

Seite

$$a_{sx} / a_{sy} = 3.35 / d'_x / d'_y = 4.70 / d - 4.7$$

Cdev

81.50

Cnom

cm

Cmin,dur

Seite: 1-115

Betondeckung

		[mm]	[mm]	[mm]
oben	XC3	20	15	35
unten	XC1	10	10	20
Breite		c _x =	19.00	cm
P4@		c _y =	19.00	cm

Ü^&@^&\•c>c^

P4@
$$c_y = Abstand zum freien Rand $a_x = Abstand zum freien Rand$$$

Belastungen

Einwirkung	$F_z[kN]$	$M_x[kNm]$	$M_y[kNm]$
Gk	115.00	0.00	0.00
Qk.N	30.00	0.00	0.00

Kombinationen

Kombinationsbildung nach DIN EN 1990 Darstellung der mai gebenden Kombinationen

Expositionsklasse(n)

(* *EW)

+1.50*Qk.N

•œ} åã Ð[¦>à^¦* È

Bemessung (GZT)

nach DIN EN 1992-1-1, 6.4 und DIBt Ò`¦[] êã &@ Á/^&@, ÈZ`|æ•`} * ÁÒVŒË Gæ Í I ÁÇ Gæ Ï D

Beton C 30/37

Betonstahl B 500SA

Auftrags-Nr. Position ÙVPËÜPÄÄÛ¢4&\@`ã ÁÛ>å 2023 300 DST-1.1 Seite: 1-116

Bemessungswert Querkraft	V _{Ed} =	= 200.25	kN
\check{S} æe c^{\prime} $(@4)@_{\check{S}}^{\ast} \bullet -ae (f \acute{A}> \acute{A}$ eĕ $\bullet \{ \tilde{a}$ ucāt $^{\prime}$ $\acute{A}\check{S}$ æe $c^{\prime}\}$			
nach 6.4.3(6), Bild 6.21N	=	= 1.40	-
¦^å`: ā^¦&'¦ÁŠæ•e^¦@4@}*•æàq[¦Á⇒¦Áoutnach			
ETA-12/0454 (12/17), GI(A5)	red =	= 1.14	-
char. Vorwert	C _{Rk,c} =	= 0.18	-
Beiwert Einfluss Plattendicke	k =	= 2.00	-
{ ãnd ÈÁSê}*•à^, ^@°}*•*¦æå	1 =	= 0.21	%
erf. Breite Durchstanzbew.	I _{s,req} :	= 6.95	cm
Breite Bereich Durchstanzbew.	l _s :	= 16.50	cm

Nachweis Rund-Abst. u VEd $V_{Rd,c}$ VRd,max schnitt Ž>Đ(á ŽD-E(){ á **Ž**Þ-<u>E</u>({ á [cm] [m] Ucrit 0.653 > 0.542 31.4 2.73 1.063 0.653 m U_{out} 2.68 0.542 30.5 0.542

: ` | ÁÛ&&@^|• c^||` } * Á&^| ÁÛ`^|\ | æcdæt ~ê @t \^āc Mindestbewehrung NCI Zu 6.4.5

Platten-	Rich-		m_{Ed}	min a _s	anzusetzende
seite	tung	[-]	[kNm/m]	Ž&{ Ð()á	Breite
oben	Х	0.125	25.03	3.71	je m Breite
	У	0.250	50.06	7.34	b _x =0.15 l _x
unten	X	0.125	25.03	3.71	je m Breite
	У	0.000	0.00	0.00	-

Kollapsbewehrung NCI Zu 9.4.1(3)

zur Vermeidung fortschreitenden Versagens ist im Bereich der

Šæ•c^ā;|^ãc`}*•~|ê&@^Áaa):`[¦å}^}

Bemessungsw. Querkraft (F=1.0) $V_{Ed} =$ 145.00 kΝ $min A_{su} =$ min. untere Bewehrung 2.90 &{

Bewehrungswahl

POEŠØÒÞÁPÖÓÁÖ>à^||^ã¢Ájæ&®ÁÖÓÓc Ò`¦[]êã&®ÁV^&® ÈÀZ`|æ•`}*ÁÒVOEË CEEE Í IÁÇFOEFÏ D

HDB Systemelemente

*^, ê@c

5 * HDB-10/145-2/220 (55/110/55)

Ankerdurchmesser	$d_A =$	10	mm
Û `^¦•&@, 㜕, + ê&@. Áx) ÁOE; \^¦	$A_{s_i} =$	0.79	&{
OF \^ @4@	h _A =	145	mm
Øæld (ÁÓ^;>&) • ÉlacædÉlap co@)	=	1.00	-
-			

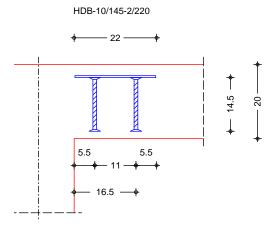
OE \^\a): æ@EÁOE \^\aà• cê} å^

Bereich	I	m	n	Sr	zul s _r	St	zul s _t
	[cm]	[-]	[-]	[cm]	[cm]	[cm]	[cm]
С	16.5	5	2	11.0	11.8	21.1	26.7

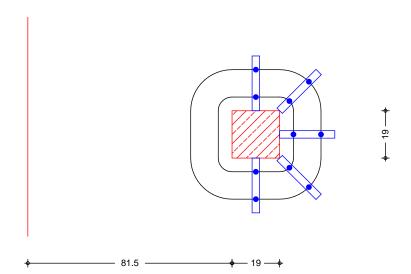
Durchstanzwiderstand kΝ $V_{Rd,sy} =$ 341.48

Auftrags-Nr.

Position


Seite: 1-117

2023 300


DST-1.1

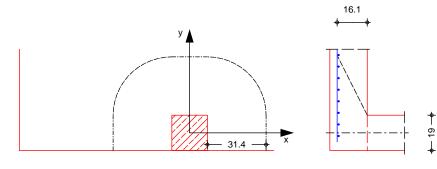
ÙVPËÜPĀÄÛc4&\@ã ÁÛ>å

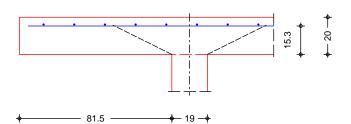
Verlegeplan M 1:10

M 1:15

ÙVPËJPÆÄJ04&\@@ (A)>å

2023 300


DST-1.2


Pos. DST-1.2

System M 1:20

GHU\ `VYhcb!8 i fW ghUbnbUW k Y]g'GhU\ `ghi hnY

Ò&\• > c ^ÊÉÖ^&\^}] |ææc^Á; @; ^Á\$ ~} `} *^}

Deckenplatte

$$h = 2$$
 $a_{sx} / a_{sy} = 3.35 /$
 $d'_x / d'_y = 4.70 /$

Seite: 1-118

Betondeckung

Seite	Expositionsklasse(n)	C _{min,dur} [mm]	C _{dev} [mm]	C _{nom}
oben	XC3	20	15	35
unten	XC1	10	10	20
Breite		C _x =	19.00	cm

Ü^&@^&\•cc^

24@	D		
Ĵæ}	åæà•	œ}	å^

Belastungen

Einwirkung	$F_z[kN]$	$M_x[kNm]$	$M_y[kNm]$	
Gk	65.00	0.00	0.00	
Qk.N	20.00	0.00	0.00	

Kombinationen

Kombinationsbildung nach DIN EN 1990 Darstellung der mai gebenden Kombinationen

•œ̂} åðã Ð͡g[¦>à^¦* È

Bemessung (GZT)

nach DIN EN 1992-1-1, 6.4 und DIBt Ò`¦[] êã &@ Á/^&@ ÉX` |æ • `} * ÁÔVŒË ŒŒ Í I ÁÇ ŒÐ Ï D Beton *C 30/37*

Betonstahl B 500SA

Bemessungswert Querkraft Šærc^¦@4@}*•-ætd;¦Á⊳¦Áæ*•{ãcc∄^Ášærc^}	V _{Ed} =	117.75	kN
nach 6.4.3(6), Bild 6.21N ^å`: aʰlːơːl-Ásæ-ơːl-@4@}*•-æà-dːl-Ás-l-Áout nach	=,	1.50	-
ETA-12/0454 (12/17), GI(A5)	red =	1.18	-

DST-1.2

 U_{out}

char. Vorwert $C_{Rk,c} =$ 0.18 Beiwert Einfluss Plattendicke 2.00 k = { ã od ÈÁSê} *•à^¸^@°} *•*¦æå 0.21 % | = erf. Breite Durchstanzbew. 10.50 cm $I_{s,req} =$ 16.50 ls = cm

1.64

Breite Bereich Durchstanzbew.

Rund-Abst. u VEd $V_{Rd,c}$ VRd,max **Ž**Þ-**Ę**0 { á schnitt [cm] [m] ŽD-E0 { á Ž>Đ(á Ucrit 31.4 1.56 0.723 0.542 0.723 m 1.063

0.542

Mindestbewehrung NCI Zu 6.4.5

2023 300

Nachweis

: ` | ÁÛ 3&@ | • c^ || ` } * Áå^ | ÁÛ ` ^ | \ | æcd æt -ê @t \ ^ ãc

34.1

Platten-	Rich-		m_{Ed}	min a _s	anzusetzende
seite	tung	[-]	[kNm/m]	Ž&{ Ð()á	Breite
oben	Х	0.500	58.88	9.41	je m Breite
	у	0.500	58.88	8.81	je m Breite
unten	X	0.500	58.88	9.41	je m Breite
	У	0.500	58.88	8.81	je m Breite

Randbewehrung 6.4.2(5)

|ê| * • Áå^• Á¦^ã\} ÁÚ|æ@^} ¦æ} å^•

Ùc^&\à>*^|/////////////////////////////w m 100 mm

Bewehrungswahl

POŠØÒÞÁPÖÓÁÖ>à^||^ã c^Á; æ&@ÁÖÓÓc Ò`;[] êã &@Á/^&@ ÞŽĽ;|æ•`;} * ÁÒVOËË GÆEI Í I ÁÆFGÆFÏ D

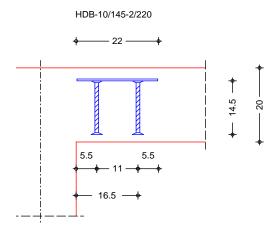
HDB Systemelemente

*^, ê@c

3 * HDB-10/145-2/220 (55/110/55)

0.542

Seite: 1-119


Ankerdurchmesser	$d_A =$	10	mm
Û `^¦•&@, 㜕, ê&@. Áx) ÁOE; \^¦	$A_{s_i} =$	0.79	&{
OF \ ^ \ @ \ @	h _A =	145	mm
Øædq¦ÁÓ^¦>&\•ÉArœæEÁPčc@4@	=	1.00	-

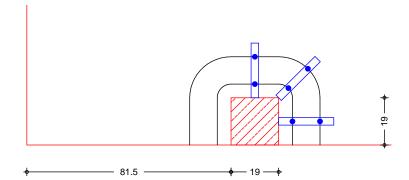
Bereich	Į.	m	n	Sr	zui S _r	St	ZUI St
	[cm]	[-]	[-]	[cm]	[cm]	[cm]	[cm]
С	16.5	3	2	11.0	11.8	21.1	26.7
.							

Durchstanzwiderstand

204.89 kΝ $V_{Rd,sy} =$

Verlegeplan M 1:10

Auftrags-Nr. Position


2023 300

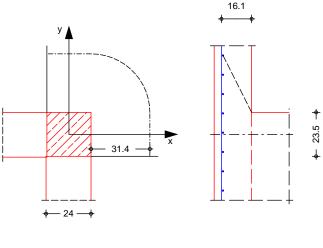
DST-1.2

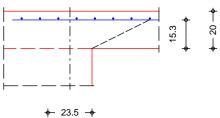
ÙVPËÜPĀÄÚc4& @ā, ÁÚ>å

Seite: 1-120

M 1:15

DST-1.3


ÙVPËÜPÄÄÛ¢4&\@`ã ÁÛ>å


Pos. DST-1.3

Stahlbeton-Durchstanznachweis Wandecke

System M 1:20

Yæ}åå}}^}^&\^ÊÖ^&\^ÊÖ^&\^}]|ææc^Á;@}^Á\$~-}`}*^}

Deckenplatte

Betondeckung

Seite	Expositionsklasse(n)	C _{min,dur}	C _{dev}	Cnom	
	. ,	[mm]	[mm]	[mm]	
oben	XC3	20	15	35	
unten	XC1	10	10	20	
Wanddicke		b =	24.00	cm	

Wand

$$b = 24.00$$
 cm $a = 23.55$ cm

Seite: 1-121

Belastungen

Einwirkung	$F_z[kN]$	$M_x[kNm]$	$M_y[kNm]$
Ed.1	108.74	0.00	0.00

Zusammenstellungen

aus Pos. 'D-1.1', Ort 'DS-8' (Seite 1-2)

Kombinationen

Kombinationsbildung nach DIN EN 1990 Darstellung der mai gebenden Kombinationen

(* *EW) •œ} åð Ð[¦>à^¦* È 1.00*Ed.1

Bemessung (GZT)

nach DIN EN 1992-1-1, 6.4 und DIBt

Ò`¦[] êã &@ Á/^&@ ÉX`|æ•`} * ÁÒVOËFŒÐ Í I ÁÇFŒFÏ D

Beton C 30/37

Betonstahl B 500SA

DST-1.3

2023 300

 $V_{Ed} =$ Bemessungswert Querkraft 108.74 kΝ Šær c^\@4@_}*•~æ\q[¦Á>|Áæĕ•{ãncãt^Ášær c^}} nach 6.4.3(6), Bild 6.21N 1.20 char. Vorwert 0.18 C_{Rk,c} = Beiwert Einfluss Plattendicke 2.00 k = { ãdd ÉÁSê} * • à^, ^ @ ` } * • * ¦æå % 0.21 | = erf. Breite Durchstanzbew. 44.05 $I_{s,req} =$ cm Breite Bereich Durchstanzbew. 49.50 cm

Nachweis Rund-Abst. u VEd VRd,c VRd,max schnitt Ž>Đ(á Ž⊅Đ({ á [cm] [m]**Ž**Þ₽(á Ucrit 31.4 0.96 0.862 > 0.542 0.862 m 1.063 U_{out} 67.6 1.53 0.542 0.542

Mindestbewehrung NCI Zu 6.4.5

: ` | ÂÛ3&@ | • c^|| ` } * Á\$^ | ÂÛ ` ^ | \ | æad æ* -ê @# \ ^ ãc

Platten-	Rich-		m_{Ed}	min a _s	anzusetzende
seite	tung	[-]	[kNm/m]	Ž&{ Ð()á	Breite
oben	Х	0.125	13.59	1.99	b _y =0.3 l _y
	У	0.125	13.59	1.89	$b_x=0.3 l_x$
unten	X	0.000	0.00	0.00	-
	V	0.000	0.00	0.00	-

Bewehrungswahl

POEŠØÒÞÁPÖÓÁÖ>à^||^ãrơÁ;æ&®ÆÖÓÓc \roathightarrow }*ÁÖVOEËFOEREIÍIÁÇFOEDFÏD

HDB Systemelemente

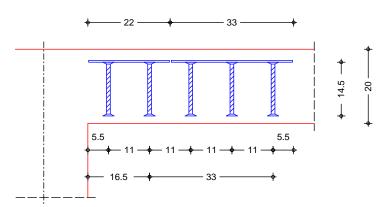
*^, ê@c

innen: æi^}K

3 * HDB-10/145-2/220 (55/110/55) 3 * HDB-10/145-3/330 (55/110/110/55)

Seite: 1-122

Ankerdurchmesser	$d_A =$	10	mm
Û`^¦•&@;ãœ;~ ê&@^Áx^ÁOE;\^¦	$A_{s_i} =$	0.79	&{
OF \ ^	h _A =	145	mm
Øæt of ¦ÁÓ^¦>&\•ÉÁn cædÉÁP*c @4@	=	1.00	-


OE \^\a): æ@EÁOE \^\aà• cê} å^

Bereich	1	m	n	Sr	zul s _r	St	zul s _t
	[cm]	[-]	[-]	[cm]	[cm]	[cm]	[cm]
С	16.5	3	2	11.0	11.8	23.3	26.7
D	33.0	3	3	11.0	11.8	49.0	55.0

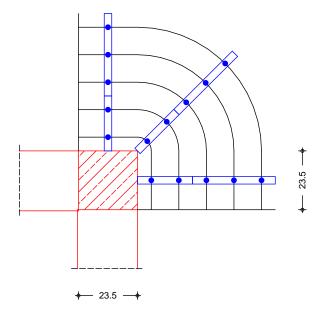
Durchstanzwiderstand 204.89 kΝ $V_{Rd,sy} =$

Verlegeplan M 1:10

HDB-10/145-2/220 HDB-10/145-3/330

Auftrags-Nr.

Position


2023 300

DST-1.3

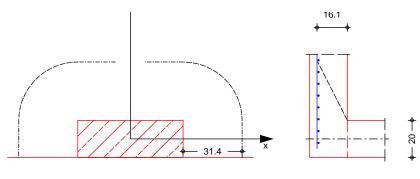
ÙVPËÜPĀĀÚc4& @ā, ÁÚ>å

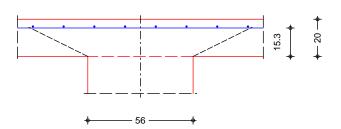
Seite: 1-123

M 1:15

DST-1.4

ÙVPËJPÆÄJc4&\@ã ÁJ>å


Seite: 1-124


Pos. DST-1.4

GHJA `VYhcb!8 i fW ghJbnbUW k Y]g FUbXgh mY

System M 1:20

Üæ)å• ⇔c ^ÊÆÖ^&\^}]|ææc^Á; @,^Á\$ ~}`}*^}

Deckenplatte

Dicke vorh. Biegebew. O & @ æ a • œ } å^ { a c 4 ^ f cæ & & 6 f c @ 4 @ .

 $a_{sx} / a_{sy} = d'_x / d'_y =$

h = 20.00 3.35 / 3.35 4.70 / 3.90 d = 15.70

Betondeckung

Seite	Expositionsklasse(n)	Cmin,dur	Cdev	Cnom
		[mm]	[mm]	[mm]
oben	XC3	20	15	35
unten	XC1	10	10	20
Breite		c _x =	56.00	cm

Ü^&@^&\•c>c ^

P4@ Abstand zum freien Rand

cm

cm

cm

& Đ

Belastungen

Einwirkung	$F_z[kN]$	$M_x[kNm]$	$M_y[kNm]$
Ed.1	89.87	0.00	0.00

Zusammenstellungen

aus Pos. 'D-1.1', Ort 'DS-3' (Seite 1-2)

Kombinationen

Kombinationsbildung nach DIN EN 1990 Darstellung der mai gebenden Kombinationen

•œ} åã Ð[¦>à^¦* È

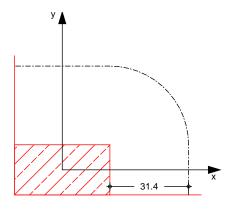
Bemessung (GZT)

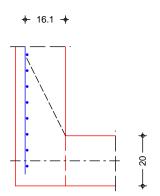
nach DIN EN 1992-1-1, 6.4 und DIBt Ò ¦[] êã &@Á/^&@ 茂江 |æ•*} * ÂÒVO莊 GÐE Í I ÁF GÐF Ï D

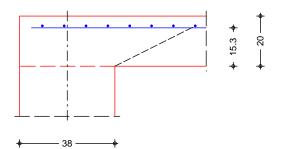
Beton C 30/37 Betonstahl B 500SA

A 60 A1	D	m	⊥D mar	tens+puller				
Auftrags-Nr.	Position			eurgesellschaft mbH				
2023 300	DST-1.4	ÙVPË	ÜPÆÄÛ¢4&\@	'ą̃ ÁÛ>å			Sei	te: 1-125
		gswert Querkr } * • æ ([¦Á⊳¦Á		æ• (^}	V_{Ed}	=	89.87	kN
		6), Bild 6.21N		,		=	1.40	_
	char. Vorwe	, .			$C_{Rk,c}$	=	0.18	-
	Beiwert Ein	fluss Plattend	icke		k	=	2.00	-
	{ãad, ÈÁŠê}*•	à^, ^@`}*•*	læå		1	=	0.21	%
Nachweis	Rund-	Abst.	u	V _{Ed}		VR	ld,c	V _{Rd,max}
	schnitt	[cm]	[m]	ŽÞ-E(){ á		ŽD-Ę0 {	á	Ž Þ-₽(á
	U_{crit}	31.4	1.79	0.449	m	0.5	42	
				0.449	m			1.063
	keine Durcl	nstanzbewehr	ung erforder	lich!				
Mindestbewehrung	:	ơ^ ˇ} * Á&^¦ÁÛ˘	^!\ æedæ*~é	è@ã∖^ãc				
NCI Zu 6.4.5	Platten-	Rich-		mEd	min	as	anzu	setzende
	seite	tung	[-]	[kNm/m]	Ž&{ ł	₹) á		Breite
	oben	Х	0.250	22.47		32	t	_y =0.15 l _y
		У	0.125	11.23	1.	56	je	m Breite
	unten	X	0.000	0.00		00		-
		У	0.125	11.23	1.	56	je	m Breite
Kollapsbewehrung NCI Zu zur Vermeidung fortschreitenden Versagens ist im Bereich der 9.4.1(3)								
		gsw. Querkraf	t (_F =1.0)		V_{Ed}		64.19	kN
	min. untere	Bewehrung		m	in A _{su}	=	1.28	&{
Randbewehrung 6.4.2(5)	ê}*•Æa^•Á Ùơ&\à>*^	¦^ã^}ÁÚ æcc^}¦a ∕‱‱	æ)å^• Æw m 100	mm				

ÙVPËÜPÄÄÜ¢4&\@`ã ÁÙ>å


Seite: 1-126


Pos. DST-1.5


GHJA `VYhcb!8 i fW ghUbnbUW k Y]g FUbXYW gh mY

System M 1:15

Ò&\•c>c^ÊÜ^&\^}]|ææc^Á;@,^Á\$~}`}*^}

Deckenplatte

Dicke vorh. Biegebew. OB&@eaai•cê}å^ { acc|^¦^Áncaaaã&@Ápັc@k@

3.35 & E) 3.90 cm 15.70 cm

cm

Betondeckung

Seite	Expositionsklasse(n)	C _{min,dur}	Cdev	Cnom
		[mm]	[mm]	[mm]
oben	XC3	20	15	35
unten	XC1	10	10	20
Breite		C _x =	38.00	cm

Ü^&@^&\•c>c^

 $c_x = 38.00$ cm $c_y = 20.00$ cm $a_x / a_y = 0.00$ / 0.00 cm

Belastungen

 Einwirkung
 $F_z[kN]$ $M_x[kNm]$ $M_y[kNm]$

 Ed.1
 91.06
 0.00
 0.00

Zusammenstellungen

aus Pos. 'D-1.1', Ort 'DS-6' (Seite 1-2)

Kombinationen

Kombinationsbildung nach DIN EN 1990 Darstellung der mai gebenden Kombinationen

•œ̂} åð t͡ð[¦>à^¦* È

Ek (* *EW) 1 1.00*Ed.1

Bemessung (GZT)

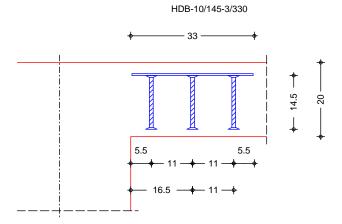
nach DIN EN 1992-1-1, 6.4 und DIBt Ò`¦[] êã &@ Á/^&@ ÉZ` |æ • ` } * ÁÒVŒË ŒE Í I ÁÇ ŒF Ï D

2023 300 DST-1.5 ÙVPËUPĀĀŪc4&\@ā, ÂJ>å Seite: 1-127

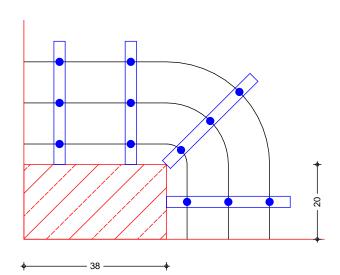
2023 300	DST-1.5	UVPE	JPANOGA & @	Ŷą AU>a		Sei	te: 1-127
	Beton C 30	0/37			Е	Betonstahl	B 500SA
		gswert Querkr ∮}*•-æ\d[¦Á⊳¦Á		'ana a^\\	V _{Ed} =	91.06	kN
	nach 6.4.3	(6), Bild 6.21N ÆSæec∿¦@4@}*		•	=	1.50	-
		54 (12/17), GI		Tout Haori	red =	1.14	-
	char. Vorw				$C_{Rk,c} =$	0.18	-
		nfluss Plattend •à^¸ ^@ˇ } * • *			k =	2.00 0.21	- %
		Durchstanzbev			ı = I _{s,req} =	17.45	cm
		eich Durchstan			$I_s =$	27.50	cm
Nachweis	Rund-	Abst.	u	VE	· ·	V _{Rd,c}	VRd,max
	schnitt	[cm]	[m]	ŽÞÐ(;) {	Z⊃Đ(á
	U_{crit}	31.4	1.07	0.811 0.811).542	1.063
	U_{out}	41.0	1.22	0.542).542	1.003
Mindestbewehrung	:	• & `} * Á&^¦ÁÛ`	^!\ æcdæ*~	ê@ãt∖^ãc			
NCI Zu 6.4.5	Platten-	Rich-		m_{Ed}	ູmin a₅	anzu	setzende
	seite	tung	[-]	[kNm/m]	Ž&{ Đ(á		Breite
	oben	X	0.500	45.53	7.03		m Breite
		у	0.500	45.53	6.60	•	m Breite
	unten	x y	0.500 0.500	45.53 45.53	7.03 6.60		m Breite m Breite
		У	0.500	43.33	0.00	Je	III DI GILG
Randbewehrung 6.4.2(5)	ê}*•Æå^•Æ Ùơ^&\à>*^	√^ã^}ÁÚ æec^}¦a ⁄‱‱‱	æ)å^∙ Xa√m 100	mm			
Bewehrungswahl	Ò´¦[]êã∙&@	PÖÓÁÖ>à^ ^ãœ @Á/^&@,ÈZ~ æ emelemente			∌ Ï D		
*^, ê@c				4 * HDB	3-10/145-3/3	30 (55/110	0/110/55)
	O5;\^¦@4@^	ic•√ ê&@^Ás^ÁOE;∖			$\begin{array}{rcl} d_A & = \\ A_{s_i} & = \\ h_A & = \\ & = \end{array}$	10 0.79 145 1.00	mm &{ mm -
OE;\^¦æ);æ@pEÁOE;\^¦æà∙œê}a	å^ Bereich	1	m	n s _r	zul s _r	St	zul s _t
		[cm]		[-] [cm]	[cm]	[cm]	[cm]
	C D	16.5	4	2 11.01 11.0	11.8	21.6	26.7
	U	11.0	4	1 11.0	11.8	30.5	55.0
	Durchstanz	zwiderstand			$V_{Rd,sy} =$	273.18	kN

Auftrags-Nr.

Position


2023 300

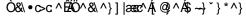
DST-1.5

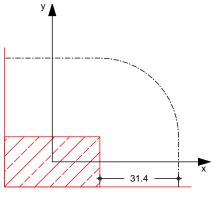

ÙVPËÜPĀÄÛc4&\@ã ÁÛ>å

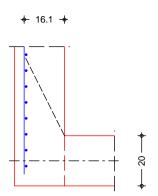
Seite: 1-128

Verlegeplan M 1:10

M 1:10

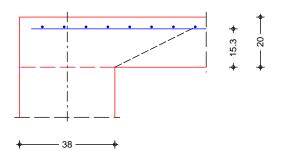

DST-1.6


ÙVPËÜPÄÄÜ¢4&\@ã ÁÙ>å


Pos. DST-1.6

GHJA `VYhcb!8 i fW ghUbnbUW k Y]g FUbXYW gh mY

System M 1:15


Seite: 1-129

cm

Ð

cm

cm

Deckenplatte

Dicke vorh. Biegebew. OB&@eaai•cê}å^ { acc|^¦^Áncaaaã&@Ápັc@k@

Betondeckung

Seite	Expositionsklasse(n)	C _{min,dur} [mm]	C _{dev} [mm]	c _{nom} [mm]
oben	XC3	20	15	35
unten	XC1	10	10	20
Breite		C _x =	38.00	cm

Ü^&@^&\•c>c^

 $c_x = 38.00$ cm $c_y = 20.00$ cm $a_x / a_y = 0.00$ / 0.00 cm

Belastungen

Zusammenstellungen

aus Pos. 'D-1.1', Ort 'DS-1' (Seite 1-2)

Kombinationen

Kombinationsbildung nach DIN EN 1990 Darstellung der mai gebenden Kombinationen

•œ} åð £0[¦>à^¦* È

Ek (* *EW) 1 1.00*Ed.1

Bemessung (GZT)

nach DIN EN 1992-1-1, 6.4 und DIBt Ò`¦[] êã &@ Á/^&@ ÉZ` |æ • ` } * ÁÒVŒË ŒE Í I ÁÇ ŒF Ï D

Auftrags-Nr.	Position	Ingenieurgesellschaft mbH	
2023 300	DST-1.6	ÙVPËÜPÄÄÜ¢4&\@ã ÁÛ>å	Seite: 1-130

Reton	C 30/37	
Deton	U 30/37	

Betonstahl B 500SA

		swert Querkraft *∙æ∖q ¦Á⊳¦Æĕ∙		c ^}	V _{Ed}	=	28.72	kN
	nach 6.4.3(6		•	•		=	1.50	-
	char. Vorwei	rt		(C _{Rk,c}	=	0.18	-
	Beiwert Einfl	uss Plattendick	ке		k	=	2.00	-
	{ãad ÈÊê}*•à	ı^¸^@`}*•*¦æ	å		- 1	=	0.21	%
Nachweis	Rund-	Abst.	u	VEd		V	Rd,c	VRd,max
	schnitt	[cm]	[m]	ŽÞÐ(á		Ž⊃Đ()	{ á	Ž Þ-₽(á
	U _{crit}	31.4	1.07	0.256 ı	m	0.5	542	
				0.256 ı	m			1.063

keine Durchstanzbewehrung erforderlich!

Mindestbewehrung	ı
NCI Zu 6.4.5	

: ` | ÁÛ3&@ | • & ||` } * Áå^ | ÁÛ ` ^ | \ | æcdæt -ê @t \ ^āc

Platten-	Rich-		m_{Ed}	min a _s	anzusetzende
seite	tung	[-]	[kNm/m]	Ž&{ Ð()á	Breite
oben	Х	0.500	14.36	2.10	je m Breite
	У	0.500	14.36	2.00	je m Breite
unten	X	0.500	14.36	2.10	je m Breite
	У	0.500	14.36	2.00	je m Breite

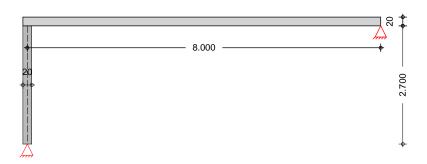
Randbewehrung 6.4.2(5)

|ê}*•Áå^•Á¦^â}ÁÚ|ææ^}¦æ}å^• Ùc^&\à>*^|∰∰∰∰ m 100 mm

AW-1.1

ÙVPËÜPÄÄÛ¢4&\@ã ÁÛ>å

Pos. AW-1.1


A Ui Yfk Yf_gbUW k Y]g'8 =B'9 B'% - * ž5 i £Ybk UbXža]b"j Yfh]_UY Beanspruchung

System

V¦æ≛•&@æ†^Á,^ã-&@æ†ā*^¦ÁOEi^},æ)å

2-seitig gehalten

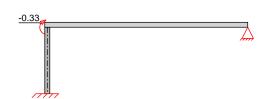
M 1:85

Abmessungen Mat./Querschnitt

Material 1 h [m] ŽÞÐ() á [m] [cm] KS-P 20-2.0/DM 1.00 2.70 20.0 20.0

Massivdecken

Rechts Oben


Material lf k h а b [m] [cm] [cm] [m] ŽÞÐ á [-] C 25/30 8.00 0.50 20.0 20.00 1.00 25.0

Belastungen Grafik

M 1:150

Seite: 1-131

M 1:150

Qk.W

Streckenlasten vertikal

Nr.	EW	f_{x}
		[kN/m]
(a) 1	Gk	15.12
2	Gk	10.00

(a)

Wandeigengewicht	20.00*0.20*2.70 =	10.80	kN/m
Putz links	0.80*2.70 =	2.16	kN/m
Putz rechts	0.80*2.70 =	2.16	kN/m
	_	15 12	kNI/m

martens+puller
Ingenieurgesellschaft mbH Auftrags-Nr. Position ÙVPËÜPÆÄÛ¢4&\@^ãį ÁÛ>å 2023 300 AW-1.1

Momente am Wandkopf

Nr. EW	EW	$m_{p,y,o}$
		[kNm/m]
1	Gk	-0.33
פוים	[] m/\ /m/\ \(\lambda\) m \(\lambda\) /m \(\lambda\) m \(\lambda\) /m \(\lambda\) m	

 $P[| \tilde{a} | \} cae^{AQ} | \tilde{e} \& @ \} | ae c^{A} ACU | aec^{A} - \& @ aD$

Nr.	⊨W	q_u	q_{o}	а	S
		Ž'ÞÐ() á	ŽİÞÐ() á	[m]	[m]
1	Qk.W	1.00	1.00	0.00	2.70

Kombinationen Kombinationsbildung nach DIN EN 1990 Darstellung der mai gebenden Kombinationen

	⊨k	(* *EVV)	
•œ̂} åðtt͡ð̞[¦>à^¦* È	1	1.35*Gk	
	4	1.00*Gk	+1.50*Qk.W
@ e`~at	5	1.00*Gk	
selten	8	1 00*Gk	+1 00*Ok W

Ó^{ \overline{\text{Li}} &@ \vec{ac} \cdot \dagger 4i ^}

aus Vertikallasten	⊨k	Stelle	N_{Ed}	$V_{Ed,z}$	$M_{Ed,y}$	$V_{Ed,y}$	$M_{Ed,z}$
			[kN]	[kN]	[kNm]	[kN]	[kNm]
	1	Kopf	13.50	-0.17	-0.45	0.00	0.00
	1	Øi	33.91	-0.17	0.00	0.00	0.00
	4	Kopf	10.00	-0.12	-0.33	0.00	0.00
	4	Mitte	17.56	-0.12	-0.17	0.00	0.00
	4	Ø i	25.12	-0.12	0.00	0.00	0.00

aus Deckenverdrehung

[kNm]
[,]
0.00
0.00
0.00
0.00
0.00
_

aus Horizontallasten

Ek	Stelle	$V_{Ed,z}$	$M_{Ed,y}$	$V_{Ed,y}$	$M_{Ed,z}$
		[kN]	[kNm]	[kN]	[kNm]
1	Kopf	0.00	0.00	0.00	0.00
1	Øi	0.00	0.00	0.00	0.00
4	Kopf	-2.03	0.00	0.00	0.00
4	Mitte	0.00	1.37	0.00	0.00
4	Ø i	2.03	0.00	0.00	0.00

Mat./Querschnitt

nach DIN EN 1996-1-1/NA:2019-12

*^, ê@c KS-P 20-2.0-(200)/DM

Steinart Steintyp Steindruckfestigkeitsklasse Steinrohdichteklasse

T4|&|*|`]]^ Tæ^\,^\\Á(ādÁ}ç^\{4\&|&}ÁÛd[i~*^}

Kalksandstein Planstein KS-P **SFK 20 RDK 2.0**

Seite: 1-132

Ö>}}à^cq 4¦c^|ÁÖT

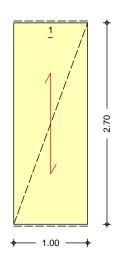
Seite: 1-133

2.03

Auftrags-Nr.	Position	martens+pull
2023 300	AW-1.1	 ÙVPËÜPÄÄÜ04&\@A[ÁÛ>å

Materialbeiwerte charakt. Druckfestigkeit 10.51 ÞÐ { Teilsicherheitsbeiwert 1.50 Dauerstandsfaktor 0.85 Bemessungswert Druckfestigk. 5.95 ÞÐ { Rechenwert der Endkriechzahl 1.50 Ò|æ•cããêe•{[åˇ| Ε 9981 ÞÐ) { $h_{\text{ef}} \\$ Knickbereiche Nr. von bis Lagerung Ek [m] [m] [m]

1.00


Nachweise (GZT)

nach DIN EN 1996-1-1 (12/10) mit genauerer Berechnungsmethode

2-seitig

0.75

M 1:50

0.00

Ausmitte	in	Platten	richtung
Ausmitte	1111	1 latter	montang

Ek	Stelle	$e_{z,L}$	$\mathbf{e}_{z,D}$	eh	e init	e_k	ez
		[cm]	[cm]	[cm]	[cm]	[cm]	[cm]
1	Kopf	3.3	0.0	0.0	0.0		3.3
4	Mitte	0.9	0.0	-7.8	-0.5	0.0	-7.3
1	Ø i	0.0	0.0	0.0	0.0		1.0
6-1.	Ausmitte in	ofolge Vertikallasten					

e_{z,D}: Ausmitte infolge Deckenverdrehung Ausmitte infolge Horizontallasten e_h: ungewollte Ausmitte nach Abs. 5.5.1.1 Kriechausmitte nach Abs. 6.1.2.2 e_k:

Beiwerte Plattenschub

Ek	Stelle	$t_{c,lin}$	N_{Ed}	Dd
		[m]	[kN]	Ž>Đ(á
4	Kopf	0.20	10.00	0.05
4	Mitte	0.08	17.56	0.22
4	Ø i	0.20	25.12	0.13

Tragwiderstand Abs. 6.1.2

Nac	hweis des ve	ertikalen Tragwi	derstands			
Ek	Stelle	у	Z	N_{Ed}	N_{Rd}	
		[-]	[-]	[kN]	[kN]	[-]
1	Kopf	1.000	0.667	13.50	793.80	0.02
1	Mitte	1.000	0.737	23.71	878.14	0.03
1	Øĭi	1.000	0.900	33.91	1071.62	0.03
4	Kopf	1.000	0.667	10.00	793.80	0.01
4	Mitte	1.000	0.067	17.56	79.21	0.22
4	ؓi	1 000	0.900	25 12	1071 62	0.02

Plattenschub

Nachweis der Querkrafttragf. in Plattenrichtung

Auftrags-Nr.	Position		ППР		gesellschaft mbH			
2023 300	AW-1.1		ÙVPËÜPÆÛ	4&\ @ ą̃	ÁÚ>å		Seite	e: 1-134
NCI zu 6.2 (NA.24)	Ek	Stelle	t _{cal} [m]	c [-]	f _{vk} ŽD-E0\{ á	V _{Ed,z} [kN]	V _{Rdlt} [kN]	[-]
	4	Kopf	0.20	1.50	0.18	-2.15	15.70	0.14
	4	Mitte	0.08	1.50	0.28	-0.12	9.99	0.01
	4	Øi	0.20	1.50	0.22	1.90	19.74	0.10
Nachweise (GZG)	nach	DIN EN 1	996-1-1/NA:201	9-12, N	CI zu 7.2			
Ausmitte Plattenri.	Þæ&	@,^ãnÁsa^¦Áj	æ}{êiÈÁOE.∙{ão	c^Á§iÁÚ∣a	enc^}¦a&@č}	*		
NCI zu 7.2 (NA.7)	Ek	Stelle	e _{z,L}		e _{z,D}	e h	zul e	
			[cm]	[0	cm]	[cm]	[cm]	[-]
	8	Kopf	3.3		0.0	0.0	6.7	0.50
	8	Mitte	0.9		0.0	-5.2	6.7	0.64
	8	Ø i	0.0		0.0	0.0	6.7	0.00
	e _{z,L} : e _{z,D} : e _h :	Ausmitte ir	nfolge Vertikallasten nfolge Deckenverdrehu nfolge Horizontallasten	ng				
Zusammenfassung	Zusa	ımmenfass	ung der Nachwe	eise				
Nachweise (GZT)	Nach	nweise im (Grenzzustand de	er Tragf	êhigkeit			
	Nach	nweis				C	rt	ſ_1
	vertil	kaler Tragv	viderstand			Mit		[- <u>]</u> 0.22
	Platt	enschub				Ko	pf OK	0.14
Nachweise (GZG)	Nach	nweise im (Grenzzust. der G	Sebrauc	chstauglich	keit		
	Nach	nweis				C	rt	
								[-]
	Ausr	nitte in Plat	ttenrichtung			Mit	te OK	0.64

Auftrags-Nr. Position W-1.1 ÙVPËÜPÄÄÛ¢4&\@ã ÁÛ>å 2023 300 Seite: 1-135 Pos. W-1.1 Stb.-Attika Dachgarten System Kragwand Yæ)å@4@^ lw 1.19 m S} & |ê} *^ lο 2.38 m Öæ ÁÒã^}*^, &@Aå^¦ÁYæ)åÁ, ãåÁà^¦>&\•&&@£ dÈ Belastungen Einzellasten Einwirkung а [kN/m][m] Qk.N 1.19 -0.50Gleichlasten Einwirkung ŽÞÐ≬á Qk.W 1.00 EW Gk in z-Richtung M 1:100 5.95 EW Qk.N in z-Richtung M 1:100 EW Qk.W in z-Richtung M 1:100

Kombinationen { æi * ^ à ^ } å ^ ÁS[{ à ã æ aãi } ^ }

Ó^{ \(\overline{\overlin

Mat./Querschnitt Material- und Querschnittswerte nach DIN EN 1992-1-1:2011-01

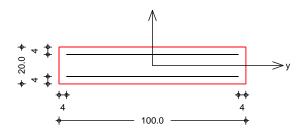
Material Material f_{vk} f_{ck} Ε [N/mm²][N/mm²][N/mm²]C 25/30 31000 B 500SA 500 200000 Querschnitt Art Α h by [cm²] [cm⁴] [cm] [cm] RE 66667 100.0 20.0 2000

W-1.1

ÙVPËÜPÄÄÛ¢4&\@`ã ÁÛ>å

Seite: 1-136

cm


%

%

RE: Rechteckquerschnitt

Grafik Querschnitt M 1:20

Querschnittsgrafik

Bewehrungsanordnung

C張@ æà• œ̂} å^ Minimaler Bewehrungsgrad Maximaler Bewehrungsgrad d' = 4.00 min = 0.00 max = 4.00

Bemessung (GZT)

> \A&^ \AO^\^} :: ` • cæ) å A&^ \AV \ æ* +ê @# \ ^ aA\ æ&@#Ö OD AOD AFJJ CËFËFKGEFFËEF

Ùcaaàãlãaec

Nachweis der Knicksicherheit

Schlankheiten Abs. 5.8.3.1(1)

Achse	Ek	lo	i		lim
		[m]	[cm]	[-]	[-]
у	5	2.38	5.8	41.2	300.5

ÖðàÁOE•¸ã\`}*^}Á,æ&@ÁV@[¦ðàÁOĐÁU¦å}`}*Áå>¦-^}Ánach 5.8.3.1(1) ç^¦}æ&@ê••ðioÁ, ^¦å^}È

Ö^¦ÁS} & } & @ ^ã Á} cê||Ó | Ásæ ÁCE • ^ & @ } Ás Áz-Richtung nach DIN EN 1992-1-1, 5.8.3.1(1).

y = 41.22 < lim = 300.50

Biegung Abs. 6.1 $\label{eq:definition} \begin{array}{ll} \text{$\stackrel{}{\text{$\vdash$}}$} & \text{\nota} & \text{$\stackrel{}{\text{$\downarrow$}}$} & \text{$\stackrel{}{\text{$\downarrow$

Ek	X	N Ed	MEdy		As1
	[m]	[kN]	[kNm]		[cm ²]
8	0.00	5.95	-1.06		1.50 м
Õ^•æ{ c^Á M: Tāå^•œ`	.^@`}*Á∍¦ÁYælå		A _s =	3.00	&(

Nachweise (GZG)

im Grenzzustand der Gebrauchstauglichkeit nach DIN EN 1992-1-1:2011-01

Spannungen Abs. 7.2 Nachweis der Spannungen

Endkriechzahl			=	0.00 -
x	N_{Ed}	M_{Ed}	c,perm/f _{ck} c,char/f _{ck} s,char/f _{yk}	C _d /f _{ck} C _d /f _{ck} C _d /f _{yk}
[m]	[kN]	[kNm]	[-]	[-]
(L = 1.19 m)				
0.00	5.95	-0.18	-	0.45
0.00	5.95	0.71	0.01	0.60
0.00	5.95	0.71	0.01	0.80

Auftrags-Nr.	Position	martens+puller Ingenieurgesellschaft mbH			
2023 300	W-1.1	ÙVPËÜPÄÄÜd&\@ã, ÁÜ>å		Seit	te: 1-137
Bewehrungswahl	Šê} * • • œ̂à	^Ác^Â_\^ãc^Á\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\			
	ç[ˈd͡�A)cæ@ vorh. Bewe	} ê &@ ehrungsgrad	As = =	6.70 0.34	&(E) %
Œ †æ*^¦\¦ê-&^	charakteris	stische Werte			
Œ-†æ*^¦\¦ê-e^ æ{ ÁV æ}å~ĭi	Einwirkung	g F _{x,k} [kN/m]	M _{y,k} [kNm/m]		F _{z,k} [kN/m]
	Gk Qk.N Qk.W	5.95 0.00 0.00	0.00 0.59 -0.71		0.00 -0.50 1.19
Zusammenfassung		nfassung der Nachweise			
Nachweise (GZT)	Nachweise	e im Grenzzustand der Tragfêhigkeit			
	Nachweis				[-]
	Ùoæàájãnêc			OK	
	Biegung Bewehrung	gswahl		OK OK	
Nachweise (GZG)	Nachweise	e im Grenzzust. der Gebrauchstauglichl	keit		
	Nachweis		x [m]		[-]
		ng Betondruckspannungen	0.00	OK	0.02
	begrenzur	ng Stahlzugspannungen	0.00	OK	0.01

Auftrags-Nr. Position

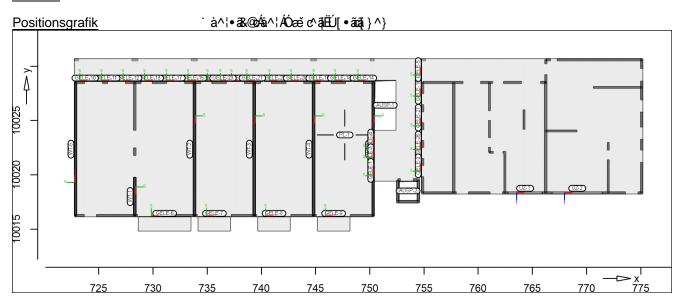
2023 300 ÜVP EÜP ÆÄÜ¢4&\ @ ą̃ AÛ>å Seite: 2-1

2 - 2. Obergeschoss

Position

martens+puller
Ingenieurgesellschaft mbH ÙVPËÜPÄÄÛ¢4&\@ã ÁÛ>å

Auftrags-Nr. 2023 300 D-2.1


Seite: 2-2

8 YW YbgmghYa "VYf '&"C; Pos. D-2.1

<u>System</u>

Positionsplan Positionsplan

Bauteile Bauteil-Positionen

Platten Platten-Positionen

Stahlbeton Position Winkel Art Material Dicke Žγá Šê} * • Quer [cm] PL-1 0.0 iso C 30/37 Q 20.0 B 500MA B 500SA

Winkel: iso:

*^{ êi ÁÖ OD ÁÖ ÞÁFJJ GËFËFÉÁ æà ÈÁ ÈF Expositionsklasse

Position	Seite	KI	Kommentar
PL-1	oben		{ êi ðt^ÁØ^`&@z^
		WF	Pê`~ātAjå^¦Ajê}*^¦^AZ^ācÁ
			feuchter Beton
	unten	XC1	d[&\^}Á(å^¦Áncê}åãfÁæ••
		WO	Weitgehend trockener Beton

Aussparungen	Position	X	У
		[m]	[m]
	AUSP-1	752.42	10024.11
		752.42	10028.70
		750.40	10028.70
		750.40	10024.11
	AUSP-2	754.38	10017.62
		754.38	10019.42
		752.68	10019.42
		752.68	10017.62

Seite: 2-3

Auftrags-Nr.	Position	martens+puller
2023 300	D-2.1	 ÙVPËÜPÆÄÛø4&\@Aį ÁÛ>å

Ø ê&@} æ •&@>••^	Position		K		FI A	K _{R,s}		F1 1	K _{T,t}
	GELE-1, GELE-2	+/-	[kNm/rad/r		[Kr +/-	nm/rad/m] frei			N/m/m] 250000
	GELE-3	+/-			+/-	frei			frei
	GELE-4, GELE-5	+/-			+/-	frei			250000
	GELE-6GELE-9	+/-	1000			fest			250000
	GELE-10	+/-			+/-	frei			250000
	GELE-11	+/-			+/- · /	frei			frei 250000
	GELE-12 GELE-13	+/- +/-			+/- +/-	frei frei			frei
	GELE-13 GELE-14	+/-			+/-	frei			250000
	GELE-15, GELE- 16	+/-			+/-	frei			frei
	GELE-17	+/-	fr	ei -	+/-	frei	+/-	. 2	250000
	GELE-18	+/-	fr	ei -	+/-	frei	+/-		frei
	GELE-19	+/-	fr	ei -	+/-	frei	+/-	. 2	250000
	GELE-20, GELE- 21	+/-	fr	ei -	+/-	frei	+/-		frei
	GELE-22, GELE- 23	+/-	fr	ei -	+/-	frei	+/-	. 2	250000
	GELE-24GELE- 26	+/-	fr	ei -	+/-	frei	+/-		frei
	GELE-27	+/-	fr	ei -	+/-	frei	+/-	. 2	250000
<u>W</u> c^!: >* ^	Unterzug-Positioner	1							
Stahlbeton	Position		Šê} * ^	خ	5 ≘1 * -	Betonstal			Beton
	UZ-1		[m] 3.13		Sê} * • 00SA	Ó>*. B 500S		C 2	5/30 Q
	UZ-2		4.64		00SA	B 500S			5/30 Q
	Q: Õ^•¢^ã,•\4 } `}*ÁÛ `æ:	ãc	1.01	20	000/1	2 0000	,,,	0 20	700 Q
<u>Abminderung</u>	Position			FD	F _{S,s}	F _{S,t}	F _T	F _{B,s}	F _{B,t}
	F _{S,t} : Q _a { a, a^i \ \ a \ e \ e \ e \ e \ e \ e \ e \ e \	(\$an ÁO^@ • c^āat \^ \$an ÁU&@ a• c^āat \^ \$an ÁU&@ a• c^āat \^ \$an ÁU; • 4 }•• c^āat \^ \$an ÁOa**^• c^āat \^	^ãoÁsp,ÁnÉÜ ^ãoÁsp,ÁdÉÜá ∄\^ão \ãoÁ{Á,ÉÉ	&&@c`}* 0&&@•^	0.00	1.00	0.00	0.00
	F _{B,t} : O£a{ ā}å^¦*}*•-æ	ıq[¦A⊳¦A	\$aan ÁÓan*^•c^āa∄∖^	∖ãoA′{AdEO	₽ .@^				
Querschnitt	Position			Exz. [cm]	b [cr		h _f n]	b _w [cm]	h [cm]
	UZ-1, UZ-2 UZ: Unterzug			UZ	100	.0 20	.0	20.0	53.0
<u>Expositionsklasse</u>	*^{ êi ÁÖΦ ÁÒÞÁFJJ	ŒË			1.71				
	Position UZ-1, UZ-2		Seite umlaufend			Komment		ി ക്ക് Δ്വ	
Y æ} åælæt ^Á/¦ê*^¦	Yæ)åæb@t^Áv¦ê*^¦Ë	r'ır . æ			XCI	ս [Ծմ	a i A G	ijaa nja	<i>,</i> -
r ag aasta ^Avie ^i	ræjaæta ^Avie ^ic	∪[•ata	at } ^ }						
Stahlbeton	Position	Ar	t		P4@ [r	<u>@</u> n]	Materi	al	Dicke [cm]
	WT-1WT-4	De	ecke oben		3.1		C 25/3	30 Q	24.0
	WT-5, WT-6 Q: Õ^•৫ºã़•\4¦}*}*ÁÛ*æ;		ecke oben		3.1	6	C 25/3	30 Q	20.0

martens+puller

Auftrags-Nr. Position 2023 300 D-2.1

ÙVPËÜPĀÄÛc4&\@ã ÁÛ>å

Seite: 2-4

<u>Federsteifigkeiten</u>	Position	$K_{R,r}$	K_R,s		$K_{T,t}$
		[kNm/rad/m]	[kNm/rad/m]		[kN/m/m]
	WT-1WT-4	frei	frei	+/-	2354430
	WT-5 WT-6	frei	frei	_ _/_	1962025

<u>Auflager</u> Auflager-Positionen

Positions	sgrafik		. à^¦•	&&@A\$a^¦A(Œ ∤æ*^¦Ë	J[•ãaā[}^}					
10015 10020 10025 	8	(N) (N) (N) (N) (N) (N) (N) (N) (N) (N)	(\$13) (\$23) (\$23)		(1925)			s CE			
	1 725	730	1 735	740	745	750	755	760	1 765	770 −⊳x 775	

<u>Ùc>c ^} æ* ^¦</u>	Ù⇔c^} æ*^¦ËÚ[•ãaá;}^}					
Stahlbeton	Position	Šê} * ^ [m]		Material	b _(r) [cm]	h _(s) [cm]
	ST-1	3.00		C 25/30 Q B 500SA	38.0	
	ST-2ST-5	3.00		C 25/30 Q B 500SA	56.0	20.0
	ST-6, ST-7	3.00		C 25/30 Q B 500SA	38.0	20.0
	Q: $\tilde{O}^{\bullet} c^{\bullet} \tilde{a} \bullet \langle 4 \rangle^* \rangle * \hat{AU}^* cd: \tilde{ac}$			<i>B</i> 0000/1		
<u>Federsteifigkeiten</u>	Position	K _{R,r} [kNm/rad]		K _{R,s} [kNm/rad]		K _{T,t} [kN/m]
	ST-1	frei		frei	+/-	785333
	ST-2ST-5	frei		frei	+/-	1157333
	ST-6, ST-7	frei		frei	+/-	785333
<u>Wandlager</u>	Wandlager-Positionen					
Stahlbeton	Position	P4@ [m]	Šê} * ^ [m]		Material	Dicke [cm]
	W-200	3.00	0.24		C 25/30 Q B 500MA	
	W-201	3.00	0.48	(C 25/30 Q B 500MA	24.0
	W-202	3.00	2.00	(C 25/30 Q B 500MA	
	W-203	3.00	1.90	(C 25/30 Q B 500MA	
	144.004				D JUUINIA	

3.00

2.00

C 25/30 Q

B 500MA

24.0

W-204

Position

2023 300 D-2.1 ÙVPËUPĀĀŪa4&\@ā, ĀŪ>å Seite: 2-5

2023 300	D 2.1 OVI EDI / MEDOFAI (@ q / 10 > a					
	Position	P4@ [m]	Šê} * ^ [m]	Material	Dicke [cm]	
	W-220	3.00	0.81	C 25/30 Q B 500MA	20.0	
	W-221	3.00	3.79	C 25/30 Q B 500MA	20.0	
	W-222W-224	3.00	2.37	C 25/30 Q B 500MA	20.0	
	W-225	3.00	2.09	C 25/30 Q B 500MA	20.0	
	W-227	3.00	0.71	C 25/30 Q B 500MA	24.0	
	W-228	3.00	4.40	C 25/30 Q B 500MA	24.0	
	W-229	2.90	0.85	C 25/30 Q B 500MA	20.0	
	W-230	2.90	0.49	C 25/30 Q B 500MA	20.0	
	W-231	2.90	1.47	C 25/30 Q B 500MA	20.0	
	W-232	2.90	1.35	C 25/30 Q B 500MA	20.0	
	W-233	2.90	1.51	C 25/30 Q B 500MA	20.0	
	W-234	2.90	1.35	C 25/30 Q B 500MA	20.0	
	W-235	2.90	1.51	C 25/30 Q B 500MA	20.0	
	W-236	2.90	1.35	C 25/30 Q B 500MA	20.0	
	W-237	2.90	1.51	C 25/30 Q B 500MA	20.0	
	W-238	2.90	1.35	C 25/30 Q B 500MA	20.0	
	W-239	2.90	0.89	C 25/30 Q B 500MA	20.0	
	Q: $\tilde{O}^{\bullet}e^{\bullet}\tilde{a}_{\bullet}^{\bullet}\setminus 4 _{}^{*}$ $^{*}\tilde{AU}^{*}$ æd: $\tilde{a}_{\bullet}^{\bullet}$:				
<u>Mauerwerk</u>	Position	P4@ [m]	Šê} * ^ [m]	Material	Dicke [cm]	
	W-1	3.00	3.71	KS-P 20 DM	20.0	
	W-2	3.00	1.11	KS-P 20 DM	20.0	
	W-3	3.00	1.65	KS-P 20 DM	20.0	
	W-4	3.00	0.50	KS-P 20 DM	20.0	
	W-5	3.00	0.73	KS-P 20 DM	20.0	
	W-6	3.00	0.36	KS-P 20 DM	20.0	
	W-7	3.00	0.41	KS-P 20 DM	20.0	
	W-8	3.00	7.78	KS-P 20 DM	20.0	
	W-9	3.00	0.82	KS-P 20 DM	20.0	
	W-10	3.00	1.74	KS-P 20 DM	20.0	
	W-11	3.00	1.36	KS-P 20 DM	20.0	
	W-12	3.00	0.99	KS-P 20 DM	20.0	
	W-13	3.00	2.80	KS-P 20 DM	20.0	
	W-14	3.00	0.35	KS-P 20 DM	20.0	
	W-15	3.00	2.15	KS-P 20 DM	20.0	
	W-16	3.00	0.93	KS-P 20 DM	20.0	
	W-17	3.00	0.52	KS-P 20 DM	20.0	
	W-18	3.00	1.99	KS-P 20 DM	20.0	
	W-19	3.00	3.10	KS-P 20 DM	20.0	

Federsteifigkeiten

Material

Stahlbeton

Betonstahl

Mauerwerk

DIN EN 1996-1-1

DIN EN 1992-1-1

DIN EN 1992-1-1

Position ÙVPËJPÆÄJc4& @ã ÁJ>å D-2.1 Seite: 2-6 P4@ Šê} * ^ Position Material Dicke [m][m] [cm] 1.49 W-20 KS-P 20 DM 20.0 3.00 KS-P 20 DM W-21..W-24 3.00 0.65 20.0 KS-P 20 DM W-25 3.00 1.02 20.0 KS-P 20 DM W-26, W-27 3.00 10.15 24.0 W-28 3.00 KS-P 20 DM 17.5 3.89 W-29 KS-P 20 DM 3.00 0.35 17.5 KS-P 20 DM W-30 3.00 0.46 17.5 W-31 3.00 1.59 KS-P 20 DM 17.5 W-32 3.00 2.61 KS-P 20 DM 17.5 W-33 3.00 1.80 KS-P 20 DM 17.5 W-34 3.00 0.69 KS-P 20 DM 17.5 W-35 3.00 3.05 KS-P 20 DM 17.5 W-36 3.00 2.89 KS-P 20 DM 17.5 W-37 3.00 4.47 KS-P 20 DM 17.5 Position $K_{R,r}$ $K_{R,s}$ $K_{T,t}$ [kNm/rad/m] [kNm/rad/m] [kN/m/m]W-1..W-25 frei frei 665387 W-26, W-27 frei frei +/-798464 W-28..W-37 frei frei +/-582214 W-200..W-204 frei frei +/-2480000 W-220..W-225 frei frei +/-2066667 W-227, W-228 frei frei +/-2480000 2137931 W-229..W-239 frei frei +/-Materialkennwerte Position Material Wichte E_{cm} f_{ck} G f_{ctm} **Ž**Þ₽){_á ŽÞÐ á **Ž**Þ₽(á ST-1..ST-7, UZ-1, UZ-C 25/30 Q 25.00 31000 25.00 2, W-200..W-204, W-220..W-225, W-227..W-239, WT-1..WT-6 12900 2.60 C 30/37 Q PL-1 25.00 33000 30.00 13750 2.90 E_s Position Material Wichte f_{yk} G f_{tk,cal} Ž>₽} { _á ŽÞÐ() á ŽD-Ð){ á PL-1, W-200..W-204, **B 500MA** 200000 78.50 500.00 W-220..W-225, W-227..W-239 525.00 77000 PL-1, ST-1..ST-7, UZ-B 500SA 78.50 200000 500.00 1, UZ-2 77000 525.00 Position Material Wichte Ε f_k Dichte G ŽÞÐ á Ž>Đ(á **Ž**Þ-₽(á Ž*Đà{á

KS-P 20 DM

9981

3992

20.00

2.00

10.51

W-1..W-37

Auftrags-Nr. Position

D-2.1

D-2.1

D-2.1

Auftrags-Nr. Position

D-2.1

D-2.1

D-2.1

D-2.1

D-2.1

D-2.1

D-2.1

D-2.1

D-2.1

D-2.1

D-2.1

D-2.1

D-2.1

<u>Auswertung</u> Geometrische Auswertung der Positionen

 Stahlbeton
 Dicke
 Ø|ê&@
 Volumen

 [cm]
 ₹ á
 ₹ á
 ₹ á

 PL-1
 20.0
 716.36
 143.27

W/ c^\: >*^ Unterzug-Positionen

Position $b_{(t)}$ Mantelfl. Stahlbeton h_(s) Volumen [cm] [cm] $[m^2]$ [m³]UZ-1 0.21 20.00 33.00 3.32 UZ-2 20.00 33.00 4.91 0.31

Y að å að cat A / 1 2

Stahlbeton Position Dicke P4@ Ølê&@ Volumen [cm] [cm] $[m^2]$ [m³]WT-1 24.00 316.0 11.15 2.68 WT-2..WT-4 24.00 316.0 38.74 9.30 WT-5, WT-6 20.00 316.0 38.74 7.75

Stahlbeton Position Mantelfl. Volumen $b_{(r)}$ h_(s) [cm] [cm] $[m^2]$ [m³]ST-1 38.0 20.0 3.48 0.23 ST-2..ST-5 56.0 20.0 4.56 0.34 ST-6, ST-7 38.0 20.0 3.48 0.23

<u>Wandlager</u> Y ê} å^Áå^¦Á⁄ æ) å|æ*^¦ËÚ[• ããã; }^}

W-239

Dicke P4@ Ølê&@ Volumen Stahlbeton Position [cm] $[m^2]$ [m³][cm] W-200 24.0 300.0 0.71 0.17 W-201 24.0 300.0 1.45 0.35 W-202 24.0 300.0 1.44 6.00 W-203 24.0 300.0 1.37 5.70 W-204 24.0 300.0 6.00 1.44 W-220 20.0 300.0 2.43 0.49

W-221 20.0 300.0 11.38 2.28 W-222..W-224 20.0 300.0 7.11 1.42 W-225 20.0 300.0 6.27 1.25 W-227 24.0 300.0 2.13 0.51 W-228 24.0 300.0 13.21 3.17 W-229 20.0 290.0 2.47 0.49 W-230 20.0 290.0 1.42 0.28 W-231 20.0 290.0 4.25 0.85 W-232 20.0 290.0 3.90 0.78 W-233 20.0 290.0 4.38 0.88 W-234 20.0 290.0 3.90 0.78 W-235 20.0 290.0 4.38 0.88 W-236 20.0 290.0 3.90 0.78 W-237 20.0 290.0 4.38 0.88 W-238 20.0 290.0 3.90 0.78

20.0

290.0

2.60

0.52

Mauerwerk

Auftrags-Nr.

Position

Position

W-1

W-2

W-3

W-4

W-5

W-6

W-7

W-8

W-9

W-10

W-11

W-12

W-13

W-14

W-15

W-16

W-17

W-18

W-19

W-20

W-25

W-28

W-29

W-30

W-31

W-32

W-33

W-34

W-35

W-36

W-37

W-21..W-24

W-26, W-27

2023 300

D-2.1

ÙVPËÜPÄÄÜ¢4&\@ã ÁÛ>å

Dicke

[cm]

20.0

20.0

20.0

20.0

20.0

20.0

20.0

20.0

20.0

20.0

20.0

20.0

20.0

20.0

20.0

20.0

20.0

20.0

20.0

20.0

20.0

20.0

24.0

17.5

17.5

17.5

17.5

17.5

17.5

17.5

17.5

17.5

17.5

P4@

300.0

300.0

300.0

300.0

300.0

300.0

300.0

300.0

300.0

300.0

300.0

300.0

300.0

300.0

300.0

300.0

300.0

300.0

300.0

300.0

300.0

300.0

300.0

300.0

300.0

300.0

300.0

300.0

300.0

300.0

300.0

300.0

300.0

[cm]

Seite: 2-8 Ølê&@ Volumen $[m^2]$ $[m^3]$ 11.12 2.22 3.34 0.67 4.95 0.99 1.50 0.30 0.44 2.19 1.08 0.22 1.24 0.25 23.35 4.67 0.49 2.45 5.22 1.04 4.09 0.82 2.97 0.59

1.68

0.21

1.29

0.56

0.31

1.19

1.86

0.89

0.39

0.61

7.31

2.04

0.18

0.24

0.83

1.37

0.95

0.36

1.60

1.51

2.35

8.39

1.05

6.45

2.78

1.57

5.97

9.30

4.47

1.94

3.07

30.45

11.68

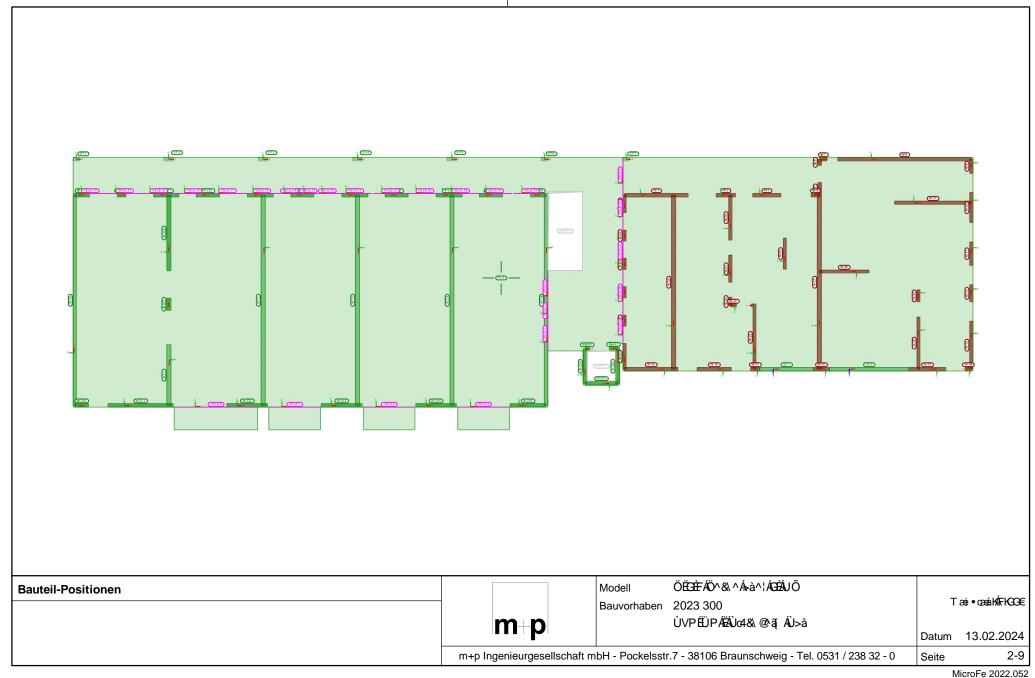
1.04

1.39

4.77

7.83

5.40

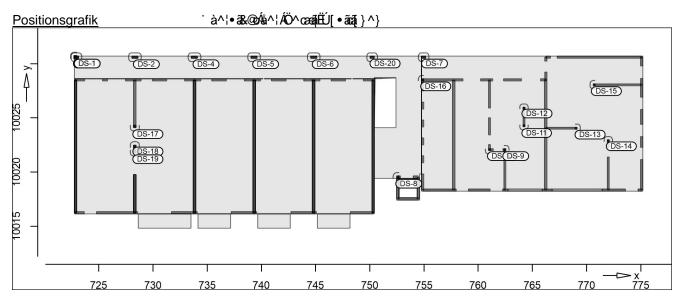

2.07

9.15

8.65

13.41

Simula Si		
0100		
1000		
5		
2		



Seite: 2-10

2023 300 D-2.1 ÙVPËÜPĀĀÛ¢4&\@4\AÛ>å

Detailplan Detailplan

<u>Details</u> Detail-Positionen

<u>Durchstanzstellen</u>	Position		Lel von	MinBew	Rundsch	beta
	DS-1		unten	ja	nein	1.50
	DS-2		unten	ja	nein	1.50
	DS-3		unten	ja	nein	1.20
	DS-4		unten	ja	nein	1.50
	DS-5		unten	ja	nein	1.50
	DS-6		unten	ja	nein	1.50
	DS-7		unten	ja	nein	1.50
	DS-8		unten	ja	nein	1.20
	DS-9		unten	ja	nein	1.20
	DS-10		unten	ja	nein	1.20
	DS-11		unten	ja	nein	1.35
	DS-12		unten	ja	nein	1.35
	DS-13		unten	ja	nein	1.35
	DS-14		unten	ja	nein	1.35
	DS-15		unten	ja	nein	1.35
	DS-16		unten	ja	nein	1.20
	DS-17		unten	ja	nein	1.35
	DS-18		unten	ja	nein	1.35
	DS-19		unten	ja	nein	1.35
	DS-20		unten	ja	nein	1.50
	unten:	Lasteinleitung erfolgt von unten		•		

MinBew: Mindestbewehrung nach NCI Zu 9.4.3(2)?
Rundsch: Rundschnitt am Rand erweitern?

Geometrie

Õ^[{ ^dã\Áå^¦Á	Šæ•c^ā, ^āc`}*•√jê&@			
Position	Тур	Winkel	b(r)/D	h(s)
		Žá	[cm]	[cm]
DS-1	Re	0.00	38.0	20.0
DS-2	Re	0.00	56.0	20.0
DS-4	Re	0.00	56.0	20.0
DS-5	Re	0.00	56.0	20.0
DS-6	Re	0.00	56.0	20.0
DS-7	Re	0.00	38.0	20.0
DS-20	Re	0.00	38.0	20.0

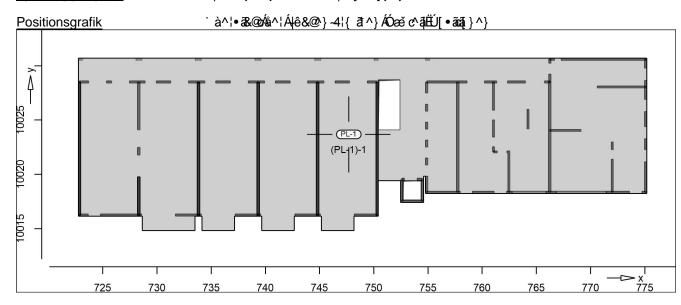
Re:

Rechteck

Auftrags-Nr. Position

2023 300	D-2.1	ÙVPËÜPÆÛ	24&\@`ã[ÁÛ>å			Seite: 2-11
	Position	Тур	Winkel2 <i>Ž</i> ∕á	Winkel <i>Ž</i> ∕á	Breite [cm]	Šê} * ^ [cm]
	DS-3	Wk	0.00	270.00	30.0	30.0
	DS-8	Wk	0.00	270.00	24.0	24.0
	DS-9	Wk	180.00	270.00	17.5	17.5
	DS-10	Wk	0.00	90.00	17.5	17.5
	DS-11	We		90.00	17.5	17.5
	DS-12	We		270.00	17.5	17.5
	DS-13	We		180.00	17.5	17.5
	DS-14	We		270.00	17.5	17.5
	DS-15	We		0.00	17.5	17.5
	DS-16	Wk	0.00	270.00	20.0	20.0
	DS-17	We		90.00	24.0	24.0
	DS-18	We		270.00	24.0	24.0
	DS-19 We: Wandende Wk: Wandecke	We		90.00	24.0	24.0
Koordinaten	Position				Х	Υ
					[m]	[m]
	DS-1				22.93	10030.60
	DS-2				28.32	10030.60
	DS-3				22.84	10030.60
	DS-4				33.82	10030.60
	DS-5				39.32	10030.60
	DS-6				44.82	10030.60
	DS-7				54.97	10030.60
	DS-8				52.58	10019.52
	DS-9 DS-10				62.46 61.05	10022.07 10022.07
	DS-10 DS-11				64.22	10022.07
	DS-11				64.22	10024.19
	DS-12 DS-13				69.12	10023.99
	DS-14				72.01	10024.00
	DS-15				70.62	10028.06
	DS-16				54.88	10028.50
	DS-17				28.32	10024.09
	DS-18				28.32	10022.49
	DS-19				28.32	10021.78
	DS-20				50.21	10030.60

Belastungen



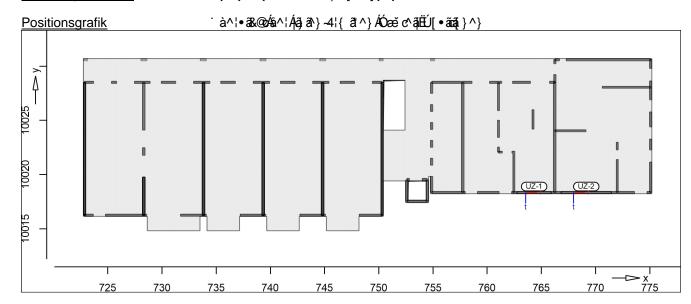
Auftrags-Nr. Position

2023 300 D-2.1 ÙVPËUPĀĀŪd& @ ą̃ ÂŪ>å Seite: 2-12

Lastplan Lasten des FE-Modells

<u>Bauteillasten</u> Bauteilbezogene Lasten

Eigengewicht	Position	EW	Lastfall	Art	g
					[kN/m ²]
	PL-1	Gk	LF-1	PGr	5.00
	PGr: Gravitations	slast; positive Laster	n wirken senkrecht nach	unten	
<u>Ù[}•cã*^Á•cê}åã*^Á§æ•</u> c	Position	EW	Lastfall	Art	g [kN/m²]
	PL-1	Gk	LF-1	PGr	1.80
	PGr: Gravitations	slast; positive Laster	n wirken senkrecht nach	unten	
Nutzlast	Position	EW	Lastfall je Last	feld Art	p [kN/m²]
	PL-1	Qk.N	(PL-1)-1	PGr	2.70
	PGr: Gravitation		n wirken senkrecht nach		

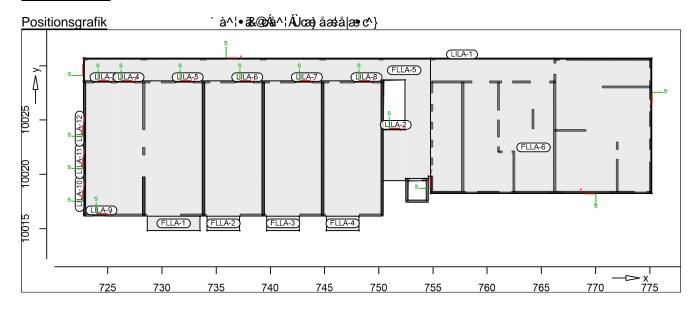

D-2.1

ÙVPËÜPÄÄÜ¢4&\@@ã ÁÛ>å

Seite: 2-13

Streckenpositionen

Šājā $^{+}$ 4¦{āt^ÁÓæě $^{+}$ āĒÚ[•ãāā]}^}



Eigengewicht
Position EW Lastfall Art

UZ-1, UZ-2 Gk LF-1 PGr
PGr: Gravitationslast; positive Lasten wirken senkrecht nach unten

Standardlasten

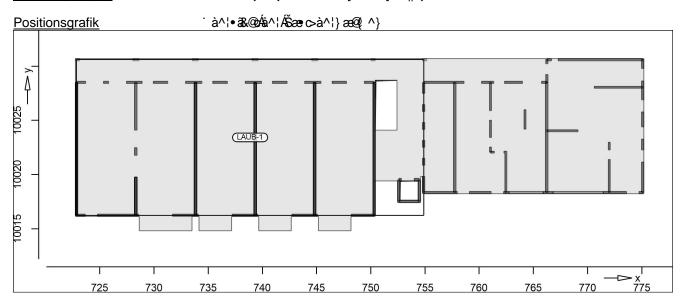
Standardlasten im FE-Modell

<u>Linienlasten</u>	Position	EW	Lastfall	Art	p _A ,m _A	p _E ,m _E		
					[kN/m]],[kNm/m]		
	LILA-1	ÙœŒÓ	>•c`}*ÉABÉDÉMAÉL	ÊŒÆŔ				
		Gk	LF-1	pGr	6.00	6.00		
	LILA-2	Treppe	Treppe					
		Gk	LF-1	pGr	25.00	25.00		
		Qk.N	LF-2	pGr	12.00	12.00		
	LILA-3	Ó¦>• <i>c</i> `)	*ÁTYÉÁÐÐÓMÆL	ŒŒŒÁ				
		Gk	LF-1	pĠr	5.00	5.00		
	LILA-4	Ó¦>•č}*ÁTYÉÁÐÐÐÁMÆÉE€ÐFÉÉÁ						
		Gk	LF-1	pĠr	5.00	5.00		

Auftrags-Nr. 2023 300

Position

Õ|^ 3&@|ê&@\} |æ c^}


1	ÙVPËÜP	#####################################	å	S	eite: 2-14
Position	EW	Lastfall	Art	p _A ,m _A [kN/m]	p _E ,m _E [kNm/m],
LILA-5	Ó¦>• <i>c</i> `)	}* <i>Á</i> TYÉÉࣩÁMÉ≀	Ê€ÐFÊ€Á		
	Ģk	ĻF-1	pGr	5.00	5.00
LILA-6		} * ÁT Y ÉÉA EGÁMÉI			
	Ģk	LF-1	pGr	5.00	5.00
LILA-7	O',>• c)	}*ÁTYÉÉàЩÁMÉI			
	Gk	LF-1	pĢr	5.00	5.00
LILA-8		} * ÁT Y ÉÉà EÐØÁMÆ 1			
	Ģk	LF-1	pGr	5.00	5.00
LILA-9		} * AT Y BEài E®AM€ 1			
	Gk	LF-1	pGr	5.00	5.00
LILA-10	O¦>• <i>c</i> *)	} * ÁT Y ÉÉA EGÁMÉI	ŒŒŒÆĄ		
	Gk	LF-1	pGr	5.00	5.00
LILA-11		}* <i>Á</i> TYÉÉá£ ©Á MÉ€			
	Gk	LF-1 }*ÁTYÉÁÐÐÁMÉI	pGr	5.00	5.00
LILA-12	Ó¦>• <i>c</i> ੱ)	}* <i>Á</i> TYÉÉà£ ©Á MÉ≀	ÊŒÆÆÊŒÁ		
		1 - 4	pGr	5.00	5.00
	Gk	LF-1	ρOi	5.00	0.00
pGr: Gravitatio		LF-1 n wirken senkrecht na	ch unten	3.00	0.00
pGr: Gravitatio			ch unten	3.00	р
Position	nslast; positive Laste	n wirken senkrecht na Lastfall	ch unten	3.00	р
	nslast; positive Laste EW Differe	n wirken senkrecht na Lastfall nzlast Balkon	ch unten ÖArt	3.00	p [kN/m²]
Position	nslast; positive Laste EW Differe Gk	n wirken senkrecht na Lastfall nzlast Balkon LF-1	Art PGr	3.00	p [kN/m²] 1.00
Position FLLA-1	nslast; positive Laste EW Differe Gk Qk.N	n wirken senkrecht na Lastfall nzlast Balkon LF-1 LF-2	ch unten ÖArt	3.00	p [kN/m ²] 1.00
Position	EW Differe Gk Qk.N Differe	n wirken senkrecht na Lastfall nzlast Balkon LF-1 LF-2 nzlast Balkon	Art PGr PGr	3.00	p [kN/m²] 1.00 1.30
Position FLLA-1	EW Differe Gk Qk.N Differe Gk	n wirken senkrecht na Lastfall nzlast Balkon LF-1 LF-2 nzlast Balkon LF-1	Art PGr PGr	3.00	p [kN/m²] 1.00 1.30
Position FLLA-1 FLLA-2	Differe Gk Qk.N Differe Gk Qk.N Differe Gk	n wirken senkrecht na Lastfall nzlast Balkon LF-1 LF-2 nzlast Balkon LF-1 LF-1 LF-1 LF-1 LF-2	Art PGr PGr	3.00	[kN/m²] 1.00 1.30
Position FLLA-1	Differe Gk Qk.N Differe Gk Qk.N Differe Gk Qk.N	n wirken senkrecht na Lastfall nzlast Balkon LF-1 LF-2 nzlast Balkon LF-1 LF-1 LF-2 nzlast Balkon	Art PGr PGr PGr	3.00	1.00 1.30 1.30
Position FLLA-1 FLLA-2	Differe Gk Qk.N Differe Gk Qk.N Differe Gk Qk.N Differe Gk Qk.N	n wirken senkrecht na Lastfall nzlast Balkon LF-1 LF-2 nzlast Balkon LF-1 LF-2 nzlast Balkon LF-1 LF-2 nzlast Balkon LF-1	Art PGr PGr PGr PGr	3.00	1.00 1.30 1.30 1.00
FLLA-1 FLLA-2 FLLA-3	Differe Gk Qk.N Differe Gk Qk.N Differe Gk Qk.N Differe Gk Qk.N	n wirken senkrecht na Lastfall nzlast Balkon LF-1 LF-2 nzlast Balkon LF-1 LF-2 nzlast Balkon LF-1 LF-2 nzlast Balkon LF-1 LF-2	Art PGr PGr PGr	3.00	1.00 1.30 1.30 1.00
Position FLLA-1 FLLA-2	Differe Gk Qk.N Differe Gk Qk.N Differe Gk Qk.N Differe Gk Qk.N Differe	n wirken senkrecht na Lastfall nzlast Balkon LF-1 LF-2 nzlast Balkon LF-1 LF-2 nzlast Balkon LF-1 LF-2 nzlast Balkon LF-1 LF-2 nzlast Balkon	PGr PGr PGr PGr PGr PGr	3.00	1.00 1.30 1.00 1.30 1.00 1.30
Position FLLA-1 FLLA-2 FLLA-3	Differe Gk Qk.N Differe Gk Qk.N Differe Gk Qk.N Differe Gk Qk.N Differe Gk Qk.N	n wirken senkrecht na Lastfall nzlast Balkon LF-1 LF-2 nzlast Balkon LF-1 LF-2 nzlast Balkon LF-1 LF-2 nzlast Balkon LF-1 LF-2 nzlast Balkon LF-1 LF-2	PGr PGr PGr PGr PGr	3.00	1.00 1.30 1.30 1.00 1.30
Position FLLA-1 FLLA-2 FLLA-3 FLLA-4	Differe Gk Qk.N Differe Gk Qk.N Differe Gk Qk.N Differe Gk Qk.N Differe Gk Qk.N Differe	n wirken senkrecht na Lastfall nzlast Balkon LF-1 LF-2 nzlast Balkon LF-1 LF-2 nzlast Balkon LF-1 LF-2 nzlast Balkon LF-1 LF-2 nzlast Balkon LF-1 LF-2	PGr PGr PGr PGr PGr PGr	3.00	1.00 1.30 1.30 1.00 1.30
Position FLLA-1 FLLA-2 FLLA-3	Differe Gk Qk.N Differe Gk Qk.N Differe Gk Qk.N Differe Gk Qk.N Differe Gk Qk.N Differe	n wirken senkrecht na Lastfall nzlast Balkon LF-1 LF-2 nzlast Balkon LF-1 LF-2 nzlast Balkon LF-1 LF-2 nzlast Balkon LF-1 LF-2 nzlast Balkon LF-1 LF-2 nzlast Balkon	PGr PGr PGr PGr PGr PGr PGr	3.00	1.00 1.30 1.30 1.00 1.30 1.00 1.30
Position FLLA-1 FLLA-2 FLLA-3 FLLA-4	Differe Gk Qk.N Differe Gk Qk.N Differe Gk Qk.N Differe Gk Qk.N Differe Gk Qk.N Differe Gk Qk.N Differe	n wirken senkrecht na Lastfall nzlast Balkon LF-1 LF-2 nzlast Balkon LF-1 LF-2 nzlast Balkon LF-1 LF-2 nzlast Balkon LF-1 LF-2 nzlast Balkon LF-1 LF-2 nzlast Balkon LF-1 LF-2	PGr PGr PGr PGr PGr PGr	3.00	1.00 1.30 1.30 1.00 1.30 1.00 1.30
Position FLLA-1 FLLA-2 FLLA-3 FLLA-4 FLLA-5	Differe Gk Qk.N Differe Gk Qk.N Differe Gk Qk.N Differe Gk Qk.N Differe Gk Qk.N Differe Gk Qk.N Differe	n wirken senkrecht na Lastfall nzlast Balkon LF-1 LF-2 nzlast Balkon LF-1 LF-2 nzlast Balkon LF-1 LF-2 nzlast Balkon LF-1 LF-2 nzlast Balkon LF-1 LF-2 nzlast Balkon LF-1 LF-2 nzlast Balkon LF-1 LF-2	PGr PGr PGr PGr PGr PGr PGr	3.00	1.00 1.30 1.30 1.00 1.30 1.00 1.30
Position FLLA-1 FLLA-2 FLLA-3 FLLA-4	Differe Gk Qk.N Differe Gk Qk.N Differe Gk Qk.N Differe Gk Qk.N Differe Gk Qk.N Differe Gk Qk.N Differe	n wirken senkrecht na Lastfall nzlast Balkon LF-1 LF-2 nzlast Balkon LF-1 LF-2 nzlast Balkon LF-1 LF-2 nzlast Balkon LF-1 LF-2 nzlast Balkon LF-1 LF-2 nzlast Balkon LF-1 LF-2 nzlast Balkon LF-1 LF-2 nzlast Balkon	PGr PGr PGr PGr PGr PGr PGr PGr	3.00	1.00 1.30 1.00 1.30 1.00 1.30 1.00 1.30
Position FLLA-1 FLLA-2 FLLA-3 FLLA-4 FLLA-5	Differe Gk Qk.N Differe Gk Qk.N Differe Gk Qk.N Differe Gk Qk.N Differe Gk Qk.N Differe Gk Qk.N Differe	n wirken senkrecht na Lastfall nzlast Balkon LF-1 LF-2 nzlast Balkon LF-1 LF-2 nzlast Balkon LF-1 LF-2 nzlast Balkon LF-1 LF-2 nzlast Balkon LF-1 LF-2 nzlast Balkon LF-1 LF-2 nzlast Balkon LF-1 LF-2	PGr PGr PGr PGr PGr PGr PGr	3.00	p [kN/m²] 1.00 1.30 1.00 1.30 1.00 1.30 1.00 1.30 4.20 2.30

2023 300 D-2.1

Seite: 2-15

Šæ•c>à^{} æ@ ^}

Šæc>à^{} æ@ ^Áæ • ÁT & [Ø^Ë [å^||^}

ŠŒ ÓËF

Šæ; cà^¦}æ@; ^ÁSઁæ; cà^!*æà^Óæě•ÁT[å^||ÁÖËFÈFC

 $\ddot{\Delta} \stackrel{\text{\tiny A}}{\text{\tiny A}} \approx \dot{\Delta}^{+} \implies \dot{\Delta}^{+} \stackrel{\text{\tiny A}}{\text{\tiny A}} = \dot{\Delta}^{+} \implies \dot{\Delta}^{+} \stackrel{\text{\tiny A}}{\text{\tiny A}} = \dot{\Delta}^{+} \stackrel{\text$

Positionsgrafik

Punktlasten

Position	EW	Lastfall	Art	P
				[kN]
ST-1	Gk	#1 gk	PGr	22.68
	Qk.N	#1 qk.n	PGr	2.99
ST-2	Gk	#1 gk	PGr	53.67
	Qk.N	#1 qk.n	PGr	8.03
ST-3	Gk	#1 gk	PGr	67.01
	Qk.N	#1 qk.n	PGr	8.16
ST-4	Gk	#1 gk	PGr	66.44
	Qk.N	#1 qk.n	PGr	8.17
ST-5	Gk	#1 gk	PGr	65.19
	Qk.N	#1 qk.n	PGr	7.71

martens+puller
Ingenieurgesellschaft mbH

ÙVPËÜPÄÄÜ¢4&\@ã ÁÛ>å 2023 300 D-2.1 Seite: 2-16

Position	EW	Lastfall	Art	Р
				[kN]
ST-6	Gk	#1 gk	PGr	63.29
	Qk.N	#1 qk.n	PGr	9.15
ST-7	Gk	#1 gk	PGr	61.94
	Qk.N	#1 qk.n	PGr	9.17
ST-8	Gk	#1 gk	PGr	112.60
	Qk.N	#1 qk.n	PGr	21.68
ST-9	Gk	#1 gk	PGr	104.07
	Qk.N	#1 qk.n	PGr	20.42
ST-10	Gk	#1 gk	PGr	73.30
	Qk.N	#1 qk.n	PGr	13.20
ST-11	Gk	#1 gk	PGr	13.79
	Qk.N	#1 qk.n	PGr	0.84
PGr: Gravitations	slast; positive Laster	n wirken senkrecht na	ch unten	

Linienlasten

Auftrags-Nr.

Position	EW	Lastfall	Art	ра	pe [kN/m]
W-1	Gk	#1 gk	pGr	40.18	93.55
V V - I	Qk.N	#1 gk.n	pGr	4.52	18.32
W-2	Gk	#1 qk.ii #1 gk	pGr	186.29	177.46
VV-Z	Qk.N	#1 gk #1 qk.n	pGr	42.41	40.41
W-3	Gk	#1 qk.ii #1 gk	pGr	58.20	15.94
VV-3	Qk.N	#1 gk #1 qk.n	pGr	11.96	0.23
W-4	Gk.N	#1 qk.ii #1 gk	pGr	51.73	103.57
VV-4	Qk.N		pGr	8.06	103.57
W-5	Gk.N	#1 qk.n		59.27	18.68
VV-S		#1 gk	pGr		
W-6	Qk.N Gk	#1 qk.n	pGr	10.54 53.68	1.82
VV-Θ	_	#1 gk	pGr		
W-7	Qk.N	#1 qk.n	pGr	9.25	20.12
VV-/	Gk	#1 gk	pGr	60.31	18.16
14/ 0	Qk.N	#1 qk.n	pGr	10.80	1.67
W-8	Gk	#1 gk	pGr	53.15	102.14
	Qk.N	#1 qk.n	pGr	9.09	19.39
W-9	Gk	#1 gk	pGr	56.66	17.27
11/ 10	Qk.N	#1 qk.n	pGr	9.97	1.49
W-10	Gk	#1 gk	pGr	51.27	128.91
	Qk.N	#1 qk.n	pGr	8.75	24.89
W-11	Gk	#1 gk	pGr	121.73	57.08
	Qk.N	#1 qk.n	pGr	23.90	11.46
W-12	Gk	#1 gk	pGr	41.50	35.26
-	Qk.N	#1 qk.n	pGr	7.92	4.49
W-13	Gk	#1 gk	pGr	-23.18	107.74
	Qk.N	#1 qk.n	pGr	-7.85	18.14
W-14	Gk	#1 gk	pGr	-3.62	63.21
	Qk.N	#1 qk.n	pGr	-4.61	9.03
W-15	Gk	#1 gk	pGr	-2.64	67.42
	Qk.N	#1 qk.n	pGr	-4.39	10.03
W-16	Gk	#1 gk	pGr	-0.55	62.75
	Qk.N	#1 qk.n	pGr	-3.89	8.91
W-17	Gk	#1 gk	pGr	3.17	54.86
	Qk.N	#1 qk.n	pGr	-3.53	8.80
W-18	Gk	#1 gk	pGr	47.30	3.91
	Qk.N	#1 qk.n	pGr	5.93	-3.23
W-19	Gk	#1 gk	pGr	-17.02	82.95
	Qk.N	#1 gk.n	pGr	-7.71	13.04
W-20	Gk	#1 gk	pGr	68.32	64.98
	Qk.N	#1 qk.n	pGr	10.58	10.16
			1 -		

Seite: 2-17

Auftrags-Nr. Position martens+pu Ingenieurgesellschaft
2023 300 D-2.1 ÜVPËJPÄÄJd& @ã ÁJ>å

Position	EW	Lastfall	Art	ра	p _E [kN/m]
W-21	Gk	#1 gk	pGr	68.83	65.21
	Qk.N	#1 qk.n	pGr	10.87	10.05
W-22	Gk	#1 gk	pGr	62.87	-0.18
	Qk.N	#1 qk.n	pGr	10.11	-3.93
W-23	Gk	#1 gk	pGr	8.57	107.45
	Qk.N	#1 qk.n	pGr	-1.06	22.14
W-24	Gk	#1 gk	pGr	189.28	235.38
	Qk.N	#1 qk.n	pGr	41.62	52.69
W-25	Gk	#1 gk	pGr	319.63	305.54
	Qk.N	#1 qk.n	pGr	73.00	69.64
W-26	Gk	#1 gk	pGr	119.56	19.04
	Qk.N	#1 qk.n	pGr	25.86	-1.35
W-27	Gk	#1 gk	pGr	63.37	44.86
	Qk.N	#1 qk.n	pGr	10.94	7.95
W-28	Gk	#1 gk	pGr	45.21	62.55
	Qk.N	#1 qk.n	pGr	7.98	10.76
W-29	Gk	#1 gk	pGr	68.29	47.66
	Qk.N	#1 qk.n	pGr	12.09	8.63
W-200	Gk	#1 gk	pGr	186.65	173.00
	Qk.N	#1 qk.n	pGr	44.46	41.39
W-201	Gk	#1 gk	pGr	78.61	86.36
	Qk.N	#1 qk.n	pGr	20.68	11.40
W-202	Gk	#1 gk	pGr	50.70	23.77
	Qk.N	#1 qk.n	pGr	1.78	0.34
W-203	Gk	#1 gk	pGr	24.43	26.14
	Qk.N	#1 qk.n	pGr	0.62	0.61
W-204	Gk	#1 gk	pGr	9.51	80.96
	Qk.N	#1 qk.n	pGr	-6.63	15.08
pGr: Gravitationsl	ast; positive Laste	n wirken senkrecht na			

Einwirkungen

DIN EN 1990 Einwirkungen nach DIN EN 1990

S>: ^| Beschreibung
Typisierung
Gk Eigenlasten
Ûcê} åð ^ÂÒð ð ð\`}*^}
Qk.N Nutzlasten

Sæe^*[¦ã∿ÁODÁÉÁY[@yÉÁ\}åÁOE-^}c@eaþo•¦ê*{^

 $\underline{\check{S}}\underline{a}\underline{c}\underline{e}|\underline{h}$ $\check{S}\underline{a}\underline{c}\underline{e}|\underline{h}$ $\check{S}\underline{a}\underline{e}\underline{c}\underline{e}|\underline{h}$ $\check{A}\underline{a}\underline{h}$ $\check{A}\underline{h}$

Gk LF-1, #1|gk

Bemessung (GZT+GZG)

Biegung Pl-As-erf-Iso Plattenbiegebemessung nach DIN EN 1992-1-1

 $\frac{\text{PL-1}}{\text{O}^{\text{-}}} * \text{A} = \frac{\text{O}^{\text{-}}}{\text{A}} + \frac{\text{A}}{\text{A}} = \frac{\text{A}}{\text{A}} = \frac{\text{A}}{\text{A}} + \frac{\text{A}}{\text{A}} = \frac{\text{$

Mat./Querschnitt Beton C 30/37

Õ^• c^∄•\4¦} `} * ÁÛ`æ: ãc Betonstahl *B 500MA*

Dicke konstant h = 20.00 cm

Auftrags-Nr.	Position	martens+puller Ingenieurgesellschaft mbH
2023 300	D-2.1	ÙVPËÜPÄÄÜ¢4&\@`ãį ÁÛ>å

Expositionsklasse

*^{ êi ÁÖ OÞÁÖÞÁFJJ GËFËFÉVæà ÈÁ ÈF Position Seite ΚI Kommentar PL-1 XC3 oben { êi ât ^,ÁØ^ ~ &@^ WF Pê ~ at / fi a ^ l / fie} * ^ l ^ / fiz^ a fi feuchter Beton d[&\^} A a^\A cê} a A æ• XC1 unten Weitgehend trockener Beton WO

Seite: 2-18

Bewehrung Vorgaben zur Bewehrungsdefinition 20 Betondeckung Cmin,u/Cmin,o = 10 / mm 15 &def, uD &def, o =10 / mm 35 $c_{nom,u}/c_{nom,o} =$ 20 / mm Bewehrungsabstand $d'_{ru/su} =$ 30 / 30 mm $d'_{ro/so} =$ 30 / 30 mm Bewehrungsrichtung $W_{ru/su} =$ 0.0 / 90.0 w_{ro/so} = 0.0 / 90.0 Tænc^ÉAÙcêà^ Grundbewehrung Seite d'r a_{sg,r} d's asg,s <Ž{{aĐŽ&{á Ž& [mm] ₽a [mm] ₽)á Unten 2.27 2.27 30 30

Nachweisparameter nach DIN EN 1992-1-1

Oben

Tā å^•cà^. ^@`} * ÁÇIÈDÈÈDÁ `¦å^Áà^!>& • 3&@ā cÈ

Tæi*^à^}å^ÁS[{àã;ææã;}^}Á;æ&@ÁÖOÞÁÖÞÁFJJ€ Kombinationen

> Ew Einwirkungsname

Lastkombinationsnummer Lkn

c[| @ | | • & @ } a ^ Ac ^ | ê } a ^ | | a & @ A Da _ a \ ` } *

Öðl ÁÓ v ð ð ð ' * Á ð : ^|} ^ ¦ Á ð e cê|| Áð } ^ ¦ @ d à Áeiner Einwirkung wird mit diesem

30

3.35

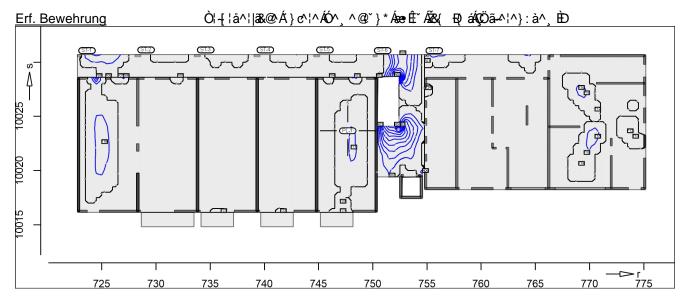
30

3.35

Ausgabeformat nicht dokumentiert.

Ew Gk Qk.N Grundkombination Lkn 1.50 ! 1-5 1.35

Seite: 2-19


Auftrags-Nr. Position

D-2.1

as,r,unten

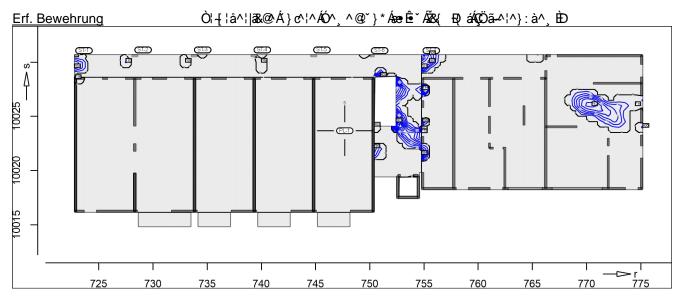
2023 300

Šê}*•à^¸^@`}*Á§ÁËÜæ&@`}*ÁŞÁ}¢^¦^¦ÁŠæ*^

Q[|ã,ã^}•c~^}ÁMÁFÈ€€Á&{ Ð

Achsabstand erf. Bewehrung: d'ru = 30 mm Achsabstand vorh. Bewehrung: d'ru = 30 mm Õ¦`}åà^, ^@`}*KÁæe*Él`ÁMÁGHČÜ Á&{ EQ

Punkt	Х	у	$m_{r,Ed}$	m _{s,Ed}	m _{rs,Ed}	m_{Ed}	a _{s,ru}	Lkn
		[m]	, -	-,	-, -	[kNm/m]	Ž&{ Đểá	
F01	754.78	10030	9.35	13.11	-14.54	23.88	0.58	2
F02	750.34	10029	15.63	4.66	-14.78	30.41	1.54	1
F03	748.32	10029	19.97	6.61	-12.72	32.69	1.88	1
F04	746.00	10029	15.85	3.49	8.37	24.22	0.63	2
F05	732.00	10029	18.24	2.30	-4.62	22.86	0.43	1
F06	727.00	10029	23.22	5.61	-5.62	28.84	1.31	2 2
F07	726.50	10029	11.48	4.25	-14.99	26.47	0.96	2
F08	724.50	10029	37.70	1.87	8.35	46.05	3.95	2
F09	725.36	10029	22.23	1.02	2.74	24.97	0.74	1
F10	769.00	10028	21.78	10.92	6.40	28.18	1.22	1
F11	769.50	10027	17.22	13.39	10.91	28.12	1.21	1
F12	770.50	10026	14.23	21.55	7.89	22.12	0.33	2
F13	773.50	10024	16.89	4.88	9.29	26.18	0.92	1
F14	774.00	10023	17.77	0.78	7.55	25.32	0.80	2
F15	770.50	10023	17.40	-6.54	-13.62	31.02	1.63	2
F16	725.00	10023	29.10	8.16	0.34	29.44	1.40	1
F17	748.00	10022	27.47	7.30	0.09	27.56	1.12	3
F18	769.50	10022	21.55	10.70	-4.39	25.94	0.89	2 2
F19	769.00	10021	23.62	14.60	-1.02	24.63	0.69	2
F20	747.00	10017	15.35	-3.94	-7.36	22.71	0.41	1
F21	747.00	10016	21.81	-11.44	-6.41	25.40	0.81	1
F22	741.50	10016	19.99	-11.18	-3.37	21.01	0.16	1
F23	736.00	10016	20.76	-11.24	-3.91	22.13	0.33	1
F24	754.88	10027	21.16	45.35	-1.88	23.04	0.46	3
R01	752.42	10024	88.34	9.19	30.27	118.61	15.98	1
R02	752.00	10029	38.91	4.16	17.80	56.71	5.62	2
R03	750.40	10024	4.36	-0.01	-21.04	25.41	0.81	2
R04	752.00	10024	78.29	-1.60	2.89	81.17	9.56	1
R05	752.50	10031	45.48	1.17	-4.18	49.65	4.51	2
R06	754.58	10020	11.35	-6.61	18.68	30.03	1.49	
R07	751.50	10019	15.51	-1.56	-10.72	26.23	0.93	1


Position 2023 300 D-2.1

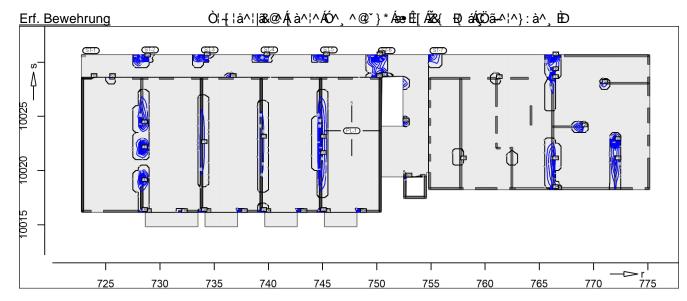
ÙVPËÜPÄÄÛ¢4&\@@ã ÁÛ>å

Seite: 2-20

as,s,unten

Šê}*•à^, ^@`}*Á§Á;ÉÜæ&@`}*ÁŞÁ}¢^¦^¦ÁŠæ*^

Q[|ã,ã^}•c~}ÂMÁ€ÌÈH€Á&{ Ð


Achsabstand erf. Bewehrung: d'su = 30 mm Achsabstand vorh. Bewehrung: d'su = 30 mm Õ¦`}åà^,^@`}*KÁsee*Êe`ÁMÁGÁĞİÁ&{ Ð;

Punkt	Х	y [m]	$m_{r,\text{Ed}}$	$m_{\text{s},\text{Ed}}$	$m_{\text{rs},\text{Ed}}$	m _{Ed} [kNm/m]	a _{s,su} Ž&{ Ð(á	Lkn
F01	754.78	10030	-1.41	17.22	-15.87	33.09	1.94	2
F02	754.78	10024	-4.13	4.63	17.15	21.78	0.28	1
F03	750.40	10022	0.99	8.53	-19.57	28.11	1.20	1
F04	754.78	10021	2.35	35.48	-2.30	37.78	2.66	1
F05	754.78	10027	-0.58	16.57	-9.02	25.59	0.83	2
F06	754.88	10025	5.49	26.70	-0.65	27.35	1.09	4
F07	755.50	10030	-9.39	9.22	-21.59	30.81	1.60	2
F08	740.00	10030	-13.25	8.95	-13.01	21.73	0.27	1
F09	733.00	10030	-6.00	7.37	13.49	20.86	0.14	2
F10	727.50	10030	-10.22	8.69	13.52	22.21	0.34	2
F11	774.50	10026	8.48	11.70	-9.99	21.69	0.26	2
F12	770.50	10026	11.70	23.19	10.00	33.19	1.96	1
F13	754.78	10024	0.00	19.39	19.02	38.41	2.76	1
F14	754.88	10027	21.23	46.70	-1.76	48.47	4.32	4
F15	722.84	10028	11.67	14.67	7.38	22.05	0.32	2
R01	752.42	10025	-12.82	22.51	33.81	56.32	5.56	1
R02	751.00	10029	-3.54	5.45	28.18	33.63	2.03	1
R03	750.40	10024	4.36	-0.01	-21.04	21.03	0.17	2
R04	722.74	10030	0.19	15.05	-12.86	27.91	1.18	2
R05	755.50	10031	-1.76	-3.14	-32.11	28.97	1.33	2
R06	775.19	10024	3.50	13.82	8.72	22.55	0.39	2

as,r,oben

Šê}*•à^¸^@*}*Á§ÁËÜæ&@*}*Á§Á;à^¦^¦ÁŠæ*^

Seite: 2-21

Q[|ã,ã^}•c~^}ÁMÁ€ĚL€Á&{ Ð

Achsabstand erf. Bewehrung: $d'_{ro} = 30 \text{ mm}$ Achsabstand vorh. Bewehrung: $d'_{ro} = 30 \text{ mm}$ $\tilde{O}()^* \hat{a}_{n}^$

			Oi jaan, nee	} neece π[w∧w.π	בוו אמאק ובץ			
Punkt	X	У	$m_{r,Ed}$	$m_{s,Ed}$	$m_{rs,Ed}$	m_{Ed}	a _{s,ro}	Lkn
		[m]				[kNm/m]	Ž&{ Ð()á	
ST-2			-50.58	3.78	2.56	-52.32	3.85	2
ST-3			-39.19	6.43	0.80	-39.29	1.83	2
ST-4			-39.83	6.43	-1.03	-40.00	1.94	2 2 2
ST-5			-37.09	6.91	1.12	-37.27	1.52	2
ST-6			-60.44	3.53	4.05	-64.49	5.77	2
ST-7			-62.91	-32.82	-13.78	-76.69	7.75	1
F01	725.36	10029	-28.25	0.35	5.14	-33.39	0.95	2 2
F02	723.65	10029	-20.60	-0.86	7.10	-27.70	0.12	2
F03	728.60	10030	-48.99	-2.17	-9.23	-58.22	4.78	1
F04	734.10	10031	-44.49	-8.94	-8.00	-52.49	3.87	1
F05	739.60	10031	-46.56	-8.49	-9.84	-56.40	4.49	1
F06	745.10	10031	-44.31	-7.84	-6.51	-50.82	3.61	1
F07	750.02	10031	-66.85	-8.54	11.68	-78.53	8.05	1
F08	736.51	10029	-39.59	-0.40	-0.80	-40.39	2.00	2
F09	750.00	10029	-55.32	-2.49	-0.64	-55.96	4.42	1
F10	744.82	10023	-40.46	-8.20	0.32	-40.78	2.06	3
F11	739.32	10023	-32.20	-6.55	-0.08	-32.28	0.79	3 2 2 5 2
F12	733.82	10023	-32.54	-6.62	0.07	-32.61	0.84	2
F13	744.82	10022	-40.23	-8.15	-0.29	-40.52	2.02	5
F14	772.01	10021	-41.44	-13.30	-1.45	-42.89	2.38	2
F15	766.24	10021	-38.88	-7.48	2.27	-41.15	2.11	1
F16	757.74	10021	-26.93	-5.26	0.71	-27.64	0.11	1
F17	728.32	10019	-48.42	-21.86	2.17	-50.60	3.58	3
F18	732.00	10016	-35.64	-21.02	-6.98	-42.61	2.34	2
F19	728.32	10016	-27.03	-12.63	11.57	-38.60	1.72	1
F20	733.82	10016	-35.50	-15.77	5.62	-41.12	2.11	1
F21	739.32	10016	-30.47	-12.07	8.73	-39.19	1.82	1
F22	744.82	10016	-31.21	-11.44	5.64	-36.85	1.46	1
F23	766.24	10028	-38.91	-15.47	11.43	-50.34	3.54	2
F24	766.24	10018	-33.88	-5.99	-5.07	-38.94	1.78	2 2
F25	772.01	10023	-59.63	-53.19	-2.50	-62.13	5.40	2

Auftrags-Nr. Position

D-2.1

D-2.1

D-2.1

D-2.1

D-2.1

D-2.1

D-2.1

D-2.1

D-2.1

D-2.1

D-2.1

D-2.1

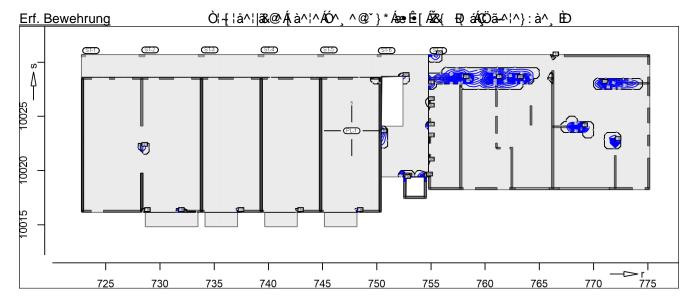
D-2.1

D-2.1

D-2.1

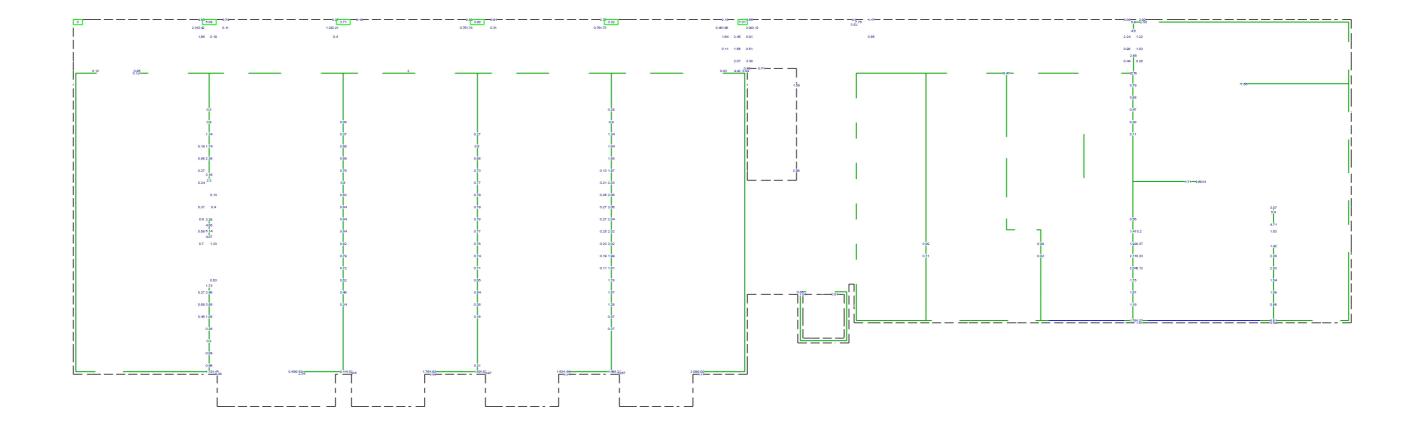
Punkt	X	y [m]	$m_{r,\text{Ed}}$	$m_{s,Ed}$	$m_{\text{rs},\text{Ed}}$	m _{Ed} [kNm/m]	a _{s,ro} Ž&{E)á	Lkn
F26	768.95	10024	-42.20	-65.33	-2.48	-44.68	2.66	2
F27	761.05	10028	-28.68	-76.65	1.40	-30.09	0.47	2
F28	770.80	10028	-36.65	-54.23	0.85	-37.50	1.56	2
F29	766.26	10029	-33.04	-8.45	11.80	-44.84	2.68	2
F30	766.26	10031	-53.29	-18.45	11.98	-65.27	5.90	2
F31	728.32	10022	-59.42	-30.76	1.12	-60.54	5.14	5
F32	728.32	10024	-47.12	-20.20	-0.77	-47.89	3.16	3
R01	752.68	10019	-12.93	-50.92	-21.10	-34.03	1.04	2
R02	752.42	10025	-12.82	22.51	33.81	-46.64	2.96	1
R03	750.40	10029	-31.50	25.25	7.01	-33.44	0.96	2
R04	750.21	10031	-79.18	1.62	5.15	-84.32	9.01	2
R05	766.50	10018	-34.07	-1.10	-3.49	-37.56	1.57	2
R06	748.50	10016	-39.34	-5.17	-14.63	-53.97	4.11	2
R07	745.16	10016	-24.06	-5.65	7.41	-31.47	0.67	1
R08	743.00	10016	-36.12	-4.45	-12.97	-49.09	3.34	2
R09	739.66	10016	-22.81	-6.30	10.72	-33.53	0.97	1
R10	737.50	10016	-37.72	-4.65	-12.96	-50.68	3.59	2
R11	734.16	10016	-22.98	-5.83	7.99	-30.98	0.60	1
R12	728.64	10016	-22.55	-8.77	6.90	-29.45	0.38	1

2023 300

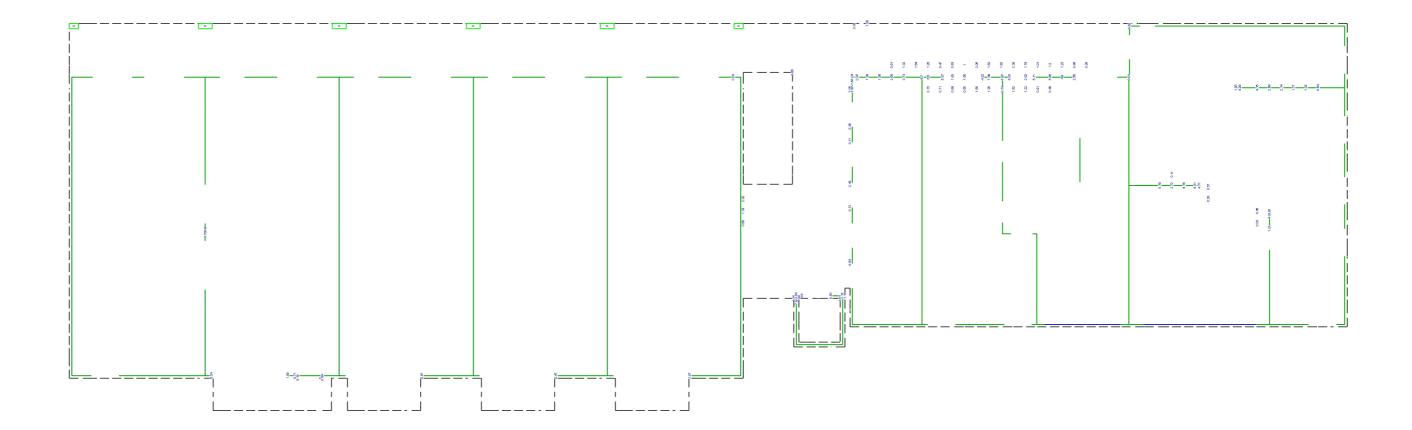

D-2.1

ÙVPËÜPÄÄÛ¢4&\@@ã ÁÛ>å

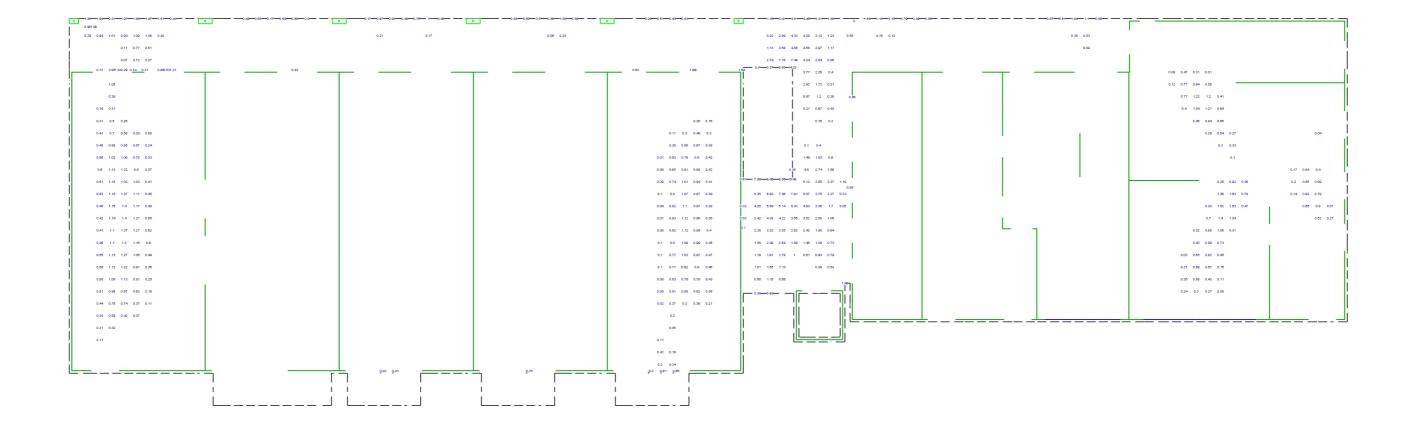
Seite: 2-23

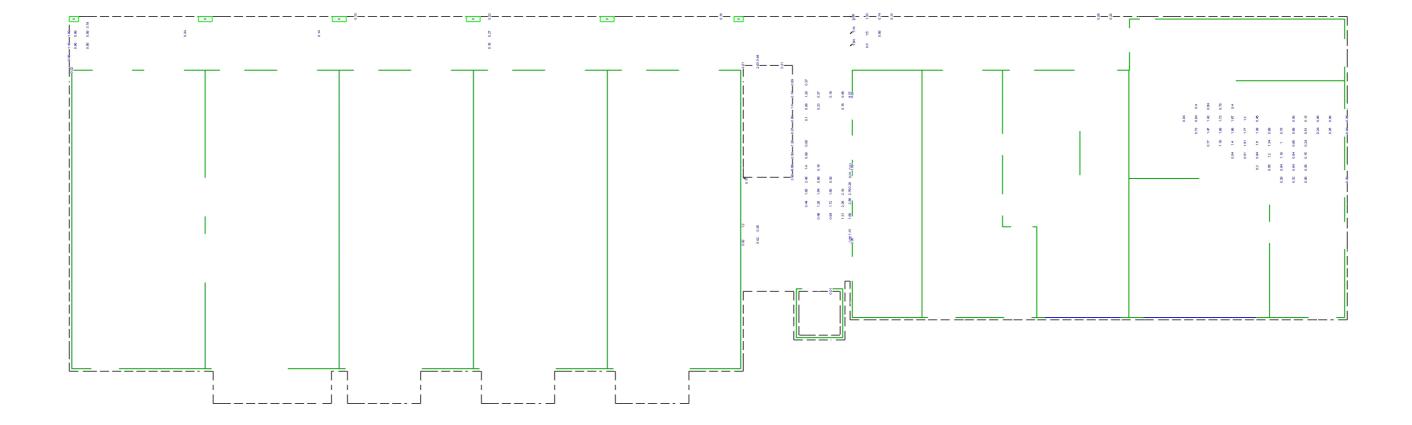

as,s,oben

Šê}*•à^, ^@`}*Á§Á;ÉÜæ&@č}*Á§Á;à^¦^¦ÁŠæť^



@[|ajan}•c~}ÁMÆÈE€Á&{ ED


Achsabstand erf. Bewehrung: $d'_{so} = 30 \text{ mm}$ Achsabstand vorh. Bewehrung: $d'_{so} = 30 \text{ mm}$ $\tilde{O}|^{*}$ a^{*} | Punkt | Х | У | $m_{r,Ed}$ | $m_{s,Ed}$ | $m_{rs,Ed}$ | m_{Ed} | $a_{s,so}$ | Lkn |
|-------|--------|-------|------------|------------|-------------|----------|------------|-----|
| | | [m] | | | | [kNm/m] | Ž&{ Ð()á | |
| ST-7 | | | -61.00 | -32.51 | -14.58 | -47.09 | 3.03 | 2 |
| F01 | 754.78 | 10028 | -15.46 | -37.82 | -9.38 | -47.21 | 3.05 | 1 |
| F02 | 754.78 | 10026 | 0.02 | -23.42 | 4.21 | -27.63 | 0.11 | 1 |
| F03 | 750.40 | 10024 | -0.84 | -20.04 | -20.52 | -40.56 | 2.02 | 2 |
| F04 | 754.78 | 10023 | 0.17 | -25.08 | 2.70 | -27.77 | 0.13 | 1 |
| F05 | 754.78 | 10021 | -1.57 | -22.05 | 8.55 | -30.60 | 0.54 | 1 |
| F06 | 754.78 | 10026 | -0.96 | -18.90 | -10.46 | -29.36 | 0.36 | 2 |
| F07 | 754.78 | 10024 | -2.40 | -22.82 | 20.43 | -43.25 | 2.44 | 2 |
| F08 | 763.00 | 10028 | -19.01 | -61.07 | 3.88 | -64.96 | 5.85 | 2 |
| F09 | 758.00 | 10028 | -19.27 | -63.63 | -5.39 | -69.01 | 6.50 | 2 |
| F10 | 772.01 | 10023 | -59.63 | -53.19 | -2.50 | -55.69 | 4.38 | 2 |
| F11 | 768.95 | 10024 | -42.20 | -65.33 | -2.48 | -67.81 | 6.31 | 2 |
| F12 | 761.05 | 10028 | -28.68 | -76.65 | 1.40 | -78.05 | 7.97 | 2 |
| F13 | 770.80 | 10028 | -36.65 | -54.23 | 0.85 | -55.08 | 4.28 | 2 |
| F14 | 766.26 | 10031 | -53.29 | -18.45 | 11.97 | -30.42 | 0.52 | 1 |
| F15 | 728.58 | 10016 | -23.86 | -15.50 | 13.04 | -28.54 | 0.24 | 1 |
| F16 | 731.71 | 10016 | -23.67 | -28.17 | -6.17 | -34.34 | 1.09 | 2 |
| F17 | 737.21 | 10016 | -25.93 | -18.19 | -12.84 | -31.03 | 0.61 | 2 |
| F18 | 742.71 | 10016 | -24.84 | -17.57 | -12.50 | -30.07 | 0.47 | 2 |
| F19 | 748.21 | 10016 | -25.97 | -19.16 | -15.03 | -34.19 | 1.07 | 2 |
| F20 | 752.58 | 10019 | -11.10 | -77.17 | 0.87 | -78.03 | 7.97 | 1 |
| F21 | 728.32 | 10022 | -57.01 | -31.99 | -0.35 | -32.34 | 0.80 | 1 |
| R01 | 754.38 | 10019 | -7.58 | -29.46 | 17.51 | -46.97 | 3.01 | 1 |
| R02 | 752.68 | 10019 | -12.93 | -50.92 | -21.10 | -72.02 | 6.99 | 2 |
| R03 | 752.42 | 10029 | 80.86 | -21.78 | -27.79 | -31.33 | 0.65 | 1 |
| R04 | 755.50 | 10031 | -2.71 | -3.54 | -32.17 | -35.71 | 1.29 | 1 |
| R05 | 754.58 | 10020 | -7.40 | -20.94 | 13.58 | -34.52 | 1.11 | 1 |
| R06 | 752.48 | 10019 | -7.50 | -58.64 | 8.83 | -67.47 | 6.25 | 2 |
| | | | | | | | | |


: `} W YbVYa Yggi b[Erforderliche Bewehrung as,erf (Differenzbew.)		Modell	ÖËJÈÁÖ^&\^Ásà^¦ÁŒĂJŐ		æi•œaàkÁFkFÍÍ
Vorhandene Bew. as,vorh = 3.35 (Grund+Zulagen)			Bauvorhaben		'	ær • Cæanwarn⊤ii
Beton C 30/37	aus allen Nachweisen	l m-p		ÙVPËÜPÆÄÛ¢4&\@`ãį ÁÛ>å		
BewAbstand d' = 30 mm	¦EÜa&@č}*Áįà^}Á§AŽ&(Đ)á				Datum	13.02.2024
Bauteildicke h = 20.00 cm	Max = 7.75 (Kn. 102), Min = 0 (Kn. 27)	m+p Ingenieurgesellscha	ft mbH - Pocke	lsstr.7 - 38106 Braunschweig - Tel. 0531 / 238 32 - 0	Seite	2-24

ÖËÐÈÁÖ^&\^Ásà^¦ÁŒÁUÕ Modell : `} W YbVYa Yggi b[Erforderliche Bewehrung as,erf (Differenzbew.) Tæi•cæàkÁFKFÍÍ Bauvorhaben 2023 300 Vorhandene Bew. as,vorh = 3.35 (Grund+Zulagen) m-p ÙVPËÜPÆÄÛ¢4&\@^ā(AÛ>å Beton C 30/37 aus allen Nachweisen Datum 13.02.2024 •ËÜ&&@č}*Áţà^}ÁşÆ&{ Ð[á Bew.-Abstand d' = 30 mm Max = 7.97 (Kn. 86), Min = 0 (Kn. 27) m+p Ingenieurgesellschaft mbH - Pockelsstr.7 - 38106 Braunschweig - Tel. 0531 / 238 32 - 0 Bauteildicke h = 20.00 cm Seite 2-25

: `} W YbVYa Yggi b[Erforderliche Bewehrung as,erf (Differenzbew.)		Modell	ÖÜTÜTÄÖ^&\^Ásà^\ÁŒÄJŐ	т	æi•cæàkÁFKFÍÍ
Vorhandene Bew. as,vorh = 2.27 (Grund+Zulagen)			Bauvorhaben		'	at Casamanni I
Beton C 30/37	aus allen Nachweisen	m-p		ÙVPËÜPÄÄÄÜ¢4&\@`ãĮ ÁÜ>å		
BewAbstand d' = 30 mm	¦EÜa&@č}*Á}c^}ÁsjÃ&{ Ð(á				Datum	13.02.2024
Bauteildicke h = 20.00 cm	Max = 15.98 (Kn. 37), Min = 0 (Kn. 27)	m+p Ingenieurgesellscha	ft mbH - Pockel	lsstr.7 - 38106 Braunschweig - Tel. 0531 / 238 32 - 0	Seite	2-26

: `} WY YbVYa Yggi b[Erforderliche Bewehrung as,erf (Differenzbew.)		Modell	ÖËSËÆÖ^&\^Ásà^¦ÆŒÄJÕ	т	æi•cæàkÁFKFÍÍ
Vorhandene Bew. as,vorh = 2.27 (Grund+Zulagen)			Bauvorhaben		'	at • Casanarni II
Beton C 30/37	aus allen Nachweisen	m-p		ÙVPËÜPÄÄÄÜ¢I&I@Aį AÛ>å		
BewAbstand d' = 30 mm	•ËÜ3&@č}*Á;}¢}Áş,Ã&(Ð(á				Datum	13.02.2024
Bauteildicke h = 20.00 cm	Max = 5.56 (Kn. 1795), Min = 0 (Kn. 27)	m+p Ingenieurgesellscha	ft mbH - Pocke	lsstr.7 - 38106 Braunschweig - Tel. 0531 / 238 32 - 0	Seite	2-27

Seite: 2-28

2023 300

D-2.1

ÙVPËÜPÄÄÜ¢4&\@ã ÁÛ>å

Querkraft Pl-As-Iso

Querkraftbemessung Plattenbereiche

PL-1

Querkraftbemessung der Platte (Isolinien)

Querkraftbemessung nach DIN EN 1992-1-1

Beton C 30/37, Betonstahl B 500SA

Õ^• c^ā,•\4¦} `} * ÁÛ `æ: ãc

Druckstrebenneigung wurde vom Programm optimiert.

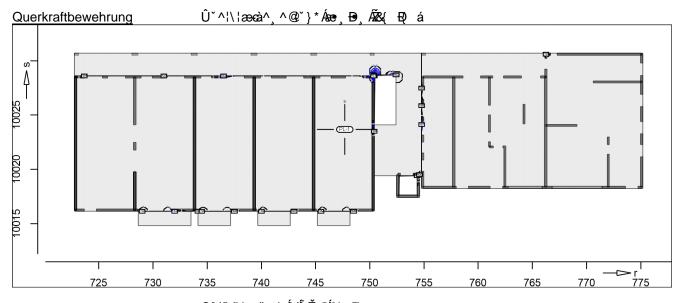
Mindestbewehrung (9.3.2) wurde nicht ermittelt.

Dicke konstant h = 20.00 cm

Kombinationen

Tæi *^à^}å^ÁS[{ à ∄] ææã[}^}Ájæ&@ÁÖODÞÁFJJ€

Ew Einwirkungsname

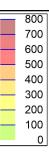

Lkn Lastkombinationsnummer

! ç[¦@¦¦•&@}å^Áç^¦ê}å^¦|&&@ÁÒą¸ã\`}*

Öð ÁÓ 🌣 🎁 * Áð : ^|} ^ ¦ Ášæ cê|| /Ás } ^ ¦ @ þ Ásiner Einwirkung wird mit diesem

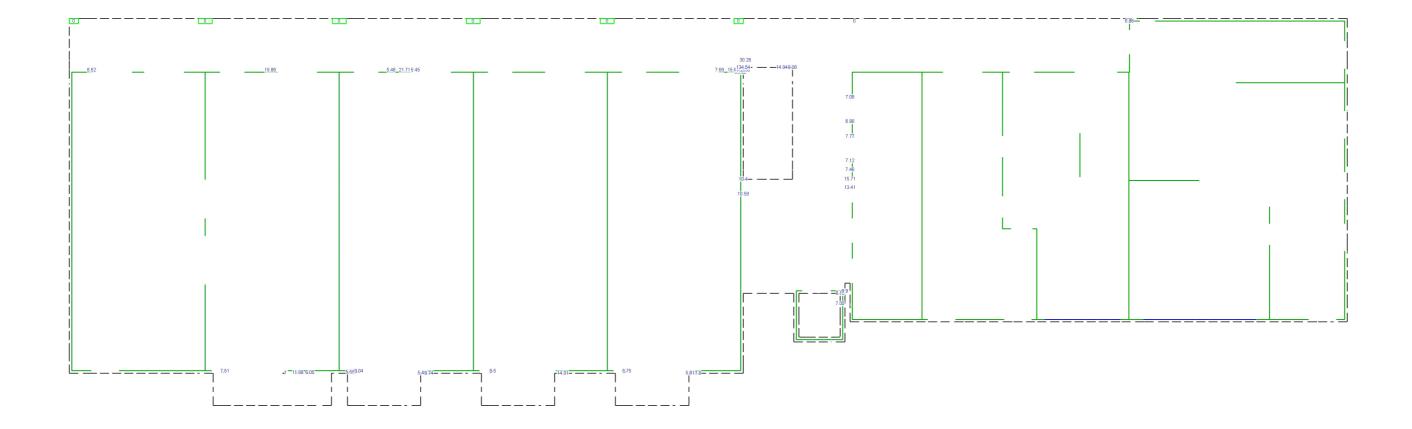
Ausgabeformat nicht dokumentiert.

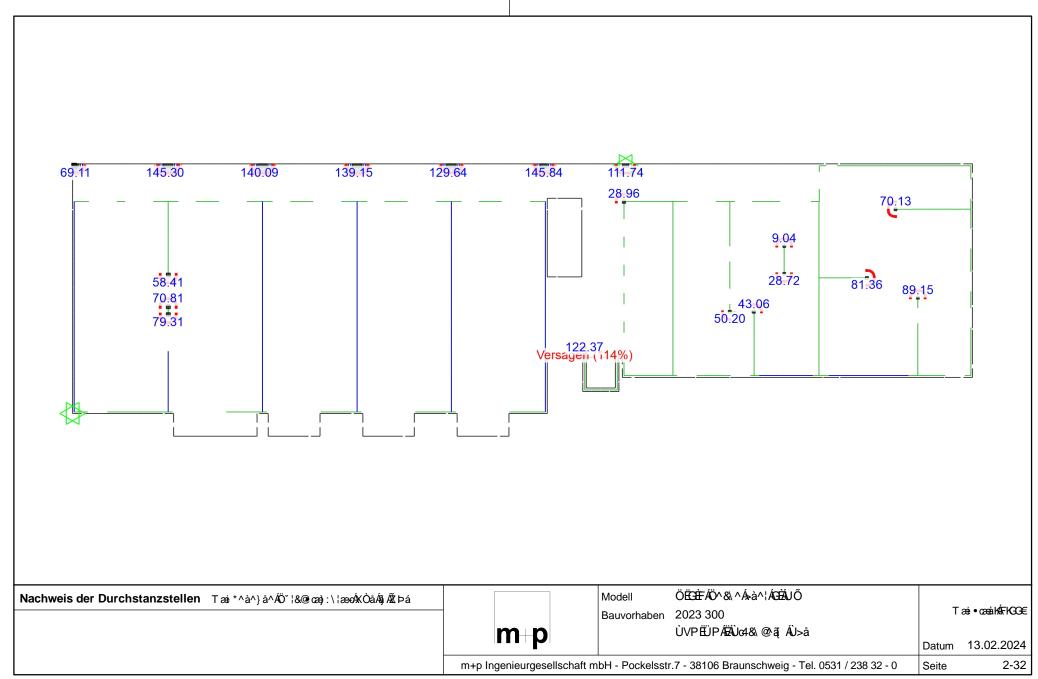
Ew	Gk	Qk.N
Lkn	Grundkombination	
1-3	1.35	1.50 !


Q[|ã,ã^}•č.^}ÁMÄ,Ě,€Á&{ Ð;

Punkt	X	у	vEd	vEd,res	vRd,c	vRd,max	asw/sw	Summe	Lkn
		[m]				[kN/m]		Ž&{ Ð; á	
F01	750.34	10029	r -351.7	446.1	92.2 m	610.9	49.91	85.70	1
		5	274.4		92.2 m	588.5	35.79		
F02	736.51	10029	r 11.5	197.6	92.2 m	401.6	0.00	21.71	2
		5	197.2		92.2 m	537.1	21.71		
F03	731.00	10029	r 14.6	165.9	92.2 m	497.3	0.00	15.86	2
		5	165.2		92.2 m	492.3	15.86		
F04	723.65	10029	r 33.6	121.4	92.2 m	497.3	0.00	8.52	2
		5	116.6		92.2 m	401.6	8.52		
F05	754.78	10027	r 97.0	116.5	92.2 m	401.6	7.08	7.08	3

Auftrags-Nr. Position | I | I | Ingenieurgesellschaft mbH | 2023 300 | D-2.1 | ÛVPËJPÆÄJc4&\@a ÁJ>å | Seite: 2-29


Punkt	x	y [m]		vEd	vEd,res	vRd,c	vRd,max [kN/m]	asw/sw	Summe Ž&{ Ð} á	Lkn
		[III]	s	-64.5		92.2 m	401.6	0.00	<u> Δ</u> Χς την α	
F06	754.78	10026	r	-106.4	109.2	92.2 m	401.6	7.77	7.77	1
1 00	754.76	10020	S	-24.2	103.2	92.2 m	497.3	0.00	7.77	
F07	754.78	10024	r	-24.2 -164.4	178.7	92.2 m	497.3	15.71	15.71	1
107	734.70	10024		70.1	170.7	92.2 m	401.6	0.00	13.71	'
F08	750.40	10024	s r	136.3	136.5	92.2 m	421.7	10.59	10.59	1
ruo	750.40	10024		7.2	130.3	92.2 m	401.6	0.00	10.59	ı
E00	745 50	40040	S		100.1	92.2 m			0.75	4
F09	745.50	10016	r	119.8	120.1		401.6	8.75	8.75	1
E40	740.00	40040	S	-7.6	440.5	92.2 m	497.3	0.00	0.50	
F10	740.00	10016	r	116.4	116.5	92.2 m	401.6	8.50	8.50	1
-44	704.50	40040	S	-4.3	4040	92.2 m	497.3	0.00	2.24	
F11	734.50	10016	r	123.8	124.0	92.2 m	401.6	9.04	9.04	1
			S	-7.0		92.2 m	497.3	0.00		_
F12	732.00	10016	r	10.1	177.8	92.2 m	497.3	0.00	11.88	2
			S	-177.5		92.2 m	548.5	11.88		
F13	729.00	10016	r	102.9	103.8	92.2 m	401.6	7.51	7.51	1
			S	13.9		92.2 m	401.6	0.00		
F14	766.26	10031	r	34.4	121.3	92.2 m	497.3	0.00	6.86	2
			S	116.3		92.2 m	497.3	6.86		
R01	754.38	10019	r	84.5	162.5	92.2 m	401.6	0.00	8.19	1
			S	-138.9		92.2 m	497.3	8.19		
R02	752.42	10029	r	124.0	124.1	104.6	401.6	9.06	9.06	1
			s	4.2		92.2 m	401.6	0.00		
R03	750.40	10029	r	514.3	702.3	92.2 m	769.1	61.53	134.54	2
			s	478.3		92.2 m	628.0	73.01		
R04	750.40	10029	r	371.1	713.9	92.2 m	614.5	53.44	129.06	1
			s	609.8		92.2 m	779.0	75.62		
R05	754.58	10020	r	-121.9	122.0	92.2 m	401.6	8.90	8.90	2
			s	-5.2		92.2 m	497.3	0.00		
R06	748.50	10016	r	-13.9	176.4	92.2 m	497.3	0.00	17.80	2
			S	-175.8		92.2 m	509.9	17.80		
R07	743.00	10016	r	-7.9	156.9	92.2 m	497.3	0.00	14.31	2
	0.00	10010	s	-156.7	.00.0	92.2 m	475.5	14.31		_
R08	737.50	10016	r	-8.8	163.2	92.2 m	497.3	0.00	9.74	2
	707.00	10010	S	-163.0	100.2	92.2 m	502.4	9.74	J., 4	_
R09	734.16	10016	r	94.1	115.1	92.2 m	497.3	5.55	5.55	1
1100	704.10	10010	S	-66.3	110.1	92.2 m	497.3	0.00	5.55	'
та *^-	. o ∧lann areann ar nic	N► Æ LLOŒŒŒÃÕ	A SEC	-00.3		32.2 III	431.3	0.00		



Querkraftbemessung	Ó^{ ^••ˇ}*•˘ˇ^¦\¦æơ∳çÒåÊ^•Áæĕ•ÁV¦æª÷êŒã\^ãæ}æ	* '	Modell Bauvorhaben	ÖÜÜÜÜÄÖ^&\^Á>à^¦ÁŒÄJŐ 2023 300 ÙVPÜÜPÆÄJG4&\@`Ą ÁÙ>å	T	aai•oaaak√aFkFÍÍ 13.02.2024
Max = 713.85, Min = 0, Step = 100		m+p Ingenieurgesellscha	ft mbH - Pocke	sstr.7 - 38106 Braunschweig - Tel. 0531 / 238 32 - 0	Seite	2-30

MicroFe 2022.052

	Querkraftbemessung	Û`^¦\¦ææà^,^@`}*Áæ•,Ð,Áæĕ•Áæ∰^}Áræ&@,^ār^}Á		Modell Bauvorhaben	ÖÜÜÜEÄÜ^&\^Á>à^¦ÁŒÄJŐ 2023 300 ÙVPEÜPÆÄJG4&\@A(AÛ)>å	T Datum	æi•œaùKaFkFÍÍ 13.02.2024
1	Max = 134.54, $Min = 0$		m+p Ingenieurgesellscha	ft mbH - Pocke	sstr.7 - 38106 Braunschweig - Tel. 0531 / 238 32 - 0	Seite	2-31

Auftrags-Nr.	Position	martens+puller
2023 300	D-2.1	ÙVPËÜPÆÄÜ¢&\@@ĄÁÛ>å

Durchstanznachweise

Nachweis der Durchstanzstellen

DS-1

Durchstanznachweis nach DIN EN 1992-1-1

<u>Angaben</u>

Beton C 30/37, Betonstahl B 500MA

Šæ• c^ā, |^āc`} * • √ê&@K

Rechteck	b(r)	=	38.0	cm
	h(s)	=	20.0	cm
Plattendicke	h_0	=	20.0	cm
Tãod ÉÁn cææãn & @ ÁÞ c @ 4 @	d_{m}	=	17.0	cm
Šê} *•à^, ^@`}*	$a_{s,m}$	=	3.35	&(E)
Šê}*•à^¸^@`}*•*¦æå	l,vorh	=	0.20	%
	l,zul	=	1.96	%
Tæi*ÉÄÖˇ¦&@eæ);:\¦æec	V_{Ed}	=	69.1	kN
Šæ• c^¦@4@}*• -æ4 q[¦		=	1.50	

Seite: 2-33

Nachweis

Durchstanzbewehrung Asw ist erforderlich.

Ø⊳¦ÁsanÁ, æi*^à^}å^ÁÓ^|æ•č}*••ãčæāā;}Á¸`¦å^ÁsanÁ, ãcd^¦^ÁŠê}*•à^¸^@^`}*Á asm an der Oberseite à^ l>& • 2&@2 dÈ

ÖāN•^ÁŠê}*•à^ ^@°}*Áã ơÁફ}^\@edàÁå^•Á*^•æf c^}Áê°i^!^}Áܰ}å•&@ ão•Á

a): `[| å} ^} Á } å Ásě i ^ | @eþà Ádieses Rundschnitts zu verankern.

Òā ^ÁÚ > c ^} \[] -ç^! • œ̂|\` } * Á ā å Á ææ ÁÚ > c ^} æð æ æ æ æ

Öā ÁÖ ' &@ æ): \ | æóÁ Òå Á¸ ` | å ^Áse ÁÚ > c ^} æ) • &@ āæ Ásusgewertet. Mindestbewehrung (NCI Zu 9.4.3(2)) wurde à^¦>& • &@㠜㠜ã

Kombinationen

Tæi*^à^}å^ÁS[{àã;ææã;}^}Á;æ&@ÁÖOÞÁÖÞÁFJJ€

Ew Einwirkungsname

Lastkombinationsnummer Lkn

c[| @ | | • & @ | a^Ac^| ê | a^| | a @ AOa | a | ~ a | *

Öð ÁÓ c đã ` } * Á ð : ^|} ^ ¦ Á ð e cê|| ^ Á b } ^ ¦ @ dà Áeiner Einwirkung wird mit diesem

Ausgabeformat nicht dokumentiert.

Ew	Gk	Qk.N
Lkn	Grundkombination	
1	1.35	1.50 !

Rund-	Abstand	u	vEd	vRd,c	vRd,max	minAsw	erfAsw
schnitt	[cm]	[m]			ŽD-Ð[{ á		Ž&{ á
U1	8.50	0.71	0.855			0.53	1.14
U2	21.25	0.91	0.667			0.68	0.68
Ucrit	34.00	1.11	0.547 >	0.542			
			m		0.759		
Uout	34.70	1.13	0.542	0.542			

Breite des zu bewehrenden Bereiches lw = 21.3 cm

erforderlich.

Auftrags-Nr.	Position	Ingenieurgesellschaft mbH	
2023 300	D-2.1	ÙVPËÜPÄÄÜ¢&\@`ã ÁÙ>å	Seite: 2-34

DS-2 Durchstanznachweis nach DIN EN 1992-1-1

Angaben Beton C 30/37, Betonstahl B 500MA

Šæ• c^ā, |^āc`} * • √ê&@K

Rechteck	b(r)	=	56.0	cm
	h(s)	=	20.0	cm
Plattendicke	h_0	=	20.0	cm
Tãod ÉÁn caseãn & @ ÁÞ c @ 4 @	d_{m}	=	17.0	cm
Šê} *•à^ , ^@ `}*	a _{s,m}	=	5.31	&{ D)
Šê∫*•à^¸^@`∫*•*¦æå	l,vorh	=	0.31	%
	l,zul	=	1.96	%
Tæi*ÈÄÖˇ¦&@eæ);:\¦æec	V_{Ed}	=	145.3	kN
Šæ• c^¦@4@} * • -æ•\ d ¦		=	1.50	

Nachweis Durchstanzbewehrung Asw ist erforderlich.

Ø>¦ÁsanÁ, æi*^à^}å^ÁÓ^|æ•č}*••ãčæāā;}Á¸`¦å^ÁsanÁ, ãcd^¦^ÁŠê}*•à^¸^@`}*Á

asm an der Oberseite à^ l>& • 3&@2 dÈ

Öā^•^Ášê} *•à^¸^@*} *Áã ơ⁄ã} }^¦ @æţà Áå^•Á¹^•æ{ c^} Áê*i^¦^} ÁÜ*} å•&@ ãæ•Á

a): `[¦å}^}Á'}åÁsě i ^¦@spàÁdieses Rundschnitts zu verankern.
Òā ^ÁÜ>c ^}\[] -ç^!•œ̂!\`}*Á; ãåÁý æ‰sé\-&&•æådè
ÖæÁÖ`¦&@æà;\¦æóÁXÒåÁ; ¦å^Ásé; ÁÜ>c^}æð; &@; æósausgewertet.

Mindestbewehrung (NCI Zu 9.4.3(2)) wurde à^¦>& • & œ tÈ

Kombinationen Tæi*^à^}å^ÁS[{àã}æaã[}^}Á;æ&@ÄÖOD•ÁÖÞÁFJJ€

> Ew Einwirkungsname

Lkn Lastkombinationsnummer

ç[| @ | | • & @ } a ^ Aç ^ | ê } a ^ | | a & @ A Da , a \ ` } *

Öðl ÁÓ v ð ð ð ' * Á ð : ^|} ^ ¦ Á ð e cê|| Áð } ^ ¦ @ d à Áeiner Einwirkung wird mit diesem Ausgabeformat nicht dokumentiert.

Ew	Gk	Qk.N
Lkn	Grundkombination	
1	1.35	1.50 !

Rund-	Abstand	u	vEd	vRd,c	vRd,max	minAsw	erfAsw
schnitt	[cm]	[m]			Ž>Đ(á		Ž&{ á
U1	8.50	1.07	1.202			0.79	3.79
U2	21.25	1.47	0.874			1.09	2.13
U3	34.00	1.87	0.686			1.39	1.52
Ucrit	34.00	1.87	0.686 >	0.542			
			m		0.759		
Uout	49.80	2.36	0.542	0.542			

Breite des zu bewehrenden Bereiches Iw = 34.0 cm

Ó^ā^ā^ā^{ A (ād^\^) AŠê}*•à^. ^@*)*•*^@doáe { ÁMÁFHÌ Á& D Ásè Ás^¦Á Oberseite innerhalb des \ | aaa &@ \ AU \ a & & aa A ê | ^A ^a ^A Durchstanzbewehrung erforderlich.

Auftrags-Nr. Position

2023 300 D-2.1

DS-3

Durchstanznachweis nach DIN EN 1992-1-1

Ø⊳¦Ásãn•^ÁÚ[•ããa]}Á[}} c^Ás^\án=æ&@^^ã-Á;ã&@Ás^¦&@^->@oÁ;^¦å^}ÈÁà^\]¦>-^}Á Sie bitte Ihre Angaben!

Seite: 2-35

Auftrags-Nr.	Position	Ingenieurgesellschaft mbH	
2023 300	D-2.1	ÙVPËÜPÄÄÄÜd&\@AŢÁÛ>å	Seite: 2-36

DS-4 Durchstanznachweis nach DIN EN 1992-1-1

Angaben Beton C 30/37, Betonstahl B 500MA

> Šæ• c^ā, |^āc`} * • √ê&@K Rechteck b(r) 56.0 cm h(s) 20.0 cm Plattendicke h_0 20.0 cm Tãnd ÉÁ casaã & @ ÁP c @ 4 @ d_{m} 17.0 cm Šê}*•à^, ^@*}* Šê}*•à^, ^@*}*•*¦æå $a_{s,m}$ 4.86 & Đ 0.29 % I,vorh 1.96 % l,zul Tæi*ÈÄÖ`¦&@eæ):\¦æec V_{Ed} 140.1 kΝ

Durchstanzbewehrung Asw ist erforderlich. **Nachweis**

Šæ• c^¦@4@{}*•~æ\d[¦

Ø>¦ÁsanÁ, æi*^à^}å^ÁÓ^|æ•č}*••ãčæāā;}Á¸`¦å^ÁsanÁ, ãcd^¦^ÁŠê}*•à^¸^@`}*Á

1.50

asm an der Oberseite à^ | > & • 2& @2 dE

ÖāN•^ÁŠê}*•à^、^@^`}*ÁãróÁ§}^¦@aqàÁå^•Áf^•æ(c^}Áê`i^¦^}ÁÜ`}å•&@,ãæ•Á

a): `[¦å}^}Á'}åÁsě i ^¦@spàÁdieses Rundschnitts zu verankern.
Òā ^ÁÜ>c ^}\[] -ç^!•œ̂!\`}*Á; ãåÁý æ‰sé\-&&•æådè
ÖæÁÖ`¦&@æà;\¦æóÁXÒåÁ; ¦å^Ásé; ÁÜ>c^}æð; &@; æósausgewertet.

Mindestbewehrung (NCI Zu 9.4.3(2)) wurde à^¦>& • & œã œã œã

Kombinationen Tæi*^à^}å^ÁS[{àã}æaã[}^}Á;æ&@ÄÖOD•ÁÖÞÁFJJ€

> Ew Einwirkungsname

Lkn Lastkombinationsnummer

c[| @ | | • & @ } a^Ac^| ê } a^| | a& @ AOa _ a\ ` } *

Öðl ÁÓ v ð ð ð ' * Á ð : ^|} ^ ¦ Á ð e cê|| Áð } ^ ¦ @ d à Áeiner Einwirkung wird mit diesem Ausgabeformat nicht dokumentiert.

Ew	Gk	Qk.N
Lkn	Grundkombination	
1	1.35	1.50 !

Rund- schnitt	Abstand [cm]	u [m]	vEd	vRd,c	vRd,max ŽÞ₽) { á	minAsw	erfAsw Ž&{ á
U1	8.50	1.07	1.158			0.79	3.46
U2	21.25	1.47	0.842			1.09	1.94
U3	34.00	1.87	0.662			1.39	1.39
Ucrit	34.00	1.87	0.662 >	0.542			
			m		0.759		
Uout	47.10	2.28	0.542	0.542			

Breite des zu bewehrenden Bereiches lw = 34.0 cm

Ó^ā^ā^ā^{ A (ād^\^) AŠê}*•à^. ^@*)*•*^@edoÁee { ÁMÁFFÈ) Á& ED Áed Áå^¦ Á Oberseite innerhalb des \ | aaa &@ \ AU \ a & & aa A ê | ^A ^a ^A Durchstanzbewehrung erforderlich.

Position Auftrags-Nr. 2023 300 D-2.1 Seite: 2-37

DS-5 Durchstanznachweis nach DIN EN 1992-1-1

Angaben Beton C 30/37, Betonstahl B 500MA

Šæ• c^ā, |^āc`} * • √ê&@K

Rechteck	b(r)	=	56.0	cm
	h(s)	=	20.0	cm
Plattendicke	h_0	=	20.0	cm
Tãod ĐÁn cassãn & @ Áp `c @ 4 @	d_{m}	=	17.0	cm
Šê} *•à^, ^@*}*	a _{s,m}	=	4.92	&(I D)
Šê}*•à^¸^@°}*•*¦æå	l,vorh	=	0.29	%
	l,zul	=	1.96	%
Tæi*ÈÖ¨¦&@eæ);:\¦æec	V_{Ed}	=	139.2	kN
Šæ• c^\@4@} * • -æ\q {		=	1.50	

Nachweis Durchstanzbewehrung Asw ist erforderlich.

Ø>¦ÁåaðiÁ, æi*^à^}å^ÁÓ^|æ•č}*••ãčæāj}Á, `¦å^ÁåaðiÁ, ãdd^¦^ÁŠê}*•à^, ^@'`}*Á

asm an der Oberseite à^ | >& • 2&@2 dÈ

ÖāN•^ÁŠê}*•à^、^@^`}*ÁãróÁ§}^¦@aqàÁå^•Áf^•æ(c^}Áê`i^¦^}ÁÜ`}å•&@,ãæ•Á

a): `[¦å}^}Á'}åÁsě i ^¦@spàÁdieses Rundschnitts zu verankern.
Òā ^ÁÜ>c ^}\[] -ç^!•œ̂!\`}*Á; ãåÁý æ‰sé\-&&•æådè
ÖæÁÖ`¦&@æà;\¦æóÁXÒåÁ; ¦å^Ásé; ÁÜ>c^}æð; &@; æósausgewertet.

Mindestbewehrung (NCI Zu 9.4.3(2)) wurde à^¦>& • & œ tÈ

Kombinationen Tæi*^à^}å^ÁS[{àã}æaã[}^}Á;æ&@ÄÖOD•ÁÖÞÁFJJ€

> Ew Einwirkungsname

Lkn Lastkombinationsnummer

c[| @ | | • & @ } a^Ac^| ê } a^| | a& @ AOa _ a\ ` } *

Öðl ÁÓ v ð ð ð ' * Á ð : ^|} ^ ¦ Á ð e cê|| Áð } ^ ¦ @ d à Áeiner Einwirkung wird mit diesem

Ausgabeformat nicht dokumentiert.

Ew	Gk	Qk.N
Lkn	Grundkombination	
1	1.35	1.50 !

Rund-	Abstand	u	vEd	vRd,c	vRd,max	minAsw	erfAsw
schnitt	[cm]	[m]			Ž⊃Đ({ á		Ž&{ á
U1	8.50	1.07	1.151			0.79	3.40
U2	21.25	1.47	0.837			1.09	1.90
Ucrit	34.00	1.87	0.657 >	0.542			
			m		0.759		
Uout	46.65	2.27	0.542	0.542			

Breite des zu bewehrenden Bereiches Iw = 21.3 cm

Ó^ ãÁ^ ā ^ { Á acd^ | ^ } ÁŠê | * • à^ _ ^ @* | * • * ^ @edoÁse { ÁMÁFFE ÁS { ED Ása} Ása^ | Á Oberseite innerhalb des \\ aa &@ \ AU \ a & & a & a & A \ e \^A \ A Durchstanzbewehrung erforderlich.

Auftrags-Nr.	Position	│ ■ ■ │ │ Ingenieurgesellschaft mbH	
2023 300	D-2.1	ÙVPËÜPÆÄÜ¢&\@@ãAÛ>å	Seite: 2-38

DS-6 Durchstanznachweis nach DIN EN 1992-1-1

Angaben Beton C 30/37, Betonstahl B 500MA

> Šæ• c^ā, |^āc`} * • √ê&@K Rechteck b(r) 56.0 cm h(s) 20.0 cm Plattendicke h_0 20.0 cm Tãod ÉÁn cægaã & @ Áp c @ 4 @ . d_{m} 17.0 cm Šê}*•à^, ^@*}* Šê}*•à^, ^@*}*•*¦æå a_{s,m} 4.73 & Đ 0.28 % I,vorh 1.96 % I,zul

> > kΝ

Tæi*ÈÄÖ`¦&@eæ):\¦æec V_{Ed} 129.6 Šæro*¦@4@}*•~ædd; 1.50

Durchstanzbewehrung Asw ist erforderlich. **Nachweis**

> Ø>¦ÁsanÁ, æi*^à^}å^ÁÓ^|æ•č}*••ãčæāā;}Á¸`¦å^ÁsanÁ, ãcd^¦^ÁŠê}*•à^¸^@`}*Á asm an der Oberseite à^ | > & • 2& @2 dE

ÖāN•^ÁŠê}*•à^、^@^`}*ÁãróÁ§}^¦@aqàÁå^•Áf^•æ(c^}Áê`i^¦^}ÁÜ`}å•&@,ãæ•Á

a): `[¦å}^}Á'}åÁsě i ^¦@spàÁdieses Rundschnitts zu verankern.
Òā ^ÁÜ>c ^}\[] -ç^!•œ̂!\`}*Á; ãåÁý æ‰sé\-&&•æådè
ÖæÁÖ`¦&@æà;\¦æóÁXÒåÁ; ¦å^Ásé; ÁÜ>c^}æð; &@; æósausgewertet.

Mindestbewehrung (NCI Zu 9.4.3(2)) wurde à^¦>& • &@a cÈ

Kombinationen Tæi: *^à^}å^ÁS[{àã;æeāi}^}Á;æ&@ÁÖOD•ÁÖÞÁFJJ€

> Ew Einwirkungsname

Lkn Lastkombinationsnummer

c[| @ | | • & @ } a^Ac^| ê } a^| | a& @ AOa _ a\ ` } *

Öðl ÁÓ v ð ð ð ' * Á ð : ^|} ^ ¦ Á ð e cê|| Áð } ^ ¦ @ d à Áeiner Einwirkung wird mit diesem Ausgabeformat nicht dokumentiert.

Ew Gk Qk.N Grundkombination Lkn 1.35 1.50 !

Rund-	Abstand	u	vEd	vRd,c	vRd,max	minAsw	erfAsw
schnitt	[cm]	[m]			ŽD-E0{ á		Ž&{ á
U1	8.50	1.07	1.072			0.79	2.79
U2	21.25	1.47	0.779			1.09	1.56
Ucrit	34.00	1.87	0.612 >	0.542			
			m		0.759		
Uout	41.70	2.11	0.542	0.542			

Breite des zu bewehrenden Bereiches Iw = 21.3 cm

 $\dot{O} \hat{a} \hat{A} \hat{a} \wedge \{ \dot{A} \hat{a} \hat{a} \hat{c} \wedge | \hat{A} \hat{b} \hat{c} \} * \bullet \hat{a} \wedge [\hat{A} \hat{c} \hat{c}] * \bullet \hat{a} \wedge [\hat{A} \hat{c} \hat{c}] * \bullet \hat{a} \wedge [\hat{A}$ innerhalb des \ | aa &@ | AÜ | | å & & a a A e | ADurchstanzbewehrung erforderlich.

Auftrags-Nr.	Position	m⊬p	martens+puller Ingenieurgesellschaft mbH			
2023 300	D-2.1	ÙVPËÜPÆÄÛ	04&\@^a[ÁÛ>å		S	eite: 2-39
<u>DS-7</u>	Durchstan	znachweis nach DIN	EN 1992-1-1			
<u>Angaben</u>	Beton C 3	0/37, Betonstahl B 5	00MA			
	Rechteck Plattendicl T ãtd 🛱 cæã Šê} * • à^¸ Šê} * • à^¸	&@ Áp`c @4@ ^@`}* ^@`}*•*¦æå &@ æ):\¦æc	b(r) h(s) h ₀ d _m a _{s,m} l,vorh l,zul VEd	= = = = = = =	38.0 20.0 20.0 17.0 5.79 0.34 1.96 111.7 1.50	cm cm cm cm &(£) % kN
<u>Nachweis</u>	Ø⊳¦Ásā^Á, a asm an de Öā>•^ÁSê} æ): `[¦å}^ Òā,^ÁÙ⊳c Öā^ÁÖ`¦&@	er Oberseite à^!>&\•a* *•à^¸^@`}*Æaró∰}^ ^}Á'}åÆë i ^!@eţàÁdie: ^}\[]-ç^!•œê!\`}*Á ∮œa;:\¦æe∕KÒåÁ,`¦å^	••ãčaæā[}Á, `¦å^Áåã^Á.	ři^¦^} eranker É ausgew	Áܡ} å∙&@∘ n.	•
<u>Kombinationen</u>	Tæi*^à^} Ew Lkn !	å^Æs[{ àð;æði;}^}Æ; Einwirkungsnar Lastkombinatio ç[¦@;;•&@}å⁄	me	\`}*		

			^ } ^¦Æsæ cê ^Æs} } ^¦ @æàÆeiner Einwirkung wird mit diesem t dokumentiert.
Ew	Gk	Qk.N	
Lkn	Grundkombination		
1	1.35	1.50 !	

Rund-	Abstand	u	vEd	vRd,c	vRd,max	minAsw	erfAsw
schnitt	[cm]	[m]			Ž⊃Đ(á		Ž&{ á
Ucrit	34.00	1.85	0.533 m	0.542			

Position Auftrags-Nr. ÙVPËJPÆÄJC4& @ã ÁJ>å 2023 300 D-2.1 Seite: 2-40

DS-8 Durchstanznachweis nach DIN EN 1992-1-1

Angaben Beton C 30/37, Betonstahl B 500MA

Šæ• c^ā, |^ãc`} * • √ê&@K

Wandecke 24.0 а cm 24.0 b cm Plattendicke 20.0 h_0 cm Tãnd ÉÁ casaã & @ ÁP c @ 4 @ d_{m} 17.0 cm Šê}*•à^, ^@*}* Šê}*•à^, ^@*}*•*¦æå a_{s,m} 5.09 &{ Ð 0.30 % I,vorh 1.96 % I,zul Tæi*ÉÄÖ`¦&@@æ):\¦æc V_{Ed} 122.4 kΝ Šæro*¦@4@}*•~ædd; 1.20

Nachweis Durchstanzversagen!

Ø>¦ÁsanÁ, æi*^à^}å^ÁÓ^|æ•č}*••ãčæāā;}Á¸`¦å^ÁsanÁ, ãcd^¦^ÁŠê}*•à^¸^@`}*Á

asm an der Oberseite à^ | >& • 2&@2 dÈ

Òā, ^ÁÛ>c^}\[]-ç^\•œî\`}*Á, āåÁ, a&@Áà^\>&\•a&@àdÈ Öā^ÁÖ`¦&@cæ):\¦æcÁXÒåÁ, `¦å^Áæ{ ÁU>c^}æ)•&@; acÁausgewertet.

Mindestbewehrung (NCI Zu 9.4.3(2)) wurde à^!>& • & @ tE

Kombinationen Tæi: *^à^}å^ÁS[{àã;æeāi}^}Á;æ&@ÁÖOD•ÁÖÞÁFJJ€

> Ew Einwirkungsname

Lkn Lastkombinationsnummer

! c[| @ | | • & @ } a^ Aç^ | ê } a^ | | a& @ AOa _ a \ ` } *

Öā ÁÓ c đã * } * Á ā : ^ | } ^ ¦ Á šæ cê | | ^ Áa } ^ ¦ @ dà Áeiner Einwirkung wird mit diesem Ausgabeformat nicht dokumentiert.

0.759

Gk Qk.N Ew Grundkombination Lkn 1.35 1.50 !

vRd,c Rund-Abstand vEd vRd,max minAsw erfAsw u Ž>Đ(á schnitt Ž&{á [cm] [m]Ucrit 34.00 0.99 0.869 0.542

Position Auftrags-Nr. ÙVPËJPÆÄJc4& @ã ÁJ>å 2023 300 D-2.1 Seite: 2-41 DS-9 Durchstanznachweis nach DIN EN 1992-1-1 **Angaben** Beton C 30/37, Betonstahl B 500MA Šæ• c^ā, |^ãc`} * • √ê&@K Wandecke а 17.5 cm b 17.5 cm Plattendicke h_0 20.0 cm Tãnd ÉÁ casaã & @ ÁP c @ 4 @ d_{m} 17.0 cm Šê}*•à^,^@*}* Šê}*•à^,^@*}*•*¦æå $a_{s,m}$ 3.35 & Đ 0.20 % I,vorh 1.96 % l,zul Tæi*ÉÄÖ`¦&@@æ):\¦æc V_{Ed} 43.1 kΝ Šæ• c^¦@4@{}*•~æ\d[¦ 1.20 Keine Durchstanzbewehrung Asw erforderlich. **Nachweis** Ø>¦ÁåaðiÁ, æi*^à^}å^ÁÓ^|æ•č}*••ãčæāj}Á, `¦å^ÁåaðiÁ, ãdd^¦^ÁŠê}*•à^, ^@'`}*Á asm an der Oberseite à^ | > & • 2& @2 dE ÖāN•^ÁŠê}*•à^、^@^`}*ÁãróÁ§}^¦@aqàÁå^•Áf^•æ(c^}Áê`i^¦^}ÁÜ`}å•&@,ãæ•Á a): `[¦å}^}Á'}åÁsě i ^¦@spàÁdieses Rundschnitts zu verankern.
Òā ^ÁÜ>c ^}\[] -ç^!•œ̂!\`}*Á; ãåÁý æ‰sé\-&&•æådè
ÖæÁÖ`¦&@æà;\¦æóÁXÒåÁ; ¦å^Ásé; ÁÜ>c^}æð; &@; æósausgewertet. Mindestbewehrung (NCI Zu 9.4.3(2)) wurde à^¦>& • & œ tÈ Kombinationen Tæi: *^à^}å^ÁS[{àã;æeāi}^}Á;æ&@ÁÖOD•ÁÖÞÁFJJ€ Ew Einwirkungsname Lkn Lastkombinationsnummer ç[| @ | | • & @ } a ^ Aç ^ | ê } a ^ | | a & @ A Da , a \ ` } * Öðl ÁÓ v ð ð ð ' * Á ð : ^|} ^ ¦ Á ð e cê|| Áð } ^ ¦ @ d à Áeiner Einwirkung wird mit diesem

	Ausgabe	format nicht dokumentiert.	
Ew	Gk	Qk.N	

⊨w	Gk	Qk.N	
Lkn	Grundkombination		
1	1.35	1.50 !	

Rund-	Abstand	u	vEd	vRd,c	vRd,max	minAsw	erfAsw
schnitt	[cm]	[m]			ŽD-E0{ á		Ž&{ á
Licrit	34.00	0.88	0.344 m	0.542			

Position Auftrags-Nr. ÙVPËJPÆÄJc4& @ã ÁJ>å 2023 300 D-2.1 Seite: 2-42 **DS-10** Durchstanznachweis nach DIN EN 1992-1-1 **Angaben** Beton C 30/37, Betonstahl B 500MA Šæ• c^ā, |^ãc`} * • √ê&@K Wandecke а 17.5 cm b 17.5 cm Plattendicke h_0 20.0 cm Tãnd ÉÁ casaã & @ ÁP c @ 4 @ d_{m} 17.0 cm Šê}*•à^, ^@*}* Šê}*•à^, ^@*}*•*¦æå a_{s,m} 3.35 &{ Ð 0.20 % I,vorh 1.96 % l,zul Tæi*ÈÄÖ`¦&@eæ):\¦æec V_{Ed} 50.2 kΝ Šæ• c^¦@4@{}*•~æ\d[¦ 1.20 Keine Durchstanzbewehrung Asw erforderlich. **Nachweis** Ø>¦ÁåaðiÁ, æi*^à^}å^ÁÓ^|æ•č}*••ãčæāj}Á, `¦å^ÁåaðiÁ, ãdd^¦^ÁŠê}*•à^, ^@'`}*Á asm an der Oberseite à^ l>& • 3&@2 dÈ ÖāN•^ÁŠê}*•à^、^@^`}*ÁãróÁ§}^¦@aqàÁå^•Áf^•æ(c^}Áê`i^¦^}ÁÜ`}å•&@,ãæ•Á a): `[¦å}^}Á'}åÁsě i ^¦@spàÁdieses Rundschnitts zu verankern.
Òā ^ÁÜ>c ^}\[] -ç^!•œ̂!\`}*Á; ãåÁý æ‰sé\-&&•æådè
ÖæÁÖ`¦&@æà;\¦æóÁXÒåÁ; ¦å^Ásé; ÁÜ>c^}æð; &@; æósausgewertet. Mindestbewehrung (NCI Zu 9.4.3(2)) wurde à^¦>& • & œ tÈ Kombinationen Tæi: *^à^}å^ÁS[{àã;æeāi}^}Á;æ&@ÁÖOD•ÁÖÞÁFJJ€ Ew Einwirkungsname Lkn Lastkombinationsnummer c[| @ | | • & @ } a^Ac^| ê } a^| | a& @ AOa _ a\ ` } * Öð ÁÓ v ð ð ž * Á ð ; ^|} ^ L Šæ cê|| Á þ } ^ L @ D À Á Einer Einwirkung wird mit diesem

	Ausga	iberormat nic	ni dokume	enuert.		
Ew	Gk	Qk.N				
l kn	Grundkombination					

1	1.35	1.50 !		
D I	Al atau I	- 1	D.L. D.L.	 ()

Rund-	Abstand	u	vEd	vRd,c	vRd,max	minAsw	erfAsw
schnitt	[cm]	[m]			Ž⊃Ð(á		Ž8{ á
Ucrit	34.00	0.88	0.401 m	0.542			

Auftrags-Nr.	Position	m-p	martens+p	ouller			
2023 300	D-2.1	ÙVPËÜPÆÄÛG	4&\@`āį ÁÙ>ā	å		Se	eite: 2-43
<u>DS-11</u>	Durchstanznachv	weis nach DIN	EN 1992-1-1	1			
<u>Angaben</u>	Beton C 30/37, E	Betonstahl B 50	OMA				
	Šæ c^ā ^ãc`}*• +ê Wandende Plattendicke TādĒ cæā &@Æ; Šê}*•à^, ^@`}* Šê}*•à^, ^@`}* Tæ *ĒÖ`¦&@æ; Šæ c\@@)*•æ	´c @4 @^ •*¦æå :\¦æ€		a b ho d _m as,m l,vorh l,zul VEd	= = = = =	17.5 17.5 20.0 17.0 3.35 0.20 1.96 28.7 1.35	cm cm cm cm &{ £? % kN
<u>Nachweis</u>	Keine Durchstan: Ø⊳¦Ååã\Áį æi *^à^ asm an der Ober	zbewehrung As } å^ÆO^ æ č } *	••ãcĕæaā[}Á¸°		ãc¢^¦^ÁŠá	ê}*•à^,^	@~}*Á
	ÖâN•^ÁŠê}*•à^¸ æ): `[¦å}^}Á;á/ Òā,^ÁÙc-c^}\[]- ÖâNÁÖ`¦&@æa):\¦ Mindestbewehrui	^@~`}*ÁaróÁaj}^ Áaĕi^¦@e†àÁdies ç^¦•oê¦\~`}*Á,á ¦æeóAxÒåÁ,~`¦å^,	¦@a†àÁå^∙Á*^ ses Rundsch āåÁjā&@Áà^¦> Áæ{ÁÙc>c^}.	nittszuve >&\•&&@a∄o aa}•&@;ãooÁ	erankern. È ausgewe		ăc•Á
Kombinationen	Tæi:*^à^}å^Á\$[{àãjæcãj}^}Ája	38.9ÖDÞÁÒÞÁ	ĘJJ€			
	Lkn L	Einwirkungsnan astkombinatio [@ • & @ } å^	nsnummer	.@^ÁÒāj, ā\	*		
	ÖðrÁÓ^c^ððð~`}*Á\ Ausgabeformat n			Æiner Ein	wirkung	wird mit d	iesem

Ew	Gk	Qk.N	
Lkn	Grundkombination		
1	1.35	1.50 !	

Rund-	Abstand	u	vEd	vRd,c	vRd,max	minAsw	erfAsw
schnitt	[cm]	[m]			Ž⊃Đ[{ á		Ž&{ á
Ucrit	34.00	1.59	0.143 m	0.542			

Position Auftrags-Nr. ÙVPËJPÆÄJc4& @ã ÁJ>å 2023 300 D-2.1 Seite: 2-44 **DS-12** Durchstanznachweis nach DIN EN 1992-1-1 **Angaben** Beton C 30/37, Betonstahl B 500MA Šæ• c^ā, |^ãc`} * • √ê&@K Wandende а 17.5 cm b 17.5 cm Plattendicke h_0 20.0 cm Tãnd ÉÁ casaã & @ Áp c @ 4 @ d_{m} 17.0 cm Šê}*•à^,^@*}* Šê}*•à^,^@*}*•*¦æå $a_{s,m}$ 3.35 & Đ 0.20 % I,vorh 1.96 % l,zul Tæi*ÉÄÖ`¦&@@æ):\¦æc V_{Ed} 9.0 kΝ Šæ• c^¦@4@{}*•~æ\d[¦ 1.35 Keine Durchstanzbewehrung Asw erforderlich. **Nachweis** Ø>¦ÁåaðiÁ, æi*^à^}å^ÁÓ^|æ•č}*••ãčæāj}Á, `¦å^ÁåaðiÁ, ãdd^¦^ÁŠê}*•à^, ^@'`}*Á asm an der Oberseite à^ | > & • 2& @2 dE ÖāN•^ÁŠê}*•à^、^@^`}*ÁãróÁ§}^¦@aqàÁå^•Áf^•æ(c^}Áê`i^¦^}ÁÜ`}å•&@,ãæ•Á a): `[¦å}^}Á'}åÁsě i ^¦@spàÁdieses Rundschnitts zu verankern.
Òā ^ÁÜ>c ^}\[] -ç^!•œ̂!\`}*Á; ãåÁý æ‰sé\-&&•æådè
ÖæÁÖ`¦&@æà;\¦æóÁXÒåÁ; ¦å^Ásé; ÁÜ>c^}æð; &@; æósausgewertet. Mindestbewehrung (NCI Zu 9.4.3(2)) wurde à^¦>& • & œ tÈ Kombinationen Tæi*^à^}å^ÁS[{àã}æaã[}^}Á;æ&@ÄÖOD•ÁÖÞÁFJJ€ Ew Einwirkungsname Lkn Lastkombinationsnummer c[| @ | | • & @ } a^Ac^| ê } a^| | a& @ AOa _ a\ ` } * Öðl ÁÓ v ð ð ð ' * Á ð : ^|} ^ ¦ Á ð e cê|| Áð } ^ ¦ @ d à Áeiner Einwirkung wird mit diesem Ausgabeformat nicht dokumentiert.

Ew	Gk	Qk.N
Lkn	Grundkombination	
1	1.35	1.50 !

Rund-	Abstand	u	vEd	vRd,c	vRd,max	minAsw	erfAsw
schnitt	[cm]	[m]			ŽD-E0{ á		Ž8{ á
Ucrit	34.00	1.59	0.045 m	0.542			

Position Auftrags-Nr. ÙVPËJPÆÄJc4& @ã ÁJ>å 2023 300 D-2.1 Seite: 2-45 **DS-13** Durchstanznachweis nach DIN EN 1992-1-1 **Angaben** Beton C 30/37, Betonstahl B 500MA Šæ• c^ā, |^ãc`} * • √ê&@K Wandende а 17.5 cm b 17.5 cm Plattendicke h_0 20.0 cm Tãnd ÉÁ casaã & @ Áp c @ 4 @ d_{m} 17.0 cm Šê}*•à^, ^@*}* Šê}*•à^, ^@*}*•*¦æå $a_{s,m}$ 4.34 & Đ 0.26 % I,vorh 1.96 % l,zul Tæi*ÉÄÖ`¦&@@æ):\¦æc V_{Ed} 81.4 kΝ Šæ• c^¦@4@{}*•~æ\d[¦ 1.35 Keine Durchstanzbewehrung Asw erforderlich. **Nachweis** Ø>¦ÁsanÁ, æi*^à^}å^ÁÓ^|æ•č}*••ãčæāā;}Á¸`¦å^ÁsanÁ, ãcd^¦^ÁŠê}*•à^¸^@`}*Á asm an der Oberseite à^ | > & • 2& @2 dE ÖāN•^ÁŠê}*•à^、^@^`}*ÁãróÁ§}^¦@aqàÁå^•Áf^•æ(c^}Áê`i^¦^}ÁÜ`}å•&@,ãæ•Á a): `[¦å}^}Á'}åÁsě i ^¦@spàÁdieses Rundschnitts zu verankern.
Òā ^ÁÜ>c ^}\[] -ç^!•œ̂!\`}*Á; ãåÁý æ‰sé\-&&•æådè
ÖæÁÖ`¦&@æà;\¦æóÁXÒåÁ; ¦å^Ásé; ÁÜ>c^}æð; &@; æósausgewertet. Mindestbewehrung (NCI Zu 9.4.3(2)) wurde à^¦>& • & œ tÈ Kombinationen Tæi: *^à^}å^ÁS[{àã;æeāi}^}Á;æ&@ÁÖOD•ÁÖÞÁFJJ€ Ew Einwirkungsname Lkn Lastkombinationsnummer c[| @ | | • & @ } a^Ac^| ê } a^| | a& @ AOa _ a\ ` } * Öðl ÁÓ v ð ð ð ' * Á ð : ^|} ^ ¦ Á ð e cê|| Áð } ^ ¦ @ d à Áeiner Einwirkung wird mit diesem Ausgabeformat nicht dokumentiert.

Ew	Gk	Qk.N
Lkn	Grundkombination	
1	1.35	1.50

Rund-	Abstand	u	vEd	vRd,c	vRd,max	minAsw	erfAsw
schnitt	[cm]	[m]			ŽD-E0{ á		Ž8{ á
Ucrit	34.00	1.59	0.406 m	0.542			

Position Auftrags-Nr. ÙVPËJPÆÄJc4& @ã ÁJ>å 2023 300 D-2.1 Seite: 2-46 **DS-14** Durchstanznachweis nach DIN EN 1992-1-1 **Angaben** Beton C 30/37, Betonstahl B 500MA Šæ• c^ā, |^ãc`} * • √ê&@K Wandende а 17.5 cm b 17.5 cm Plattendicke h_0 20.0 cm Tãnd ÉÁ casaã & @ Áp c @ 4 @ d_{m} 17.0 cm Šê}*•à^,^@*}* Šê}*•à^,^@*}*•*¦æå a_{s,m} 4.36 &{ Ð 0.26 % I,vorh 1.96 % l,zul Tæi*ÉÄÖ`¦&@@æ):\¦æc V_{Ed} 89.2 kΝ Šæ• c^¦@4@{}*•~æ\d[¦ 1.35 Keine Durchstanzbewehrung Asw erforderlich. **Nachweis** Ø>¦ÁsanÁ, æi*^à^}å^ÁÓ^|æ•č}*••ãčæāā;}Á¸`¦å^ÁsanÁ, ãcd^¦^ÁŠê}*•à^¸^@`}*Á asm an der Oberseite à^ | > & • 2& @2 dE ÖāN•^ÁŠê}*•à^、^@^`}*ÁãróÁ§}^¦@aqàÁå^•Áf^•æ(c^}Áê`i^¦^}ÁÜ`}å•&@,ãæ•Á a): `[¦å}^}Á'}åÁsě i ^¦@spàÁdieses Rundschnitts zu verankern.
Òā ^ÁÜ>c ^}\[] -ç^!•œ̂!\`}*Á; ãåÁý æ‰sé\-&&•æådè
ÖæÁÖ`¦&@æà;\¦æóÁXÒåÁ; ¦å^Ásé; ÁÜ>c^}æð; &@; æósausgewertet. Mindestbewehrung (NCI Zu 9.4.3(2)) wurde à^¦>& • & œ tÈ Kombinationen Tæi*^à^}å^ÁS[{àã}æaã[}^}Á;æ&@ÄÖOD•ÁÖÞÁFJJ€ Ew Einwirkungsname Lkn Lastkombinationsnummer c[| @ | | • & @ } a^Ac^| ê } a^| | a& @ AOa _ a\ ` } * Öðl ÁÓ v ð ð ð ' * Á ð : ^|} ^ ¦ Á ð e cê|| Áð } ^ ¦ @ d à Áeiner Einwirkung wird mit diesem Ausgabeformat nicht dokumentiert.

Ew	Gk	Qk.N	
Lkn	Grundkombination		
1	1.35	1.50 !	

Rund-	Abstand	u	vEd	vRd,c	vRd,max	minAsw	erfAsw
schnitt	[cm]	[m]			ŽD-E0{ á		Ž&{ á
Ucrit	34.00	1.59	0.444 m	0.542			

Position Auftrags-Nr. ÙVPËJPÆÄJc4& @ã ÁJ>å 2023 300 D-2.1 Seite: 2-47 **DS-15** Durchstanznachweis nach DIN EN 1992-1-1 **Angaben** Beton C 30/37, Betonstahl B 500MA Šæ• c^ā, |^ãc`} * • √ê&@K Wandende а 17.5 cm b 17.5 cm Plattendicke h_0 20.0 cm Tãnd ÉÁ casaã & @ Áp c @ 4 @ d_{m} 17.0 cm Šê}*•à^, ^@*}* Šê}*•à^, ^@*}*•*¦æå a_{s,m} 3.77 &{ Ð 0.22 % I,vorh 1.96 % l,zul Tæi*ÉÄÖ`¦&@@æ):\¦æc V_{Ed} 70.1 kΝ Šæ• c^¦@4@{}*•~æ\d[¦ 1.35 Keine Durchstanzbewehrung Asw erforderlich. Nachweis Ø>¦ÁåaðiÁ, æi*^à^}å^ÁÓ^|æ•č}*••ãčæāj}Á, `¦å^ÁåaðiÁ, ãdd^¦^ÁŠê}*•à^, ^@'`}*Á asm an der Oberseite à^ | > & • 2& @2 dE ÖāN•^ÁŠê}*•à^、^@^`}*ÁãróÁ§}^¦@aqàÁå^•Áf^•æ(c^}Áê`i^¦^}ÁÜ`}å•&@,ãæ•Á a): `[¦å}^}Á'}åÁsě i ^¦@spàÁdieses Rundschnitts zu verankern.
Òā ^ÁÜ>c ^}\[] -ç^!•œ̂!\`}*Á; ãåÁý æ‰sé\-&&•æådè
ÖæÁÖ`¦&@æà;\¦æóÁXÒåÁ; ¦å^Ásé; ÁÜ>c^}æð; &@; æósausgewertet. Mindestbewehrung (NCI Zu 9.4.3(2)) wurde à^¦>& • & œ tÈ Kombinationen Tæi: *^à^}å^ÁS[{àã;æeāi}^}Á;æ&@ÁÖOD•ÁÖÞÁFJJ€ Ew Einwirkungsname Lkn Lastkombinationsnummer ç[| @ | | • & @ } a ^ Aç ^ | ê } a ^ | | a & @ A Da , a \ ` } * Öðl ÁÓ v ð ð ð ' * Á ð : ^|} ^ ¦ Á ð e cê|| Áð } ^ ¦ @ d à Áeiner Einwirkung wird mit diesem

Ausgabeformat nicht dokumentiert.						
Ew	Gk	Qk.N				

Ew	Gk	Qk.N	
Lkn	Grundkombination		
1	1.35	1.50 !	

Rund-	Abstand	u	vEd	vRd,c	vRd,max	minAsw	erfAsw
schnitt	[cm]	[m]			Ž⊃Đ[{ á		Ž&{ á
Ucrit	34.00	1.59	0.350 m	0.542			

Position Auftrags-Nr. ÙVPËJPÆÄJc4& @ã ÁJ>å 2023 300 D-2.1 Seite: 2-48 **DS-16** Durchstanznachweis nach DIN EN 1992-1-1 **Angaben** Beton C 30/37, Betonstahl B 500MA Šæ• c^ā, |^ãc`} * • √ê&@K Wandecke 20.0 а cm b 20.0 cm Plattendicke h_0 20.0 cm Tãnd ÉÁ casaã & @ Áp c @ 4 @ d_{m} 17.0 cm Šê}*•à^,^@*}* Šê}*•à^,^@*}*•*¦æå $a_{s,m}$ 3.83 & Đ 0.23 % I,vorh 1.96 % l,zul Tæi*ÉÄÖ`¦&@@æ):\¦æc V_{Ed} 29.0 kΝ Šæ• c^¦@4@{}*•~æ\d[¦ 1.20 Keine Durchstanzbewehrung Asw erforderlich. **Nachweis** Ø>¦ÁåaðiÁ, æi*^à^}å^ÁÓ^|æ•č}*••ãčæāj}Á, `¦å^ÁåaðiÁ, ãdd^¦^ÁŠê}*•à^, ^@'`}*Á asm an der Oberseite à^ | > & • 2& @2 dE ÖāN•^ÁŠê}*•à^、^@^`}*ÁãróÁ§}^¦@aqàÁå^•Áf^•æ(c^}Áê`i^¦^}ÁÜ`}å•&@,ãæ•Á a): `[¦å}^}Á'}åÁsě i ^¦@spàÁdieses Rundschnitts zu verankern.
Òā ^ÁÜ>c ^}\[] -ç^!•œ̂!\`}*Á; ãåÁý æ‰sé\-&&•æådè
ÖæÁÖ`¦&@æà;\¦æóÁXÒåÁ; ¦å^Ásé; ÁÜ>c^}æð; &@; æósausgewertet. Mindestbewehrung (NCI Zu 9.4.3(2)) wurde à^¦>& • & œ tÈ Kombinationen Tæi: *^à^}å^ÁS[{àã;æeāi}^}Á;æ&@ÁÖOD•ÁÖÞÁFJJ€ Ew Einwirkungsname Lkn Lastkombinationsnummer c[| @ | | • & @ } a^Ac^| ê } a^| | a& @ AOa _ a\ ` } * Öðl ÁÓ v ð ð ð ' * Á ð : ^|} ^ ¦ Á ð e cê|| Áð } ^ ¦ @ d à Áeiner Einwirkung wird mit diesem Ausgabeformat nicht dokumentiert.

Ew	Gk	Qk.N	
Lkn	Grundkombination		
1	1.35	1.50 !	

Rund-	Abstand	u	vEd	vRd,c	vRd,max	minAsw	erfAsw
schnitt	[cm]	[m]			Ž⊃Đ({á		Ž&{ á
Llcrit	34.00	0.93	0.219 m	0.542			

Position Auftrags-Nr. ÙVPËJPÆÄJc4& @ã ÁJ>å 2023 300 D-2.1 Seite: 2-49 **DS-17** Durchstanznachweis nach DIN EN 1992-1-1 **Angaben** Beton C 30/37, Betonstahl B 500MA Šæ• c^ā, |^ãc`} * • √ê&@K Wandende а 24.0 cm b 24.0 cm Plattendicke h_0 20.0 cm Tãnd ÉÁ casaã & @ Áp c @ 4 @ d_{m} 17.0 cm Šê}*•à^,^@*}* Šê}*•à^,^@*}*•*¦æå $a_{s,m}$ 3.74 & Đ 0.22 % I,vorh 1.96 % l,zul Tæi*ÉÄÖ`¦&@@æ):\¦æc V_{Ed} 58.4 kΝ Šæ• c^¦@4@{}*•~æ\d[¦ 1.35 Keine Durchstanzbewehrung Asw erforderlich. **Nachweis** Ø>¦ÁsanÁ, æi*^à^}å^ÁÓ^|æ•č}*••ãčæāā;}Á¸`¦å^ÁsanÁ, ãcd^¦^ÁŠê}*•à^¸^@`}*Á asm an der Oberseite à^ | > & • 2& @2 dE ÖāN•^ÁŠê}*•à^、^@^`}*ÁãróÁ§}^¦@aqàÁå^•Áf^•æ(c^}Áê`i^¦^}ÁÜ`}å•&@,ãæ•Á a): `[¦å}^}Á'}åÁsě i ^¦@spàÁdieses Rundschnitts zu verankern.
Òā ^ÁÜ>c ^}\[] -ç^!•œ̂!\`}*Á; ãåÁý æ‰sé\-&&•æådè
ÖæÁÖ`¦&@æà;\¦æóÁXÒåÁ; ¦å^Ásé; ÁÜ>c^}æð; &@; æósausgewertet. Mindestbewehrung (NCI Zu 9.4.3(2)) wurde à^¦>& • & œ tÈ Kombinationen Tæi*^à^}å^ÁS[{àã}æaã[}^}Á;æ&@ÄÖOD•ÁÖÞÁFJJ€ Ew Einwirkungsname Lkn Lastkombinationsnummer c[| @ | | • & @ } a^Ac^| ê } a^| | a& @ AOa _ a\ ` } * Öðl ÁÓ v ð ð ð ' * Á ð : ^|} ^ ¦ Á ð e cê|| Áð } ^ ¦ @ d à Áeiner Einwirkung wird mit diesem Ausgabeformat nicht dokumentiert.

Ew	Gk	Qk.N
Lkn	Grundkombination	
1	1.35	1.50 !

Rund-	Abstand	u	vEd	vRd,c	vRd,max	minAsw	erfAsw
schnitt	[cm]	[m]			ŽD-E0{ á		Ž8{ á
Ucrit	34.00	1.79	0.259 m	0.542			

Position Auftrags-Nr. ÙVPËÜPÄÄÛ¢4&\@`ã ÁÛ>å 2023 300 D-2.1 Seite: 2-50 **DS-18** Durchstanznachweis nach DIN EN 1992-1-1 **Angaben** Beton C 30/37, Betonstahl B 500MA Šæ• c^ā, |^āc`} * • √ê&@K Wandende а 24.0 cm b 24.0 cm Plattendicke h_0 20.0 cm Tãod ÉÁn cægaã & @ Áp c @ 4 @ . d_{m} 17.0 cm Šê}*•à^,^@*}* Šê}*•à^,^@*}*•*¦æå a_{s,m} 4.05 &{ Ð 0.24 % I,vorh 1.96 % l,zul Tæi*ÉÄÖ`¦&@@æ):\¦æc V_{Ed} 70.8 kΝ Šæ• c^¦@4@{}*•~æ\d[¦ 1.35 **Nachweis** Keine Durchstanzbewehrung Asw erforderlich. Ø>¦ÁsanÁ, æi*^à^}å^ÁÓ^|æ•č}*••ãčæāā;}Á¸`¦å^ÁsanÁ, ãcd^¦^ÁŠê}*•à^¸^@`}*Á asm an der Oberseite à^ l>& • 3&@2 dÈ ÖāN•^ÁŠê}*•à^、^@^`}*ÁãróÁ§}^¦@aqàÁå^•Áf^•æ(c^}Áê`i^¦^}ÁÜ`}å•&@,ãæ•Á a): `[¦å}^}Á'}åÁsě i ^¦@spàÁdieses Rundschnitts zu verankern.
Òā ^ÁÜ>c ^}\[] -ç^!•œ̂!\`}*Á; ãåÁý æ‰sé\-&&•æådè
ÖæÁÖ`¦&@æà;\¦æóÁXÒåÁ; ¦å^Ásé; ÁÜ>c^}æð; &@; æósausgewertet. Mindestbewehrung (NCI Zu 9.4.3(2)) wurde à^¦>& • 3&@ à dÈ Kombinationen Tæi*^à^}å^ÁS[{àã}æaã[}^}Á;æ&@ÄÖOD•ÁÖÞÁFJJ€ Ew Einwirkungsname Lkn Lastkombinationsnummer c[| @ | | • & @ } a^Ac^| ê } a^| | a& @ AOa _ a\ ` } * Öðl ÁÓ v ð ð ð ' * Á ð : ^|} ^ ¦ Á ð e cê|| Áð } ^ ¦ @ d à Áeiner Einwirkung wird mit diesem Ausgabeformat nicht dokumentiert.

	- 3			
Ew	Gk	Qk.N		
Lkn	Grundkombination			
1	1.35	1.50 !		

Rund-	Abstand	u	vEd	vRd,c	vRd,max	minAsw	erfAsw
schnitt	[cm]	[m]			ŽD-E0{ á		Ž&{ á
Ucrit	34.00	1.79	0.314 m	0.542			

Position Auftrags-Nr. ÙVPËÜPÄÄÛ¢4&\@`ã ÁÛ>å 2023 300 D-2.1 Seite: 2-51 **DS-19** Durchstanznachweis nach DIN EN 1992-1-1 **Angaben** Beton C 30/37, Betonstahl B 500MA Šæ• c^ā, |^ãc`} * • √ê&@K Wandende а 24.0 cm b 24.0 cm Plattendicke h_0 20.0 cm Tãnd ÉÁ casaã & @ Áp c @ 4 @ d_{m} 17.0 cm Šê}*•à^,^@*}* Šê}*•à^,^@*}*•*¦æå a_{s,m} 4.47 & Đ 0.26 % I,vorh 1.96 % l,zul Tæi*ÈÄÖ`¦&@eæ):\¦æec V_{Ed} 79.3 kΝ Šæ• c^¦@4@{}*•~æ\d[¦ 1.35 Keine Durchstanzbewehrung Asw erforderlich. **Nachweis** Ø>¦ÁsanÁ, æi*^à^}å^ÁÓ^|æ•č}*••ãčæāā;}Á¸`¦å^ÁsanÁ, ãcd^¦^ÁŠê}*•à^¸^@`}*Á asm an der Oberseite à^ l>& • 3&@2 dÈ ÖāN•^ÁŠê}*•à^、^@^`}*ÁãróÁ§}^¦@aqàÁå^•Áf^•æ(c^}Áê`i^¦^}ÁÜ`}å•&@,ãæ•Á a): `[¦å}^}Á'}åÁsě i ^¦@spàÁdieses Rundschnitts zu verankern.
Òā ^ÁÜ>c ^}\[] -ç^!•œ̂!\`}*Á; ãåÁý æ‰sé\-&&•æådè
ÖæÁÖ`¦&@æà;\¦æóÁXÒåÁ; ¦å^Ásé; ÁÜ>c^}æð; &@; æósausgewertet. Mindestbewehrung (NCI Zu 9.4.3(2)) wurde à^¦>& • & œ tÈ Kombinationen Tæi*^à^}å^ÁS[{àã}æaã[}^}Á;æ&@ÄÖOD•ÁÖÞÁFJJ€ Ew Einwirkungsname Lkn Lastkombinationsnummer c[| @ | | • & @ } a^Ac^| ê } a^| | a& @ AOa _ a\ ` } * Öðl ÁÓ v ð ð ð * Á ð : ^|} ^ ¦ Á ð œ eê|| Áð } ^ ¦ @ þ à Áeiner Einwirkung wird mit diesem Ausgabeformat nicht dokumentiert.

Ew	Gk	Qk.N	
Lkn	Grundkombination		
1	1.35	1.50 !	

Rund-	Abstand	u	vEd	vRd,c	vRd,max	minAsw	erfAsw
schnitt	[cm]	[m]			Ž⊃Đ[{ á		Ž&{ á
Ucrit	34.00	1.79	0.352 m	0.542			

Autrags-Inr.	Position	I Ingenieurgeseilschaft mon	
2023 300	D-2.1	ÙVPËÜPÆÄÜ¢4&\@ãį ÁÛ>å	Seite: 2-52

DS-20 Durchstanznachweis nach DIN EN 1992-1-1

<u>Angaben</u> Beton C 30/37, Betonstahl B 500MA

Šæ, c^3 | ^ã; } * • Jê&@K

Rechteck	b(r)	=	38.0	cm
	h(s)	=	20.0	cm
Plattendicke	h_0	=	20.0	cm
TãodÉÁcææã&@Áp`c@4@	d_{m}	=	17.0	cm
Šê} *•à^, ^@`}*	a _{s,m}	=	5.89	&(I 2)
Šê}*•à^¸^@^`}*•*¦æå	l,vorh	=	0.35	%
	l,zul	=	1.96	%
Tæi*ÈÄÖ`¦&@oæ);:\¦æec	V_{Ed}	=	145.8	kN
Šæ• c^\@4@}*•~æ		=	1.50	

Durchstanzbewehrung Asw ist erforderlich. **Nachweis**

Ø>¦ÁsanÁ, æi*^à^}å^ÁÓ^|æ•č}*••ãčæāā;}Á¸`¦å^ÁsanÁ, ãcd^¦^ÁŠê}*•à^¸^@`}*Á

asm an der Oberseite à^ l>& • 3&@2 dÈ

ÖāN•^ÁŠê}*•à^、^@^`}*ÁãróÁ§}^¦@aqàÁå^•Áf^•æ(c^}Áê`i^¦^}ÁÜ`}å•&@,ãæ•Á

a): `[¦å}^}Á'}åÁsě i ^¦@spàÁdieses Rundschnitts zu verankern.
Òā ^ÁÜ>c ^}\[] -ç^!•œ̂!\`}*Á; ãåÁý æ‰sé\-&&•æådè
ÖæÁÖ`¦&@æà;\¦æóÁXÒåÁ; ¦å^Ásé; ÁÜ>c^}æð; &@; æósausgewertet.

Mindestbewehrung (NCI Zu 9.4.3(2)) wurde à^¦>& • & œ tÈ

Kombinationen Tæi*^à^}å^ÁS[{àã}æaã[}^}Á;æ&@ÄÖOD•ÁÖÞÁFJJ€

> Ew Einwirkungsname

Lkn Lastkombinationsnummer

ç[| @ | | • & @ } a ^ Aç ^ | ê } a ^ | | a & @ A Da , a \ ` } *

Öðl ÁÓ v ð ð ð * Á ð : ^|} ^ ¦ Á ð œ eê|| Áð } ^ ¦ @ þ à Áeiner Einwirkung wird mit diesem

Ausgabeformat nicht dokumentiert.

Ew	Gk	Qk.N	
Lkn	Grundkombination		
1	1.35	1.50 !	

Rund-	Abstand	u	vEd	vRd,c	vRd,max	minAsw	erfAsw
schnitt	[cm]	[m]			Ž⊃Đ({á		Ž&{ á
U1	8.50	1.05	1.229			0.78	3.89
U2	21.25	1.45	0.889			1.08	2.18
U3	34.00	1.85	0.696			1.38	1.56
Ucrit	34.00	1.85	0.696 >	0.542			
			m		0.759		
Uout	50.75	2.37	0.542	0.542			

Breite des zu bewehrenden Bereiches lw = 34.0 cm

Ó^ ãÁ^ ā ^ { Á acd^ | ^ } ÁŠê | * • à^ _ ^ @ * | * • * ^ @eloÁse { ÁMÁF HÈ Á&{ E) Ása} Ása^ | Á Oberseite innerhalb des \\aa{a} &@\ AU`\ a &@ ar A ê\^A^a^A Durchstanzbewehrung erforderlich.

Auftrags-Nr. Position | Ingenieurgesellschaft mbH | 2023 300 | D-2.1 | ÛVPEÜPÆÄJc4& @ ā ÁJ>å

Seite: 2-53 `à^¦ËEW}c^¦: ॅ*ËÓ^{ EÕ¦æ-Ó^{ ^••`} * Á¶ ÁÕ¦^}::`• œà åÁå^¦Á/¦æť ÷ê @ðt \^ãoÁ æ&@ÁÖŒÞÁÒÞÁFJJŒËËË Ó^{ ^••`} * Áå^¦Á à^¦ËÁ} åÁW} ♂¦:>*^ `à^¦ЁM}*c*^¦:>*^ Material- und Querschnittswerte nach DIN EN 1992-1-1 Mat./Querschnitt Šê} * ^ Material Position **Beton** Betonstahl Šê} * • Ó>* ^| [m] UZ-1 3.13 B 500SA B 500SA C 25/30 Q C 25/30 Q UZ-2 4.64 B 500SA B 500SA Q: Õ^• c^āj•\4¦} * ÁÛ * æb: ãc Querschnitt Position Exz. bPI bw h hf [cm] [cm] [cm] [cm] [cm] UZ-1, UZ-2 UΖ 100.0 53.0 20.0 20.0 UZ: Únterzug *^{ êi ÁÖ OÞÁÖÞÁFJJ GËFËFÉVæà ÈÁ ÈF Expositionsklasse Position Seite ΚI Kommentar UZ-1, UZ-2 umlaufend XC1 d[&\^} A[å^¦A[œ]} åð Ajæ• Bewehrung Vorgaben zur Bewehrungsdefinition Betondeckung Position &def,u Cmin,u Cnom,u &def,o C_{min,o} Cnom,o [mm] [mm] [mm] UZ-1, UZ-2 20 10 10 10 10 20 Ó^, ^@`}*•æà•œ̂}å^ der erforderlichen (Differenz-)Bewehrung Position d'o d'u [mm] [mm] UZ-1. UZ-2 50 50 > ¦Áá^} ÁÕ¦^}:: `• œa} åÁá^¦ÁV¦æť-ê@ð\^ãóÁ,æ&@ÁÖQÞÁÒÞÁFJJŒËËË Bemessungsparameter (GZT) Biegung/Querkraft Position min. Theta Mindestbewehrung Abs. 6.1, 6.2 Šê} * • Querkraft Žγá UZ-1, UZ-2 ja optimiert ja

Schubfuge

Abs. 6.2.5

Mindestbewehrung nach Abs. 9.2.1.1 bzw. 9.2.2

bi

[cm]

20.0

Uà^¦-¦ê&@

rau

С

0.70

0.50

0.40

Position

UZ-1, UZ-2

2023 300 D-2.1 ÙVPËÜPÄÄĴJ¢4&\@4 ÂÛ>å

Bemessung

Unterzug (Stahlbeton) Bemessung

<u>UZ-1</u>

Unterzug

Kombinationen

Tæi*^à^}å^ÁS[{àãjæeā[}^}Ájæ&S@ÁÖODÞÁÖDÞÁFJJ€

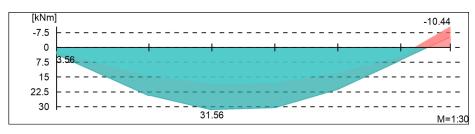
Ew Einwirkungsname

Lkn Lastkombinationsnummer

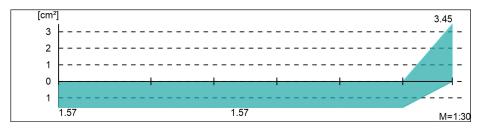
Öð ÁÓ ° † † * Á † : ^|} ^ ¦ Æ æ cê || ^ Á } } ^ ¦ @ ф à Æ iner Einwirkung wird mit diesem Ausgabeformat nicht dokumentiert.

Seite: 2-54

Ew	Gk	Qk.N	
Lkn	Grundkombination		
1	1.00		
2-3	1.35	1.50 !	
4	1.00	1.50 !	

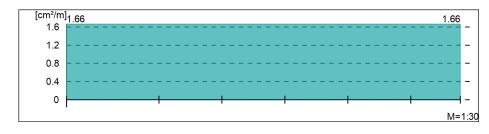

Ò; { | å^| | & @ ÁŠê} * • à^, ^ @ ` } * ÁŒ Á; à^} Ð } ¢^}

Bemessungsmomente beinhalten auch Plattenmomente im Bereich von bPI.


V¦æti-ê@at∖^ão

Biege- und Normalkraftbemessung, Abs. 6.1

Bemessungsmomente MEd oben/unten

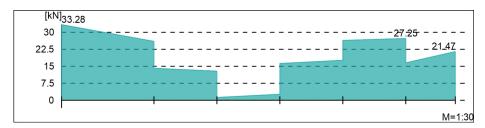

Šê} *•à^, ^@`} *ÁŒÁ;à^}Ð} &^}

Querkraftbewehrung

Ò¦{¦å^¦|ã&@^ÁÛ`^¦\¦ææà^¸^@`}*Á數ÁÇÓ>*^|D

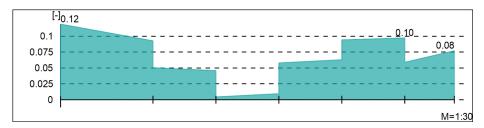
Ó^{ ^••`}*•``^!\¦ê-e^Áa^ā; @ede^} Ásë &@ÁÚ|æee^}``^!\¦ê-e^Áā; ÁÓ^!^&&@Á;[} Ásw.

2023 300

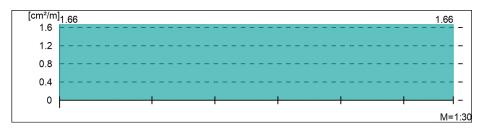

D-2.1

ÙVPËÜPÆÄÛ¢4&\@^ãį ÁÛ>å

<u>V¦æ*-ê@#\^ã</u>c

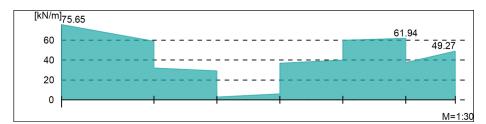

Querkraftbemessung, Abs. 6.2

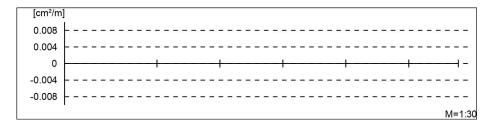
Bemessungsquerkraft VEd



Seite: 2-55

Querkraftausnutzung VEd/VRd,max


Querkraftbewehrung asw


Schubfuge

Nachweis der Schubfuge, Abs. 6.2.5

Ó^{ ^••`}*•|ê}*••&@à\¦æo{çÒå

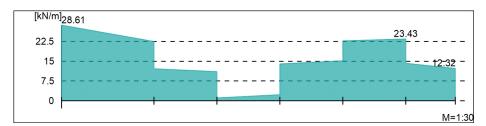
Verbundbewehrung asw

Auftrags-Nr.

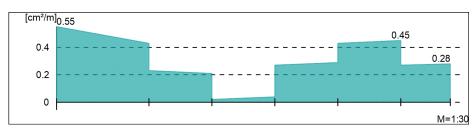
Position

2023 300

D-2.1


ÙVPËÜPÄÄÛc4&\@4 ÂÛ>å

Gurtbewehrung


Gurtanschlussbemessung, Abs. 6.2.4

Seite: 2-56

Ó^{ ^••`}*•|ê}*••&@à\¦æ⁄�¢Òå

Gurtanschlussbewehrung asf

Seite: 2-57

<u>UZ-2</u> Unterzug

Kombinationen Tæi *^à^} å^ÆS[{ àã; ææã; } ^} Á; æ&@ÓOÞÁFJJ€

Ew Einwirkungsname

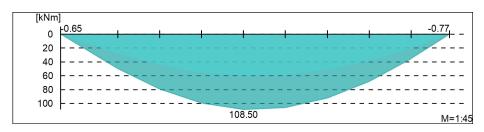
Lkn Lastkombinationsnummer

ç[¦@\|•&@\}å^Æç^\ê}å^\|&&@\ÁÒAj¸ã\`}*

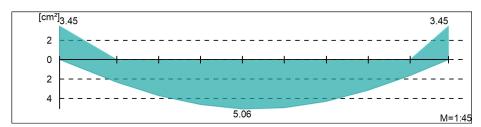
Öð ÁÓ c ðð `} * Áð : ^|} ^! Ášæ cê||^Ás } ^! @ hásiner Einwirkung wird mit diesem Ausgabeformat nicht dokumentiert.

Ew	Gk	Qk.N
Lkn	Grundkombination	
1	1.00	
2-3	1.35	1.50 !
4	1.00	1.50 !

Šê}*•à^, ^@*}*

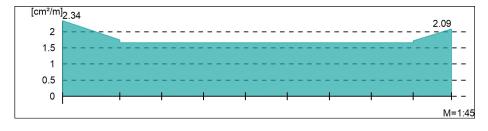

Ò¦-{¦å^¦|ã&@^ÁŠê}*•à^, ^@*}*ÁŒÁ;à^}Ð}৫^}

Bemessungsmomente beinhalten auch Plattenmomente im Bereich von bPI.


V¦æ≛-ê@≛∖^ãc

Biege- und Normalkraftbemessung, Abs. 6.1

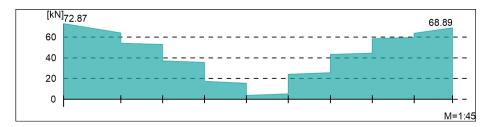
Bemessungsmomente MEd oben/unten


Šê}*•à^. ^@`}*ÁŒÁàà^}Ð}c^}

Querkraftbewehrung

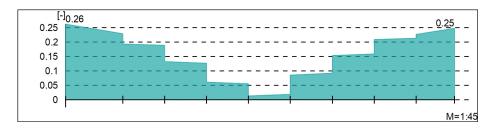
 $\hat{O}_{1}^{+} = \hat{A}_{1}^{+} = \hat{A}_{2}^{+} + \hat{A}_{2}^{+} + \hat{A}_{2}^{+} = \hat{A}_{2}^{+} + \hat{A}_{2}^{+} + \hat{A}_{2}^{+} = \hat{A}_{2}^{+} + \hat{A}_{2}^{+} + \hat{A}_{2}^{+} = \hat{A}_{2}^{+} + \hat{A}$

Ó^{ ^••`}*•``^!\|ê-e^Áa^ā; @ede^} Áeĕ &@ÁU|ææe^}``^!\|ê-e^Áā; ÁÓ^!^&&@Ác[} Áàw.

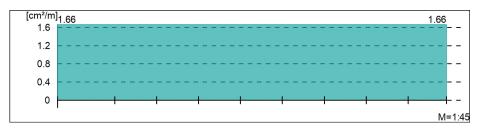

D-2.1

ÙVPËÜPÄÄÛc4&\@4 ÂÛ>å

<u>V¦æ*-ê@#\^ã</u>c

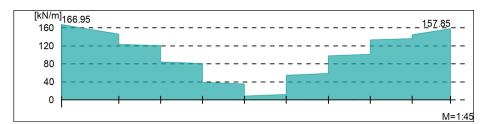

Querkraftbemessung, Abs. 6.2

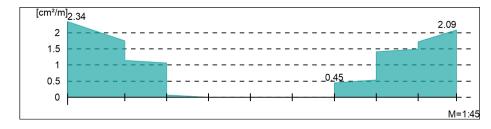
Bemessungsquerkraft VEd



Seite: 2-58

Querkraftausnutzung VEd/VRd,max


Querkraftbewehrung asw

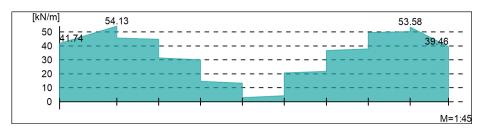

Schubfuge

Nachweis der Schubfuge, Abs. 6.2.5

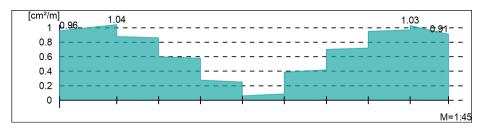
Ó^{ ^••`} *•|ê} *••&@ à\¦æ⁄⁄ķÒå

Verbundbewehrung asw

D-2.1

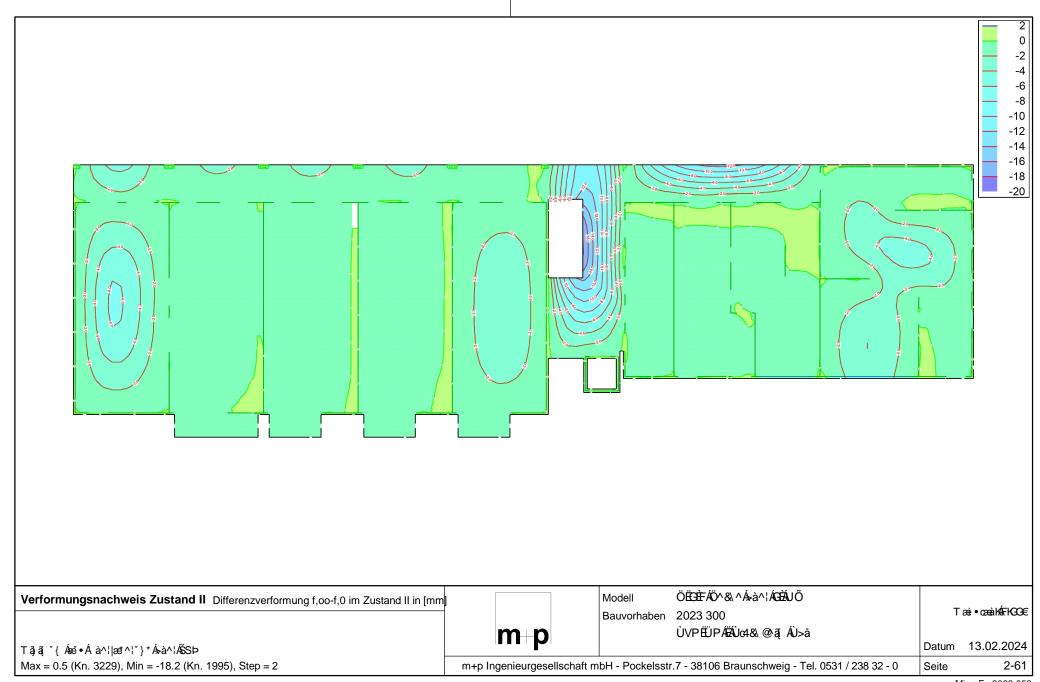

ÙVPËÜPÄÄÛc4&\@^ãį ÁÛ>å

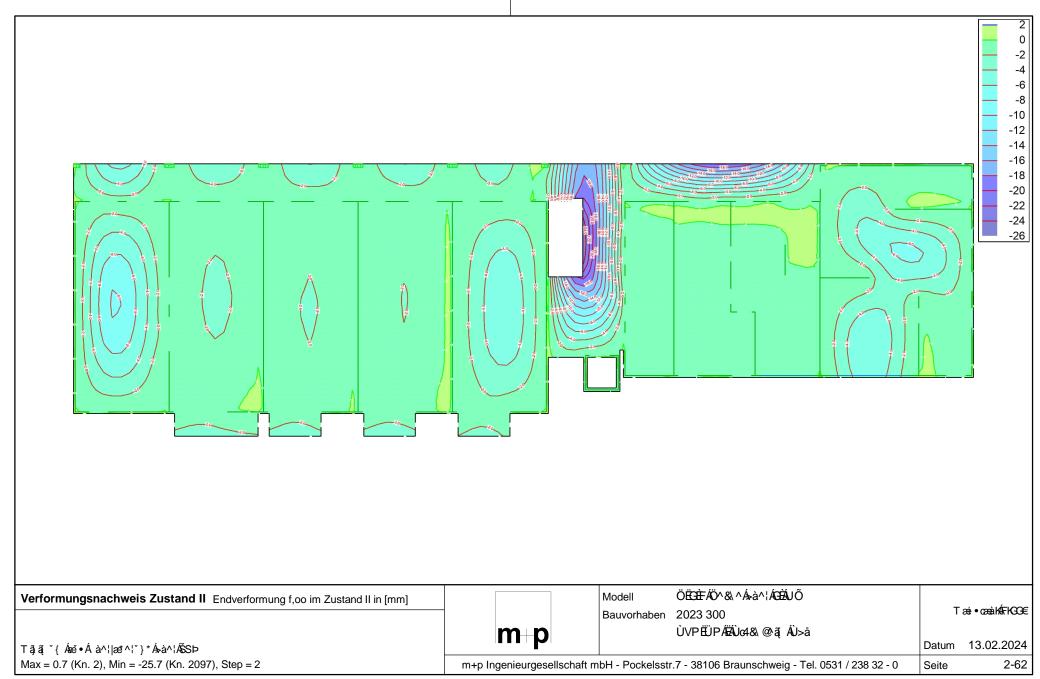
Gurtbewehrung


Gurtanschlussbemessung, Abs. 6.2.4

Seite: 2-59

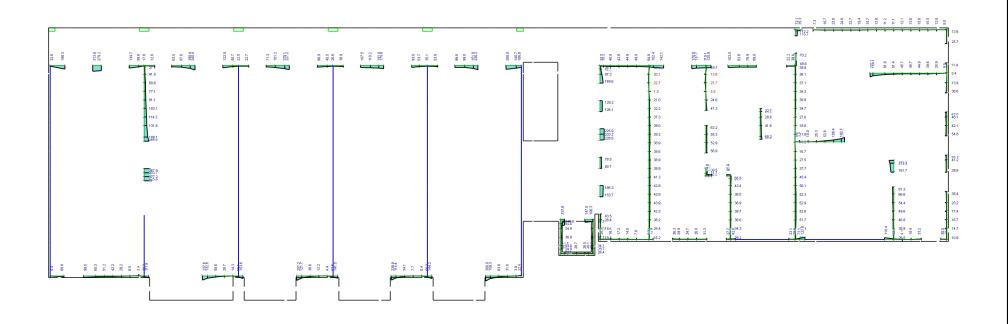
Ó^{ ^••`}*•|ê}*••&@à\¦æ⁄�¢Òå



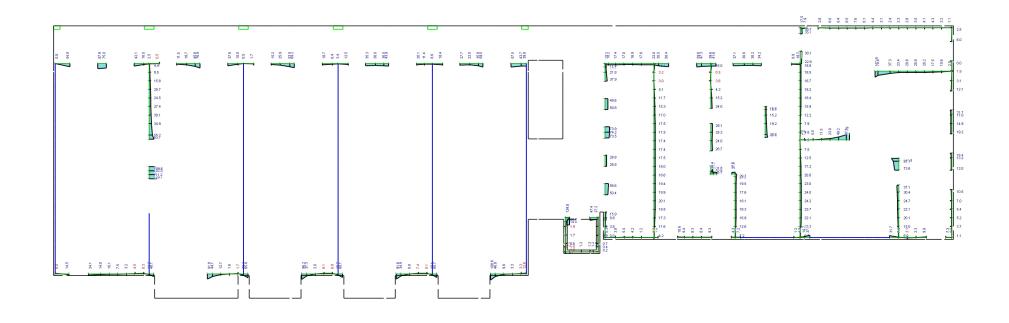

Gurtanschlussbewehrung asf

Nachweise (GZG)

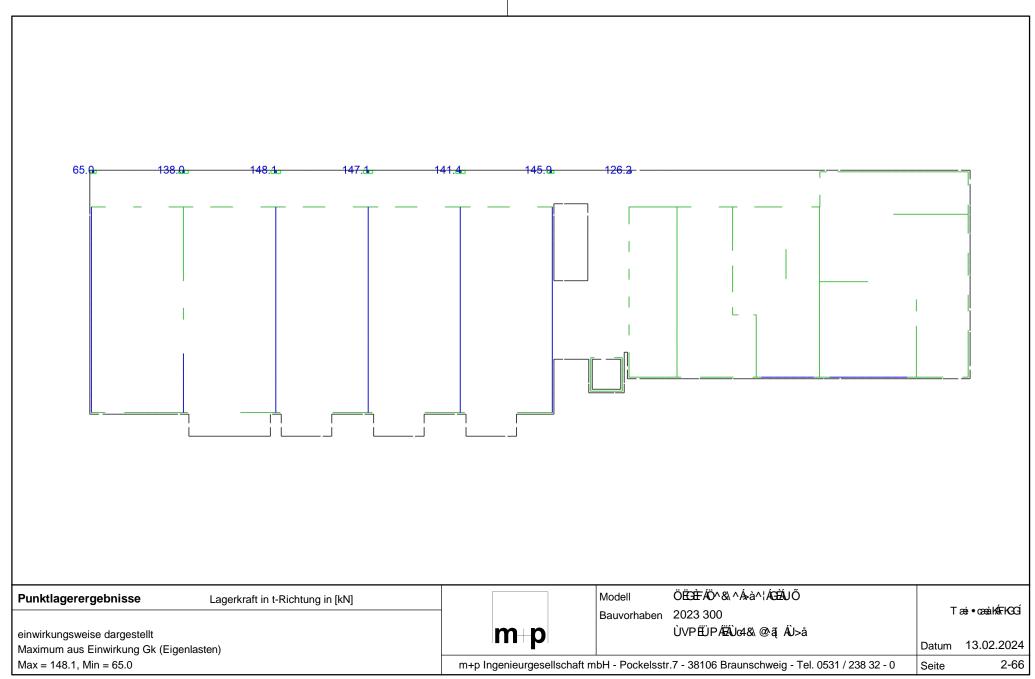
Auftrags-Nr. Position

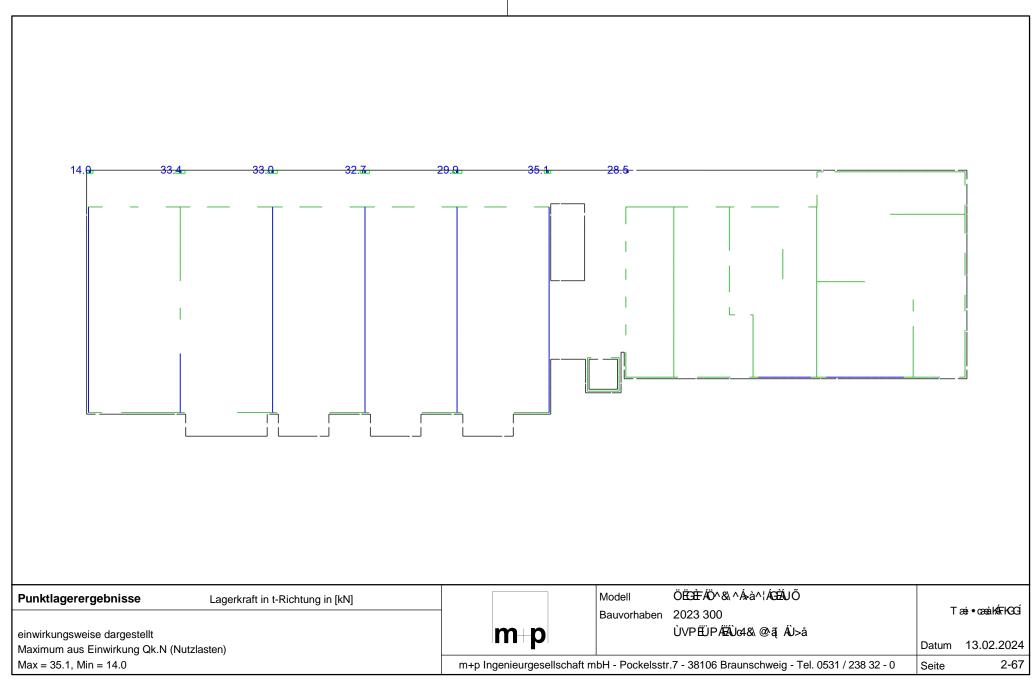


Seite: 2-63


2023 300

D-2.1

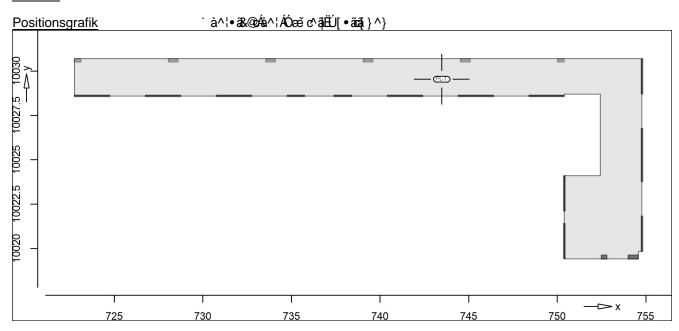

5 i ZU[Yf_f} ZhY



Linienlagerergebnisse Lagerkraft in t-Richtung in [kN/m]		Modell	ÖËEËÄÖ^&\^Ásà^¦ÁEÄJŐ	_	
			2023 300	I	æi•œaàkÁFKGG€
einwirkungsweise dargestellt Maximum aus Einwirkung Gk (Eigenlasten)	m-p		ÙVPËJPÆÄÛ¢4&\@@A ÂÛ>å	Datum	13.02.2024
Max = 425.8, Min = -27.7	m+p Ingenieurgesellschaft mb	H - Pockelsstr	.7 - 38106 Braunschweig - Tel. 0531 / 238 32 - 0	Seite	2-64

Linienlagerergebnisse Lagerkraft in t-Richtung in [kN/m]		Modell	ÖËSÈÁÖ^&\^Ásà^¦ÁGĐĂUÕ		
		Bauvorhaben	2023 300 ÙVPËÜPÆÄÜ¢&\@A ÂÜ>å	T	æi•œaìkÁFKGG€
einwirkungsweise dargestellt Maximum aus Einwirkung Qk.N (Nutzlasten)	m+p		UVFEDFAEQUAQ @q AU>a	Datum	13.02.2024
Max = 130.5, Min = -12.6	m+p Ingenieurgesellschaft m	nbH - Pockelssti	:.7 - 38106 Braunschweig - Tel. 0531 / 238 32 - 0	Seite	2-65

Seite: 2-68


Pos. D-2.2

8 YW YbgnghYa "VYf'&"C; '!'6 YfYJW 'HF<'Ž'h Yfa]gW Y'HfYbbi b[

System

Positionsplan Positionsplan

Bauteile Bauteil-Positionen

Platten Platten-Positionen

 Stahlbeton
 Position
 Winkel Art Material Dicke

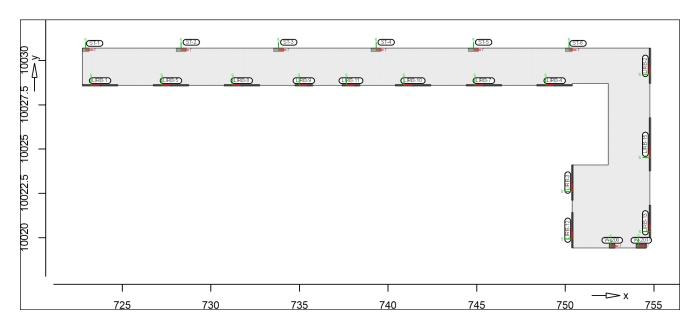
 Ž⁄a Šê}*• Quer [cm]

 PL-1
 0.0 iso
 C 30/37 Q
 20.0

Expositionsklasse *^{ êi ÁÖOÞÁFJJŒËËÉVæàÀÈ

Position Seite ΚI Kommentar XC3 PL-1 { êi ãt ^ ÁØ^ ~ &@^ oben Pê ~ at / fi a ^ l / fie } * ^ l ^ / ÁZ ^ a a Á WF feuchter Beton unten XC1 d[&\^} A a^\A cê} a A A æ• WO Weitgehend trockener Beton

B 500MA


B 500SA

<u>Auflager</u> Auflager-Positionen

Positionsgrafik à^! • **3&**@**/4a*** ^!**#U**[• **3a1** }^}

2023 300 D-2.2 ÙVPËUPÆÄJv4&\@@ Ã ÂJ>å Seite: 2-69

<u>Ùc>c ^} æ* ^¦</u>	Ùc>c ^} æ*^¦ËÚ[•ãã[; } ^}					
Stahlbeton	Position	Šê} * ^		Materia	()	h _(s)
	ST-1	[m] 3.00		C 25/30	[cm] Q 38.0	[cm]
	51-1	3.00				20.0
	OT 0 OT 5	0.00		B 500S		00.0
	ST-2ST-5	3.00		C 25/30		20.0
	OT C	0.00		B 500S		00.0
	ST-6	3.00		C 25/30		20.0
	Q: Õ^•¢^ã;•\4¦}`}*ÁÛ`æb:ãc			B 500S	A	
Federsteifigkeiten	Position	$K_{R,r}$		$K_{R,s}$		$K_{T,t}$
<u>r cacrotenigketteri</u>	1 0311011	[kNm/rad]		[kNm/rad]		[kN/m]
	ST-1	frei		frei	+/-	785333
	ST-2ST-5	frei		frei	+/-	1157333
	ST-6	frei		frei	+/-	785333
	31-0	IIEI		iiei	T /-	100000
Linienlager	Position	$K_{R,r}$		$K_{R,s}$		$K_{T,t}$
Linemager	1 03111011	[kNm/rad/m]		[kNm/rad/m]		[kN/m/m]
	LIRB-1LIRB-5,	frei		frei	+/-	250000
	LIRB-7LIRB-	1161		1161	т/-	230000
	13, LIRB-15					
Wandlager	Wandlager-Positionen					
Stahlbeton	Position	P4@	Šê}*^		Material	Dicke
Stariibetori	1 03111011	[m]	[m]		Material	[cm]
	W-200	3.00	0.34		C 25/30 Q	24.0
	VV-200	3.00	0.54		B 500MA	24.0
	W-201	3.00	0.58		C 25/30 Q	24.0
	VV-201	3.00	0.56		B 500MA	24.0
	Q: Õ^∙o^ãj•\4¦}				B SUUIVIA	
<u>Federsteifigkeiten</u>	Position	$K_{R,r}$		$K_{R,s}$		$K_{T,t}$
1 Gagratolligholtori	i osidori	[kNm/rad/m]		[kNm/rad/m]		[kN/m/m]
	W-200, W-201	frei		frei	+/-	2480000
	vv-200, vv-201	iiei		iiei	T /-	2400000

Auftrags-Nr. Position

D-2.2

D-2.2

D-2.2

D-2.2

D-2.2

D-3.300

D-2.2

D-2.2

D-3.300

D-2.2

D-3.300

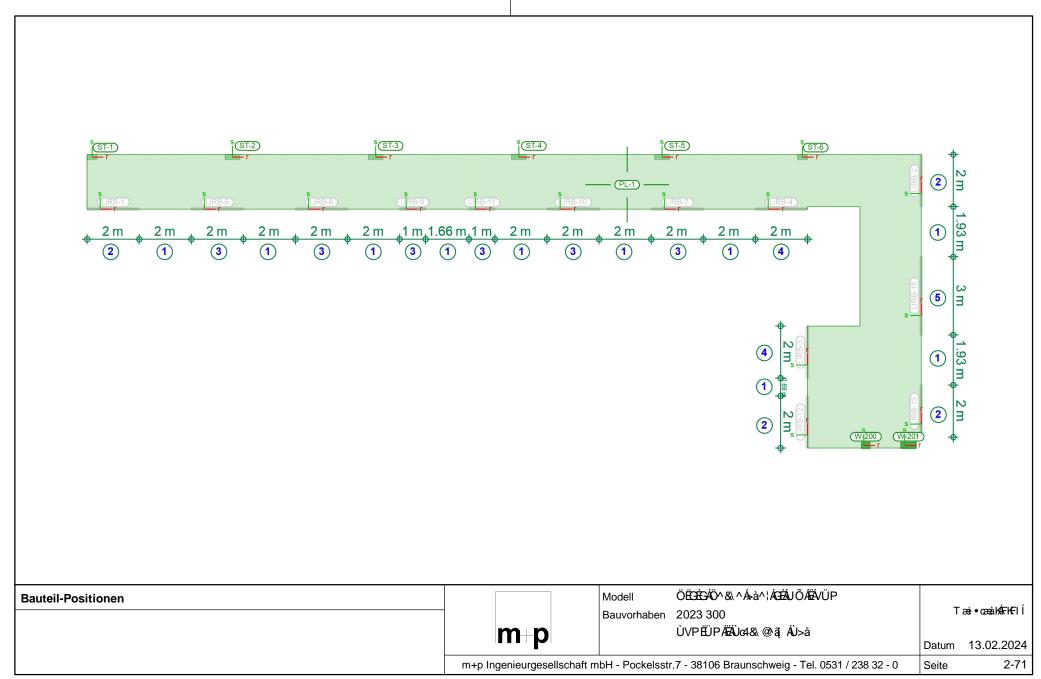
D-3.3

D-3.3

D-3.3

Seite: 2-70

<u>Material</u>	Materialkennwerte				
Stahlbeton DIN EN 1992-1-1	Position	Material	Wichte	E _{cm} G	$\begin{array}{c} f_{ck} \\ f_{ctm} \end{array}$
DIIV EIV 1332 1 1			ŽÞÐ()á		ŽÞÐ(á
	ST-1ST-6, W-200, W-201	C 25/30 Q		31000	25.00
	PL-1	C 30/37 Q	25.00	12900 33000	2.60 30.00
	Q: Õ^•œ^āj•\4¦}`}*ÁÛ`æb:ãc			13750	2.90
Betonstahl DIN EN 1992-1-1	Position	Material	Wichte Wichte	Es G	f _{yk} f _{tk,cal}
DIN 214 1002 1 1			ŽÞÐ() á		ŽÞÐ){ á
	PL-1, W-200, W-201	B 500MA		200000 77000	500.00 525.00
	PL-1, ST-1ST-6	B 500SA	78.50	200000 77000	500.00 525.00
Auswertung	Geometrische Auswertung	g der Positionen			
<u>Ø ê&@}</u>	Ø ê&@}~4¦{ ã^ÁÓæĕc^ãEÚ	• ãã { } ^ }			
Stahlbeton	Position		Dicke [cm]	Ø ê&@ Ž á	Volumen オ á
	PL-1		20.0	Ž á 98.14	<u>Ž</u> á 19.63
<u>Ùoc ^} æ* ^¦</u>	Ùoc^} /\$a^¦AÛoc^} æ*^¦Ë	Ú[•ãcã[}^}			
Stahlbeton	Position	b _(r) [cm]	h _(s) [cm]	Mantelfl. [m²]	Volumen [m ³]
	ST-1	38.0	20.0	3.48	0.23
	ST-2ST-5	56.0	20.0	4.56	0.34
	ST-6	38.0	20.0	3.48	0.23
<u>Wandlager</u>	Yê}å^Ás^¦ÁYæ)å æ*^¦ЁÚ[• ãtā[} ^}			
Stahlbeton	Position	Dicke [cm]	P4@ [cm]	Ø ê&@ [m²]	Volumen [m ³]
	W-200	24.0	300.0	1.01	0.24
	144.004	0.4.0			

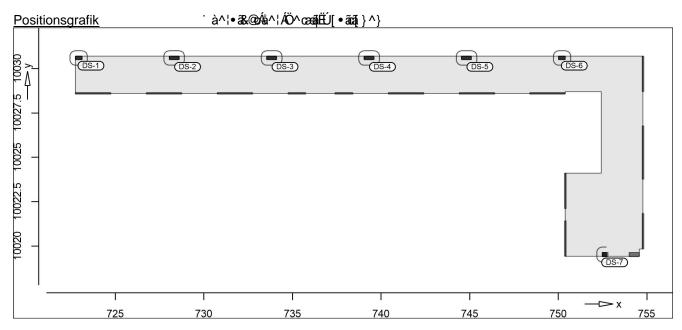

24.0

300.0

1.75

0.42

W-201


Auftrags-Nr. Position

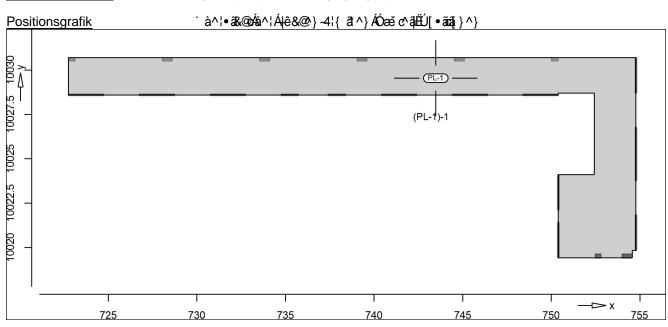
2023 300 D-2.2 ÙVPËÜPĀĀÚc4&\ @ ą ÁÚ>å

PÄÄÜ¢4&\@`āį AÛ>å Seite: 2-72

Detailplan Detailplan

<u>Details</u> Detail-Positionen

<u>Durchstanzstellen</u>	Position		Lel von	MinBew	Rundsch	beta
	DS-1		unten	ja	nein	1.50
	DS-2		unten	ja	nein	1.50
	DS-3		unten	ja	nein	1.50
	DS-4		unten	ja	nein	1.50
	DS-5		unten	ja	nein	1.50
	DS-6		unten	ja	nein	1.50
	DS-7		unten	ja	nein	1.35
		Lasteinleitung erfolgt von unten Mindestbewehrung nach NCI Zu Rundschnitt am Rand erweitern?				
<u>Geometrie</u>	Õ^[{ ^dã\/	Ása^¦ÁŠæ•c^ā, ^ãc`}*•√jê&	.@\			
	Position	Тур		Winkel	b(r)/D	h(s)
				Ž∕á	[cm]	[cm]
	DS-1	Re		0.00	38.0	20.0
	DS-2	Re		0.00	56.0	20.0
	DS-3	Re		0.00	56.0	20.0
	DS-4	Re		0.00	56.0	20.0
	DS-5	Re		0.00	56.0	20.0
	DS-6	Re		0.00	38.0	20.0
	Re: Rechteck	(
	Position	Тур	Winkelj2	Winkel	Breite	Šê} * ^
			Ž∕á	Ž∕á	[cm]	[cm]
	DS-7	We		0.00	24.0	24.0
	We: Wandend	de				
<u>Koordinaten</u>	Position				Χ	Υ
					[m]	[m]
	DS-1				722.93	10030.60
	DS-2				728.32	10030.60
	DS-3				733.82	10030.60
	DS-4				739.32	10030.60
	DS-5			-	744.82	10030.60


Auftrags-Nr.	Position	Ingenieurgesellschaft mbH	
2023 300	D-2.2	ÙVPËÜPĀĒŪc4&\@ā[ĀÛ>å	Seite: 2-73

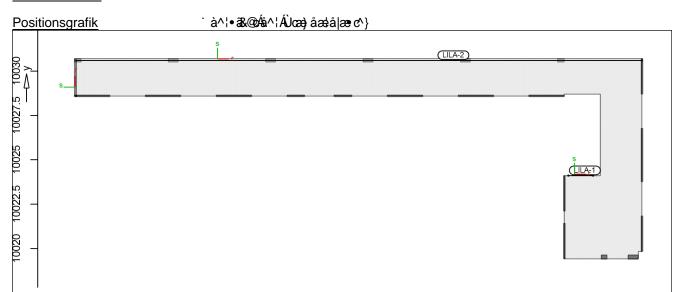
Position	X	Υ
	[m]	[m]
DS-6	750.21	10030.60
DS-7	752.48	10019.52

Belastungen

Lastplan Lasten des FE-Modells

<u>Bauteillasten</u> Bauteilbezogene Lasten

Eigengewicht	Position	EW	Lastfall	Art	g [kN/m²]
	PL-1 PGr: Gravitations	Gk ast; positive Laster	LF-1 n wirken senkrecht nach unte	PGr	5.00
<u>Ù[}•cã*^Á;cê}åã*^Á§æe</u> c	Position	EW	Lastfall	Art	g [kN/m²]
	PL-1 PGr: Gravitationsl	Gk ast; positive Laste	LF-1 n wirken senkrecht nach unte	PGr ⁿ	2.80
<u>Nutzlast</u>	Position	EW	Lastfall je Lastfeld	d Art	p [kN/m²]
	PL-1 PGr: Gravitations	Qk.N ast; positive Laster	(PL-1)-1 n wirken senkrecht nach unte	PGr ⁿ	4.00


D-2.2

ÙVPËÜPÄÄÛc4&\@ã ÁÛ>å

Seite: 2-74

Standardlasten

Standardlasten im FE-Modell

Linienlasten Position LILA-1 LILA-2 PGr: Gravitation	Position	EW	Lastfall	Art	p _A ,m _A [kN/m	p _E ,m _E],[kNm/m]
	LILA-1	Treppe				
		Gk	LF-1	pGr	25.00	25.00
		Qk.N	LF-2	pGr	12.00	12.00
	LILA-2	Ó¦>• <i>c</i> `}	. *	,		
		Gk	LF-1	pGr	6.00	6.00
	nGr: Gravitation	slast: nositive I aster	n wirken senkrecht nach	ch unten		

740

745

Einwirkungen

DIN EN 1990 Einwirkungen nach DIN EN 1990

730

S>:\^	Beschreibung
	Typisierung
Gk	Eigenlasten
	Ùœ;}åã*^ÁÒã;ã\`}*^}

735

Qk.N Nutzlasten

Sæe^*[|â^ÁOĐÁÖÝ[@]ËÁ}åÁOE-^}c@ædo•|ê*{ ^

 $\underline{\check{S}}\underline{a}\underline{c}\underline{e}\underline{e}\underline{h}$ $\check{S}\underline{a}\underline{e}\underline{e}\underline{h}$ $\check{S}\underline{a}\underline{e}\underline{e}\underline{h}$

Gk LF-1 Qk.N LF-2, (PL-1)-1

725

Bemessung (GZT+GZG)

Biegung Pl-As-erf-Iso Plattenbiegebemessung nach DIN EN 1992-1-1

 $\underline{PL-1} \qquad \qquad \acute{O}^{\bullet \bullet \bullet \bullet} \} * \acute{A} = A \acute{U} = 2 \acute{A} \acute{U} = 2 \acute{A} \acute{U} = 2 \acute{A} \acute{U} = 2 \acute{A} \acute{U} = 2 \acute{U}$

Mat./Querschnitt Beton C 30/37

Õ^∙c^ã,•\4¦} `} *ÂÛ`æ:ãc Betonstahl *B 500MA*

Dicke konstant h = 20.00 cm

Auftrags-Nr.	Position	martens+puller
2023 300	D-2.2	ÙVPËÜPÄÄÜ¢4&\@ã, ÁÙ>å

*^{ êi ÁÖ OÞÁÐ ÞÁFJJ GËFËFÉÁ ÞÆÐ ÞÁL ÈF Expositionsklasse

Position Seite ΚI Kommentar PL-1 XC3 { êi ât ^,ÁØ^ ` &@^ oben WF Pê ~ at / fi a ^ l / fie} * ^ l ^ / fiz^ a fi feuchter Beton d[&\^} A a^\A cê} a A æ• XC1 unten Weitgehend trockener Beton WO

Seite: 2-75

Vorgaben zur Bewehrungsdefinition Bewehrung Betondeckung $c_{min,u}/c_{min,o} =$ 10 / 20 mm 15 &def, uD &def, o =10 / mm Cnom,u/Cnom,o = 20 / 35 mm Bewehrungsabstand $d'_{ru/su} =$ 30 / 30 mm $d'_{ro/so} =$ 30 / 30 mm

> Bewehrungsrichtung $W_{ru/su} =$ 0.0 / 90.0 0.0 / 90.0 $W_{ro/so} =$ Tænc^ÉAÙcêà^ Seite d'r $a_{\text{sg},r}$ d's $a_{\text{sg,s}}$ <Ž{{aĐŽ&{á Ž Ž& [mm] ₽a [mm] ₽)á

Unten 3.35 3.35 30 30 Oben 30 3.35 30 3.35

nach DIN EN 1992-1-1 Nachweisparameter

Grundbewehrung

Tā å^•cà^. ^@`} * ÁÇIÈDÈÈDÁ `¦å^Áà^!>& • 3&@ā cÈ

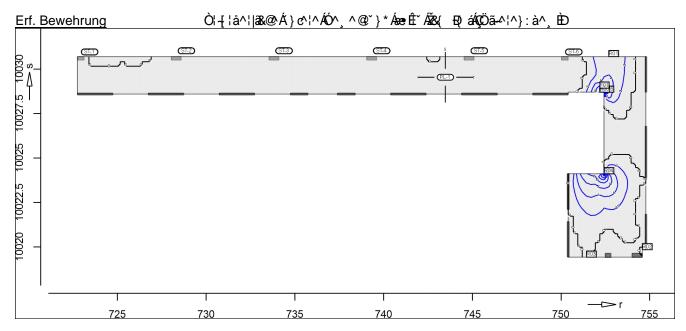
Tæi*^à^}å^ÁS[{àã;æeã;}^}Á;æ&@ÁÖOÞÁÖÞÁFJJ€ Kombinationen

> Ew Einwirkungsname

Lastkombinationsnummer Lkn

! c[| @ | | • & @ } a^ Aç^ | ê } a^ | | a& @ AOa _ a \ ` } *

Ausgabeformat nicht dokumentiert.


Ew Gk Qk.N Lkn Grundkombination 1.50 ! 1-2 1.35

2023 300 D-2.2

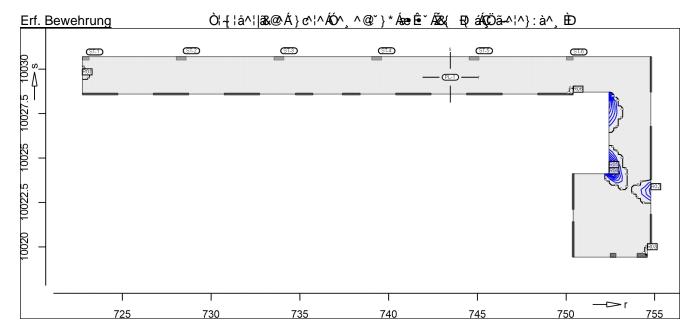
IPÁÄÚd& @ á ÁÚ>å Seite: 2-76

as,r,unten

Šê}*•à^¸^@`}*Á§ÁËÜæ&@`}*Á§Á`;¢^¦^¦ÆŠæ*^

Q[|ã,ã\}•č.^}ÁMÁQÈ€É&{ ₽

Lkn	$a_{s,ru}$	m_{Ed}	$m_{rs,Ed}$	$m_{s,Ed}$	$m_{r,Ed}$	У	X	Punkt
	Ž&{ Địá	[kNm/m]				[m]		
1	8.29	80.01	8.23	-7.61	71.78	10029	752.19	F01
1	3.84	52.26	-4.96	0.41	47.30	10031	752.69	R01
1	1.34	36.17	16.15	11.54	20.03	10020	754.58	R02
1	0.05	27.57	-11.84	0.10	15.73	10019	751.44	R03
1	20.16	146.62	48.37	8.94	98.26	10024	752.42	R04
1	17.03	130.27	-28.45	-31.69	104.73	10029	752.42	R05
1	7.93	77.81	16.67	4.02	61.14	10029	752.19	R06


D-2.2

ÙVPËÜPÄÄÛ¢4&\@@ã ÁÛ>å

Seite: 2-77

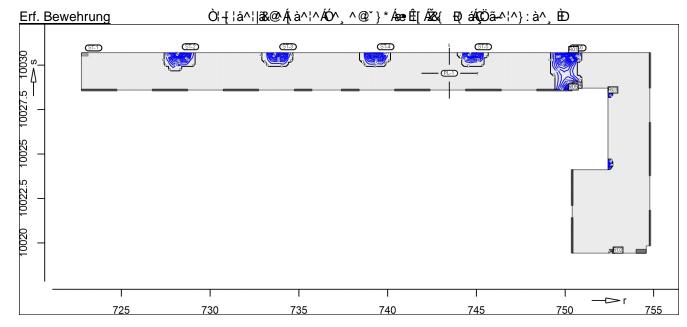
as,s,unten

Šê}*•à^¸^@^`}*Á§Á;ÉÜæ&@c`}*Á§Á;}♂\^\ÁŠæt^

Q [|ã, ã^}•č -^}ÁMÁ€ÌÈH€Á&{ E?

Achsabstand erf. Bewehrung: d'su = 30 mm Achsabstand vorh. Bewehrung: $d'_{su} = 30 \text{ mm}$ $\tilde{O}()^3 \hat{a}^3 \hat{A}^4 \hat{A$

Punkt	X	У	$m_{r,Ed}$	$m_{s,Ed}$	$m_{rs,Ed}$	m_{Ed}	$a_{s,su}$	Lkn
		[m]				[kNm/m]	Ž&{ Ð()á	
R01	722.74	10030	0.14	14.00	-14.39	28.39	0.17	2
R02	754.78	10023	0.27	18.39	15.85	34.23	1.04	1
R03	754.58	10020	20.03	11.54	16.15	27.69	0.06	1
R04	752.42	10024	98.26	8.94	48.37	57.31	4.63	1
R05	752.42	10024	-15.72	24.38	36.16	60.54	5.14	1
R06	750.40	10029	-42.78	26.72	9.15	28.68	0.21	1



2023 300 D-2.2 ÙVPËJPĀĀŪc4&\@-ā, ÂJ>å

Seite: 2-78

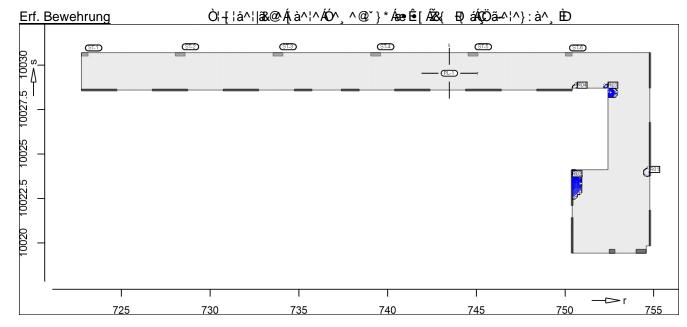
as,r,oben

Šê}*•à^¸^@*}*Á§ÁËÜæ&@*}*Á§Á;à^¦^¦Æ\$æ*^

Q[|ã,ã^}•č.^}ÁMÁ€Ě,€Á&{ Ð

Achsabstand erf. Bewehrung: $d'_{ro} = 30 \text{ mm}$ Achsabstand vorh. Bewehrung: $d'_{ro} = 30 \text{ mm}$ $\tilde{O}(^{*})^{*} \tilde{a}^{*} ^{*} ^{*} \tilde{a}^{*}$

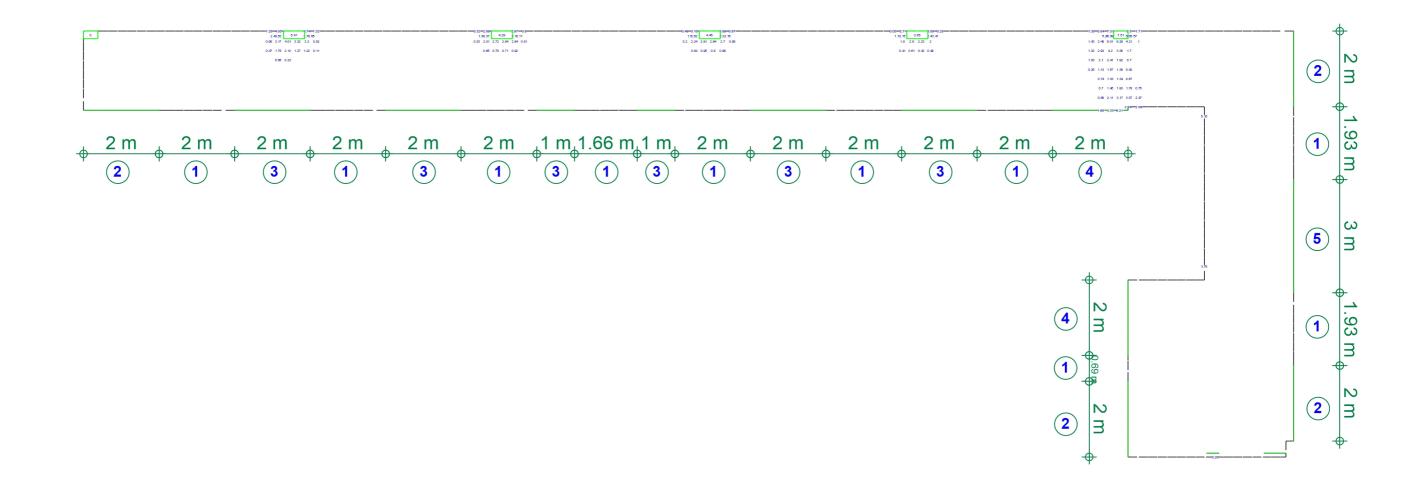
Punkt	Х	У	$m_{r,Ed}$	$m_{s,Ed}$	$m_{rs,Ed}$	m_{Ed}	a _{s,ro}	Lkn
		[m]				[kNm/m]	Ž&{ Đ(á	
ST-2			-65.10	-7.21	1.74	-66.84	6.15	2
ST-3			-58.23	-6.72	-0.24	-58.47	4.82	2
ST-4			-59.29	-6.81	-0.10	-59.39	4.96	1
ST-5			-55.21	-6.23	1.04	-56.25	4.46	2
ST-6			-78.73	-8.76	3.90	-82.62	8.72	1
R01	750.20	10031	-85.84	-0.28	3.85	-89.69	9.89	1
R02	752.71	10019	-27.73	0.64	1.29	-29.02	0.26	1
R03	752.42	10028	-16.49	6.94	-44.09	-60.58	5.15	1
R04	750.40	10029	-42.78	26.72	9.15	-45.91	2.84	1
R05	750.19	10029	-60.22	3.01	7.02	-67.24	6.21	1



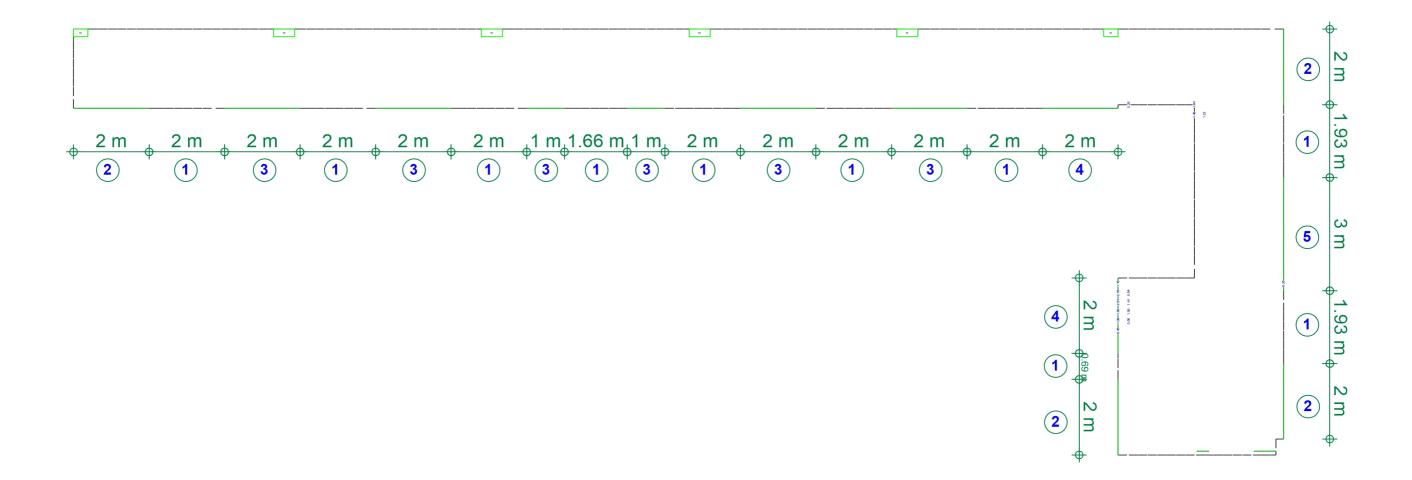
D-2.2

Seite: 2-79

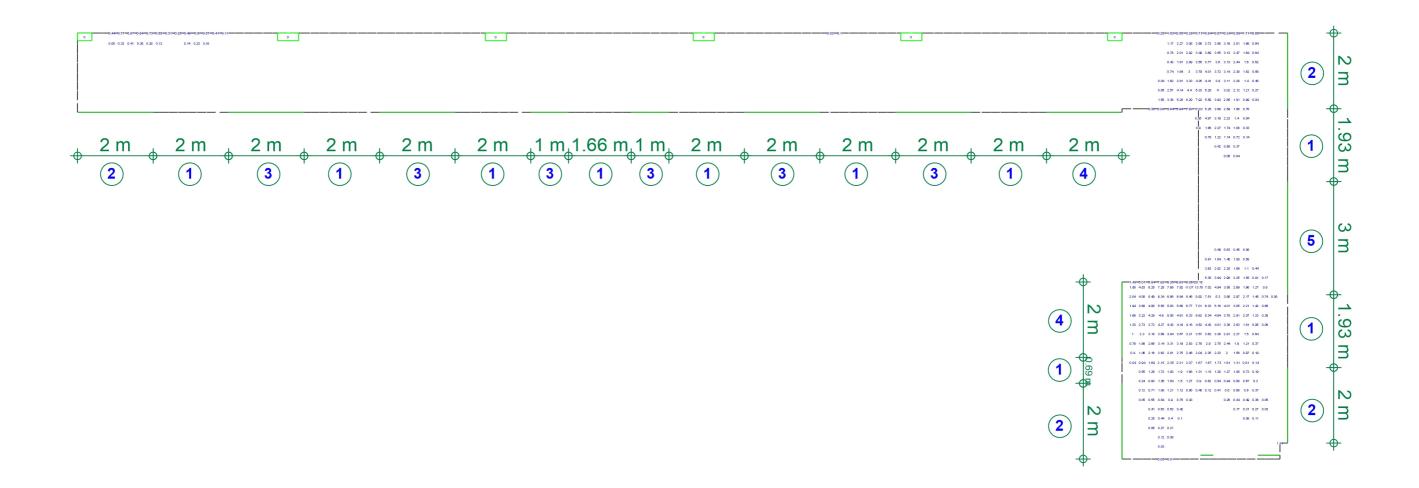
as,s,oben


Šê}*•à^¸^@~`}*Á§Á;ËÜ&&@~`}*ÁŞÁ;à^¦^¦ÁŠæ*^

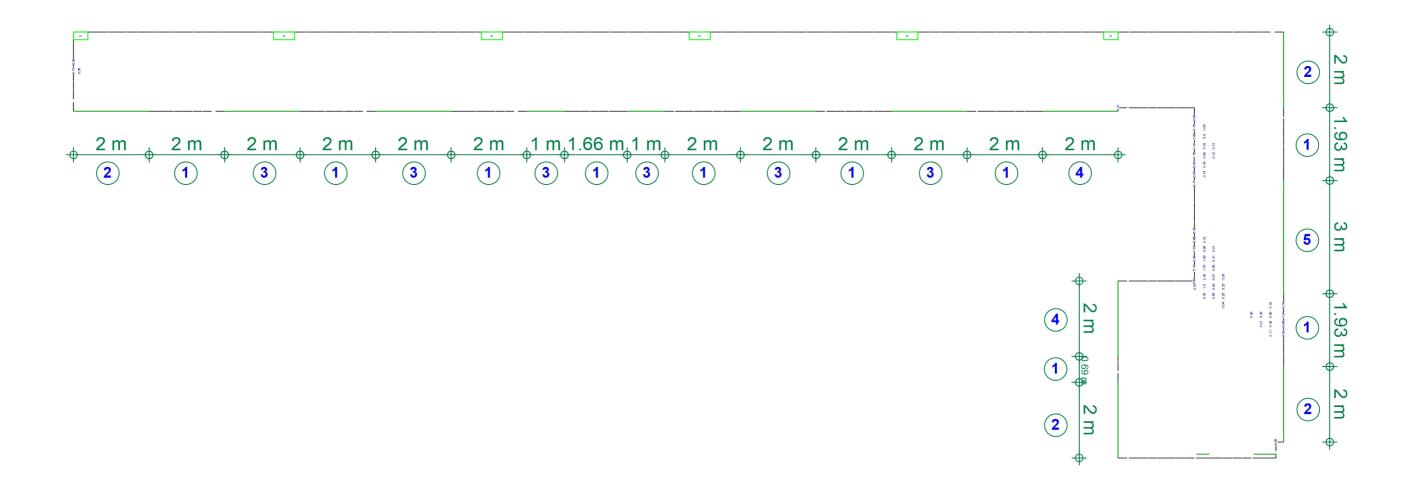
Q [|ã, ã^}•č -^}ÁMÁ€ÌÈ€Á&{ Ð


Achsabstand erf. Bewehrung: d'so = 30 mm Achsabstand vorh. Bewehrung: $d'_{so} = 30 \text{ mm}$ $\tilde{O}_{so}^{\dagger} = 30 \text{ mm}$ $\tilde{O}_{so}^{\dagger} = 30 \text{ mm}$

			o, jaa , o	,[
Punkt	Х	у	$m_{r,Ed}$	$m_{s,Ed}$	$m_{rs,Ed}$	m_{Ed}	$a_{s,so}$	Lkn
		[m]				[kNm/m]	Ž&{ Ð()á	
R01	754.78	10024	-0.22	-13.07	15.88	-28.96	0.25	1
R02	750.40	10024	0.20	-26.56	-18.82	-45.37	2.76	1
R03	752.42	10029	104.73	-31.69	-28.45	-39.43	1.84	1
R04	750 69	10029	-15.36	-3.50	25 69	-29 19	0.28	1



ÖËÐÐÁÖ^&\^Ásà^¦ÁÐÁÚŐÁÐÁÜP Modell : `} WY YbVYa Yggi b[Erforderliche Bewehrung as,erf (Differenzbew.) Tæi•œaìkÁFkF€€ Bauvorhaben 2023 300 Vorhandene Bew. as,vorh = 3.35 (Grund+Zulagen) m-p ÙVPËÜPÆÄÛ¢4&\@^ã(AÛ>å Beton C 30/37 aus allen Nachweisen Datum 13.02.2024 ¦ËÜa&@č}*Áţà^}Á§AÃ&{ Ð;á Bew.-Abstand d' = 30 mm Bauteildicke h = 20.00 cm Max = 7.51 (Kn. 1675), Min = 0 (Kn. 1695) m+p Ingenieurgesellschaft mbH - Pockelsstr.7 - 38106 Braunschweig - Tel. 0531 / 238 32 - 0 Seite 2-80


MicroFe 2022.052

ÖËÐÐÁÖ^&\^Á>à^¦ÁŒÁUÕÆÁVÜP Modell : `} WY YbVYa Yggi b[Erforderliche Bewehrung as,erf (Differenzbew.) Tæi•oæàkÁFKF€€ Bauvorhaben 2023 300 Vorhandene Bew. as,vorh = 3.35 (Grund+Zulagen) m p ÙVPËÜPÆÄÛ¢4&\@^ã(AÛ>å Beton C 30/37 aus allen Nachweisen Datum 13.02.2024 •ËÜä&@č}*Áţà^}Á§AŽ&{ Ð(á Bew.-Abstand d' = 30 mm Bauteildicke h = 20.00 cm Max = 2.76 (Kn. 342), Min = 0 (Kn. 1695) m+p Ingenieurgesellschaft mbH - Pockelsstr.7 - 38106 Braunschweig - Tel. 0531 / 238 32 - 0 Seite 2-81

ÖËÐÈÁÖ^&\^Á>à^¦ÁŒÁUŐÆÁVÜP Modell : `} WY YbVYa Yggi b[Erforderliche Bewehrung as,erf (Differenzbew.) Tæi•œaìkÁFkF€€ Bauvorhaben 2023 300 Vorhandene Bew. as,vorh = 3.35 (Grund+Zulagen) ÙVPËÜPÄÄÜ¢4&\@ãį ÁÜ>å m-p Beton C 30/37 aus allen Nachweisen Datum 13.02.2024 Bew.-Abstand d' = 30 mm ¦ËÜ&&@c`}*Á;}c^}Á§jÃ&{ Ð;á Bauteildicke h = 20.00 cm Max = 20.16 (Kn. 9), Min = 0 (Kn. 1695) m+p Ingenieurgesellschaft mbH - Pockelsstr.7 - 38106 Braunschweig - Tel. 0531 / 238 32 - 0 Seite 2-82

ÖËÐÐÁÖ^&\^Á>à^¦ÁŒÁUÕÆÁVÜP Modell : `} WY YbVYa Yggi b[Erforderliche Bewehrung as,erf (Differenzbew.) Tæi•oæàkÁFKF€€ Bauvorhaben 2023 300 Vorhandene Bew. as,vorh = 3.35 (Grund+Zulagen) m p ÙVPËÜPÆÄÛ¢4&\@^ã(AÛ>å Beton C 30/37 aus allen Nachweisen Datum 13.02.2024 •ËÜ&&@č}*Á}¢^}Áş,Æ&{ Ð;á Bew.-Abstand d' = 30 mm Bauteildicke h = 20.00 cm Max = 5.14 (Kn. 393), Min = 0 (Kn. 1695) m+p Ingenieurgesellschaft mbH - Pockelsstr.7 - 38106 Braunschweig - Tel. 0531 / 238 32 - 0 Seite 2-83

MicroFe 2022.052

Auftrags-Nr. Position D-2.2 2023 300

ÙVPËÜPÄÄÛ¢4&\@`ã ÁÛ>å

Seite: 2-84

Querkraft Pl-As-Iso

Querkraftbemessung Plattenbereiche

PL-1

Querkraftbemessung der Platte (Isolinien)

Querkraftbemessung nach DIN EN 1992-1-1

Beton C 30/37, Betonstahl B 500SA

Õ^• c^ā,•\4¦} `} * ÁÛ `æ: ãc

Druckstrebenneigung wurde vom Programm optimiert.

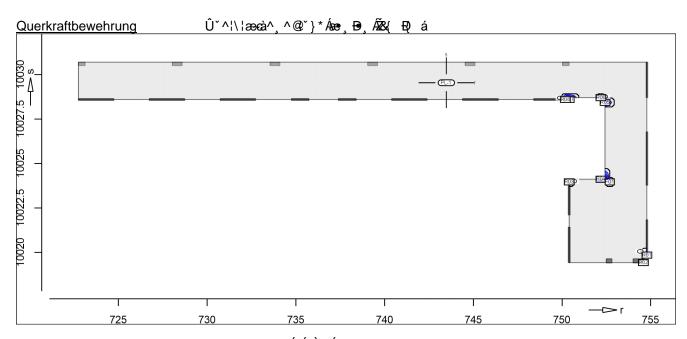
Mindestbewehrung (9.3.2) wurde nicht ermittelt.

Dicke konstant h = 20.00 cm

Kombinationen

Tæi*^à^}å^ÁS[{àãjæaãj}^}Ájæ&@ÄÖOÞÁÖÞÁFJJ€

Einwirkungsname Ew

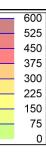

Lastkombinationsnummer Lkn

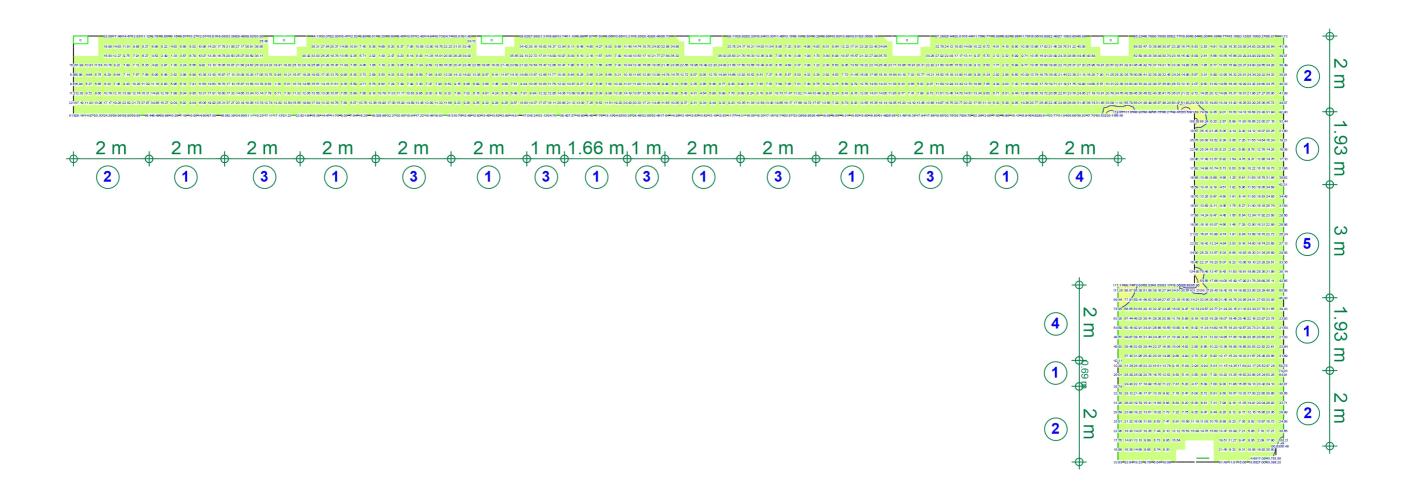
ç[| @\||•&@\} a^Aç^\e\} a^\|a&@AOa, ā\`} *

Öâ ÁÓ c đãt } * Á j : ^|} ^ L Šæ cê || Á j } ^ L @ da Áeiner Einwirkung wird mit diesem

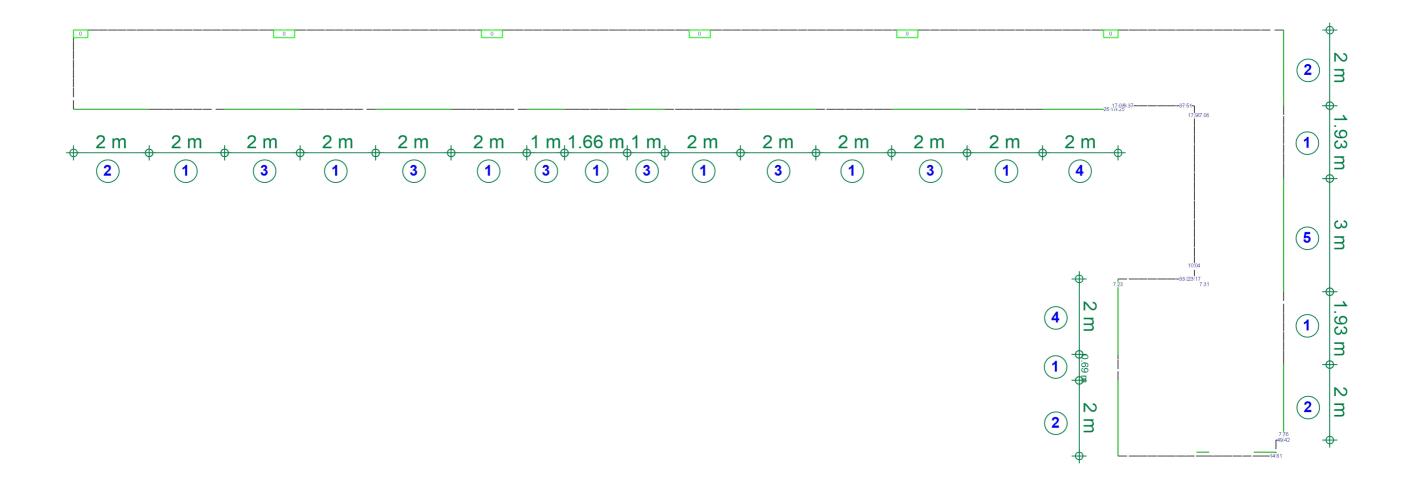
Ausgabeformat nicht dokumentiert.

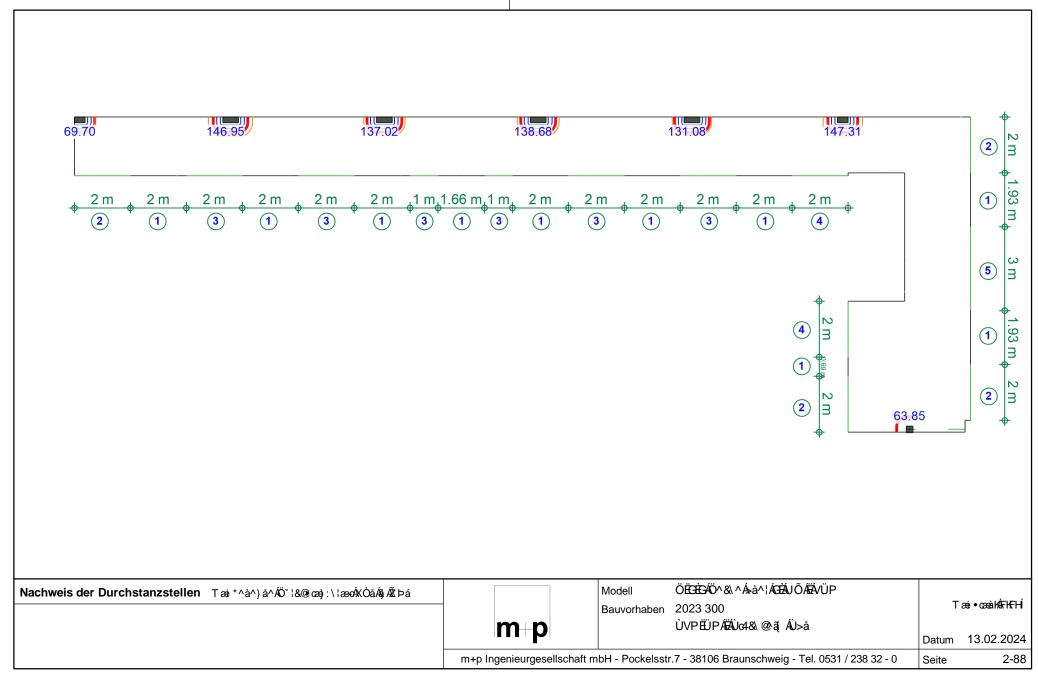
Ew	Gk	Qk.N
Lkn	Grundkombination	
1-2	1.35	1.50 !




Q[|ã,ã^}•č.~\}ÁMÁ È∈€Á&{ Ð

Punkt	Х	y [m]	vEd	vEd,res	vRd,c	vRd,max [kN/m]	asw/sw	Summe Ž&{ ₽) á	Lkn
F01	752.69	10024 r	-100.2	100.2	92.2 m	401.6	7.31	7.31	1
		S	1.9		92.2 m	401.6	0.00		
R01	754.78	10020 r	-249.9	306.5	92.2 m	577.1	31.33	49.42	1
		S	177.4		92.2 m	512.2	18.09		
R02	754.58	10019 r	-56.6	169.2	92.2 m	401.6	0.00	14.81	1
		S	159.5		92.2 m	481.2	14.81		
R03	750.40	10024 r	99.1	111.3	92.2 m	401.6	7.23	7.23	1


Auftrags	s-Nr.	Pos	sitior	า	M		IS+PUIIEr sellschaft mbH			
2023 30	0	D-2	2.2		ÙVPËÜF	?ÁÄÚd&\@a[ÁÚ>å		Seite:	2-85
Punkt	Х	y [m]		vEd	vEd,res	vRd,c	vRd,max [kN/m]	asw/sw	Summe Ž&{ Đ) á	Lkn
			S	50.6		92.2 m	497.3	0.00	, ,	
R04	752.19	10024	r	261.2	265.7	92.5	582.8	33.38	33.38	2
			s	48.7		92.2 m	497.3	0.00		
R05	752.42	10028	r	176.8	188.5	92.2 m	511.3	17.98	17.98	1
			s	-65.5		92.2 m	401.6	0.00		
R06	752.19	10029	r	243.5	263.5	92.2 m	573.6	30.16	37.51	1
			s	-100.6		92.2 m	401.6	7.35		
R07	750.40	10029	r	166.6	556.5	92.2 m	514.8	10.26	74.25	1
			s	531.0		92.2 m	771.2	63.99		
R08	750.19	10029	r	72.7	228.1	92.2 m	497.3	0.00	25.17	1
			s	216.2		92.2 m	554.8	25.17		
m: Tậå^∙	rç∧¦dÁ,æ&@AÖOD•ÁÔ	DÞÁFJJŒFËFÉKÖ	KÇÎ KEÇÊ	àDÁ√(æi:*^à^}å						

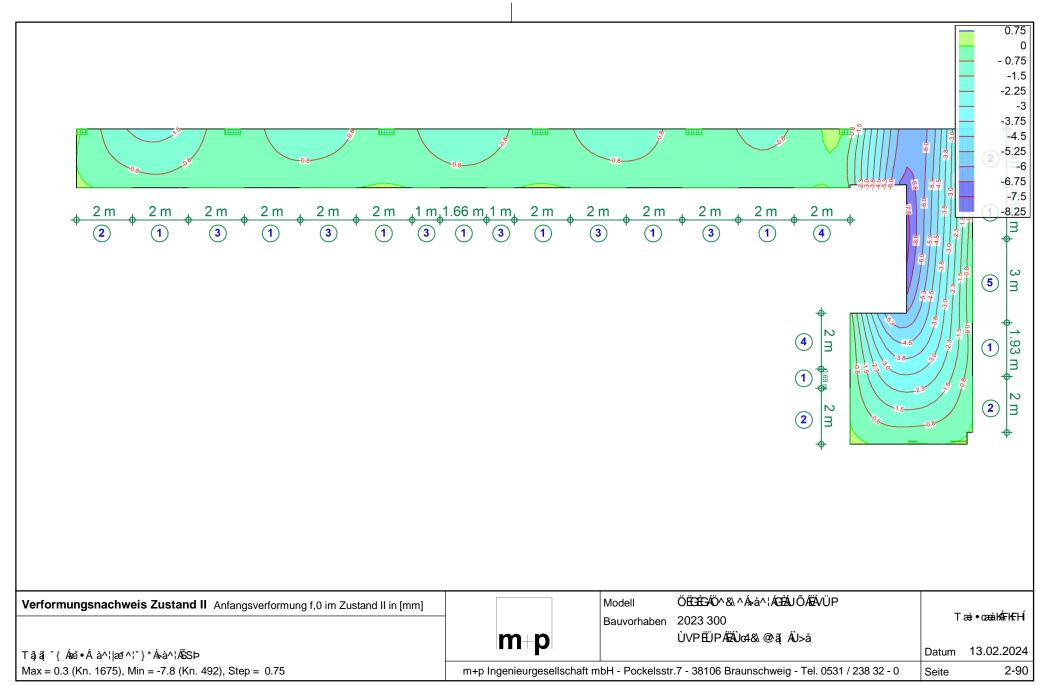

Querkraftbemessung	Ó^{ ^••ˇ}*•˘ˇ^¦\¦æơ\$;ÒàÊ^•Ásĕ•Á/¦æť-ê@t\^ãæ}æ	a @ ^ā Áş Æ m ⊢p	Modell Bauvorhaben	ÖÜÜÜÜÖ^&\^Ásà^¦ÁŒÀJÕÆÄVÜP 2023 300 ÙVPËÜPÆÄJG4&\@A(AJ>å	T Datum	æi•oæaìk√aFkF€€ 13.02.2024
Max = 556.48, Min = 0, Step = 75		m+p Ingenieurgesellscha	ft mbH - Pocke	lsstr.7 - 38106 Braunschweig - Tel. 0531 / 238 32 - 0	Seite	2-86

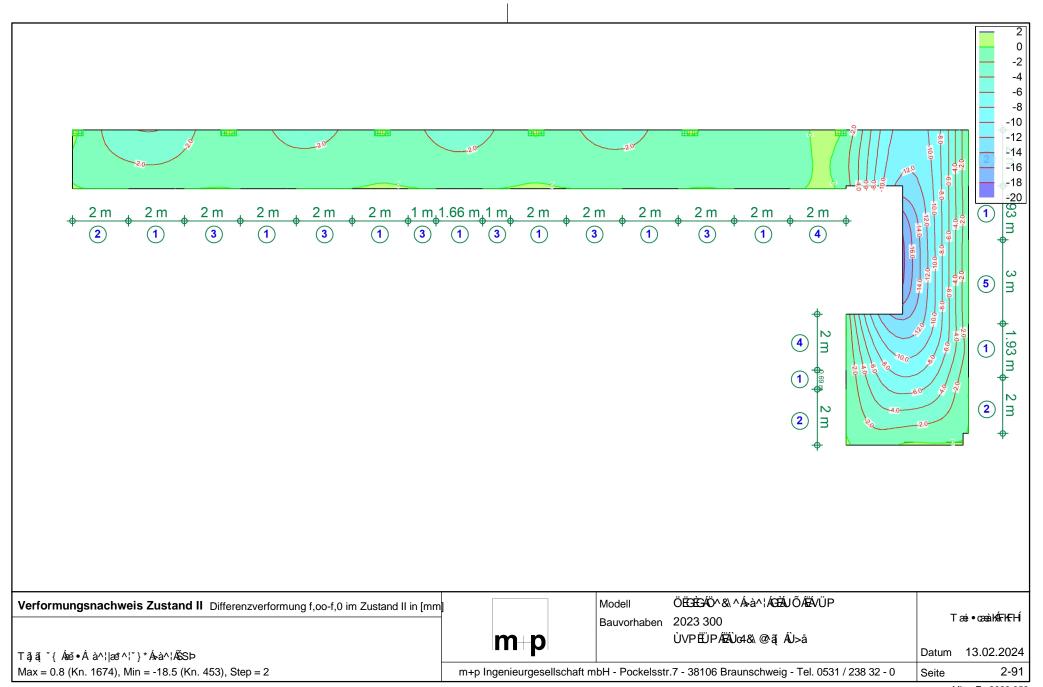
MicroFe 2022.052

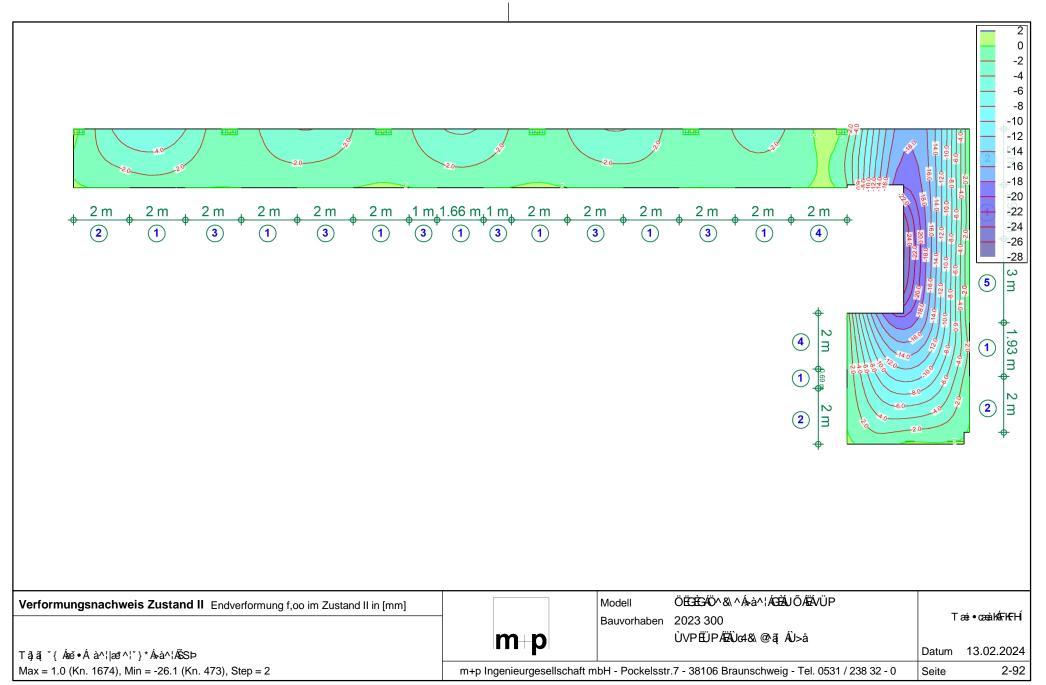
Bauvorhaben 2023 300 ÙVPËÜPÄÄÜd& @ ¾ ÂÜ>å	
Datum	13.02.2024
Max = 74.25, Min = 0 m+p Ingenieurgesellschaft mbH - Pockelsstr.7 - 38106 Braunschweig - Tel. 0531 / 238 32 - 0 Seite	2-87

MicroFe 2022.052

Auftrags-Nr. Position



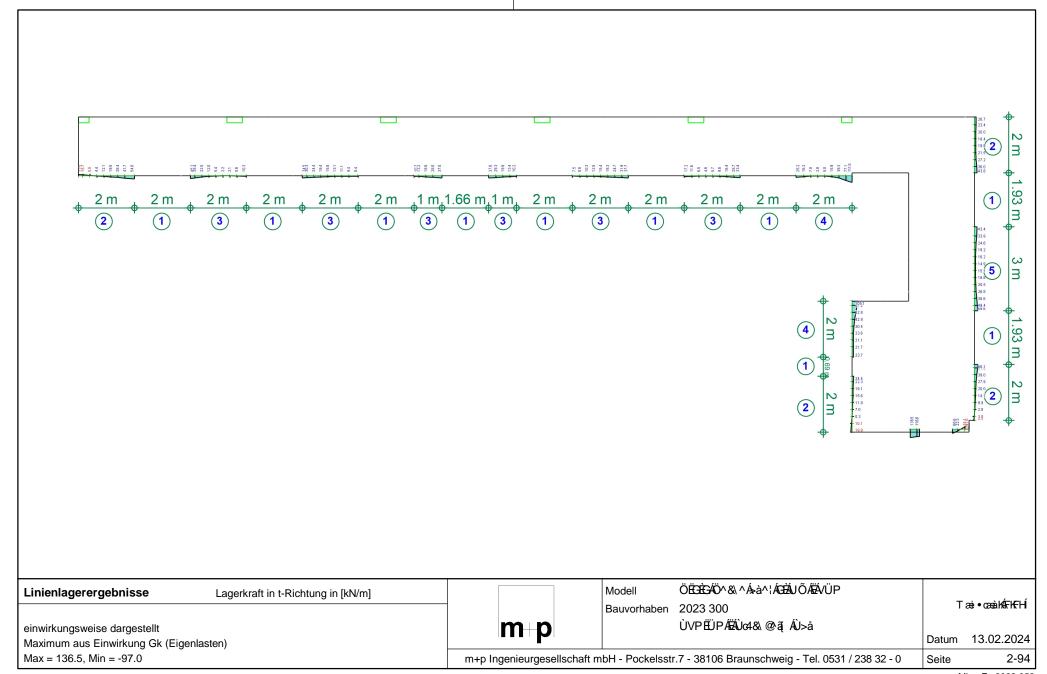

Seite: 2-89

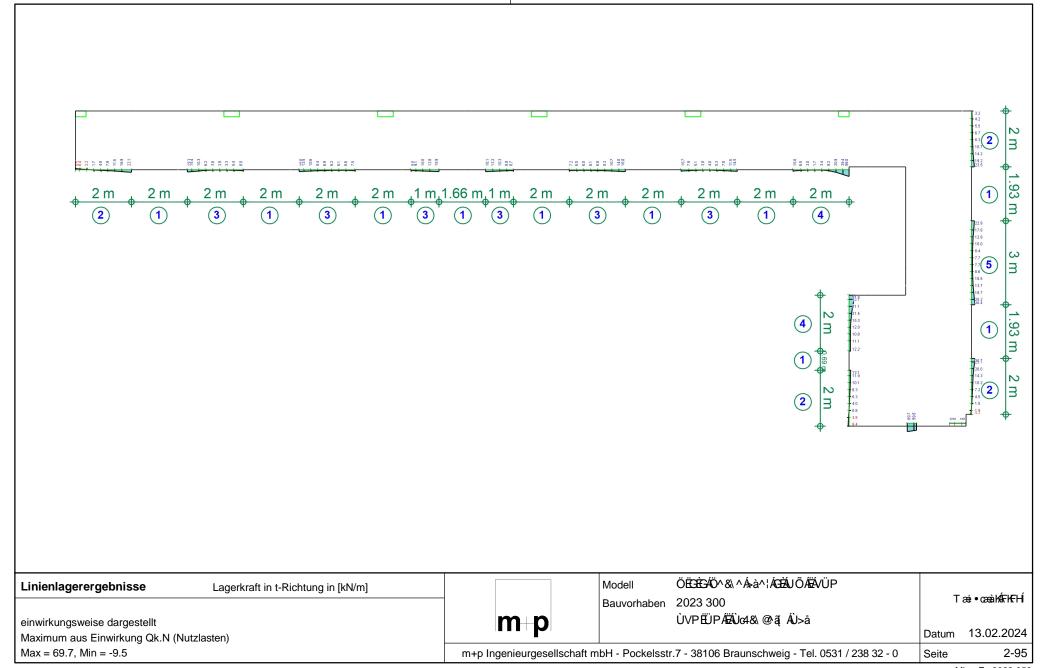

2023 300

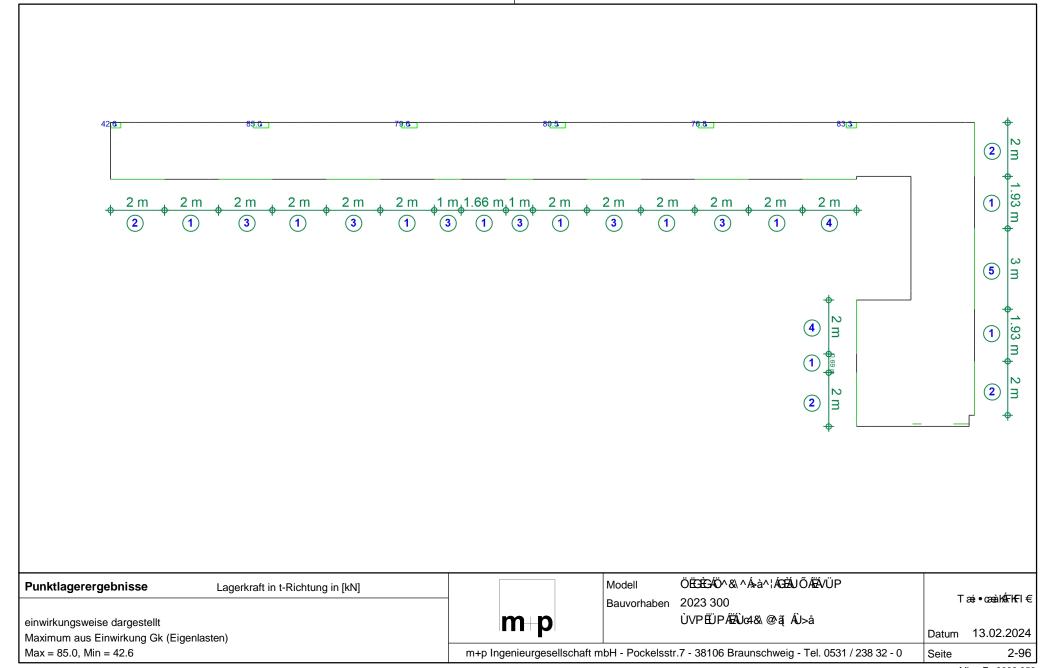
D-2.2

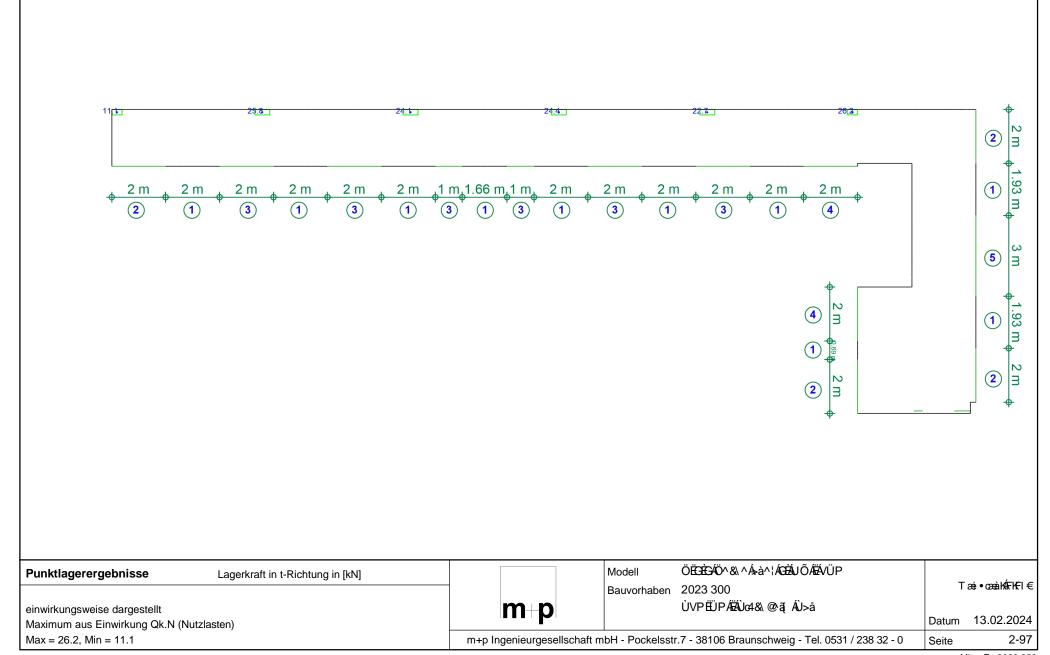
Nachweise (GZG)

Auftrags-Nr. Position




Seite: 2-93


2023 300


D-2.2

5 i ZU[Yf_f} ZhY

2023 300

PËÜPÄÄÜ¢4&\@ā[ÁÜ>å Seite: 2-98

Thermische Trennung Deckenplatte

(1) Kein thermisches Trennelement

oder

Isokorb XT Typ Z-R0-X120-H200-5.0 o.glw. (>bertrêgt keine Krêfte)

eq = 0.056 W/mK

(2) Isokorb XT Typ Q-VV8-REI120-X120-H200-6.0 o.glw.

 $g_{k,max} = 56,7 \text{ kN/m} \qquad \qquad g_{k,min} = -27,7 \text{ kN/m}$

 $q_{k,max} = 22,7 \text{ kN/m}$ $q_{k,min} = -10,6 \text{ kN/m}$

V_{ed,max} MÁFÍÈH ÁÁÍ Î Ē Á ÞÐ ÆÁFÍĒ ÁÁGGĒ Á ÞÐ ÁMÁI 10,6 kN/m

V_{ed,min} MÁFÉHÍ ÁÁÇGÖ ÉÉ Á ÞÐ ÞÁÉÁFÉÍ ÁÁÇ10,6 kN/m) = -53,3 kN/m

Keine Biegebeanspruchung.

Y ê|{ ^åe{ { ^|^{ ^}} c Isokorb XT Typ Q-VV8-REI120-X120-H200-6.0 o.glw.

Betonfestigkeit C30/37

eq = 0,150 W/mK

 $V_{Rd} = +/- 137,1 \text{ kN/m}$

Nachweis $V_{ed} = 110,6 \text{ kN/m} < 137,1 \text{ kN/m} = V_{Rd}$

(3) Isokorb XT Typ Q-V7-REI120-X120-H200-6.0 o.glw.

Beanspruchung $g_{k,max} = 46,2 \text{ kN/m}$

 $q_{k,max} = 19,5 \text{ kN/m}$

V_{ed,max} MÁFÊH ÁÁ Î ÊÐÁ ÞÐ ÆÁFÊ ÁÁFJÉ Á ÞÐ ÁMÁ91,6 kN/m

Keine Biegebeanspruchung.

Y ê|{ ^åe{ { ^|^{ }}c | Isokorb XT Typ Q-V7-REI120-X120-H200-6.0 o.glw.

Betonfestigkeit C30/37

eq = 0,110 W/mK

 $V_{Rd} = 117,5 \text{ kN/m}$

Nachweis $V_{ed} = 91,6 \text{ kN/m} < 117,5 \text{ kN/m} = V_{Rd}$

Elemente Ò₫: ^|^|^{ ^} dê} *^ÆÊ€€Æ

(4) Isokorb XT Typ Q-V11-REI120-X120-H200-6.0 o.glw.

 $g_{k,max} = 107,1 \text{ kN/m}$

 $q_{k,max} = 54,5 \text{ kN/m}$

V_{ed,max} MÁFÊHÍ ÁÁF€Ï ÊFÁ ÞÐ ÆÁFÉÍ ÁÁÍ I ÉÍ Á ÞÐ ÁMÁ226,3 kN/m

Keine Biegebeanspruchung.

Y ê|{ ^åê{ { ^|^{{ ^}}}c | Isokorb XT Typ Q-V11-REI120-X120-H200-6.0 o.glw.

Betonfestigkeit C30/37

 $_{eq} = 0,187 \text{ W/mK}$

 $V_{Rd} = 252,1 \text{ kN/m}$

Nachweis $V_{ed} = 226,3 \text{ kN/m} < 252,1 \text{ kN/m} = V_{Rd}$

Elemente Ò∄: ^|^|^{ ^} dê} * ^ÁFÊ€€Á

(5) Isokorb XT Typ Q-V9-REI120-X120-H200-6.0 o.glw.

Beanspruchung $g_{k,max} = 59,7 \text{ kN/m}$

 $q_{k,max} = 30,4 \text{ kN/m}$

 $V_{\text{ed},\text{max}} \text{ $M\!\!\!\!\text{AF}\!\!\!\!\text{EH}} \text{ $\acute{A}\!\!\!\!\text{A}$} \text{ J} \text{ $\acute{E}\!\!\!\!\text{A}$} \text{ $\acute{E}\!\!\!\text{A}$} \text{ $\acute{E}\!\!\!\!\text{A}$} \text{ }\acute{E}\!\!\!\!\text{A}$} \text{ $\acute{E}\!\!\!\!\text{A}$} \text{ $\acute{E}\!\!\!\!\text{A}$} \text{ $\acute{E}\!\!\!\text{A}$} \text{ $\acute{E}\!\!\!\!\text{A}$} \text{ }\acute{E}\!\!\!\!\text{A}$} \text{ $\acute{E}\!\!\!\!\text{A}$} \text{ $\acute{E}\!\!\!\!\text{A}$} \text{ }\acute{E}\!\!\!\!\text{A}$} \text{ }\acute{E}\!\!\!\!\text{A}$} \text{ }\acute{E}\!\!\!\!\text{A}$} \text{ $\acute{E}\!\!\!\!\text{A}$} \text{ }\acute{E}\!\!\!\!\text{A}$} \text{ }\acute{E}\!\!\!\!\text{A}$} \text{ }\acute{E}\!\!\!\!\text{A}$} \text{ }\acute{E}\!\!\!\!\text{A}$} \text{ }\acute{E}\!\!\!\!\text{A}$} \text$

Keine Biegebeanspruchung.

Y ê|{ ^åe{ { ^|^{ }}c | Isokorb XT Typ Q-V9-REI120-X120-H200-6.0 o.glw.

Betonfestigkeit C30/37

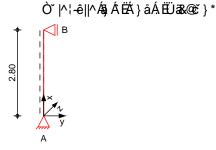
eq = 0.124 W/mK

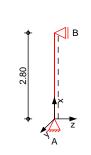
 $V_{Rd} = 156,8 \text{ kN/m}$

Nachweis $V_{ed} = 126,2 \text{ kN/m} < 156,8 \text{ kN/m} = V_{Rd}$

Elemente Ò∄: ^|^|^{ ^} dê} *^Æ€€Æ

ID-Viewel Version zozz - Copyright zoz I - IIID AEC Sonware GIIDH




ST-2.1 ÙVPËÜPÆÄÛ¢4&\@^ãį ÁÛ>å 2023 300

Pos. ST-2.1

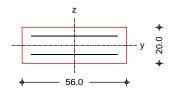
GhV"!Ghi hnY

System M 1:120

Seite: 2-100

fw

Abmessungen Mat./Querschnitt


Geschoss	I	Material	b _y /b _z
	[m]		[cm]
2. OG	2.80	C 25/30	56/20

Auflager

Lager	X	$K_{T,z}$	$K_{R,y}$	$K_{T,y}$	$K_{R,z}$
•	[m]	[kN/m]	[kNm/rad]	[kN/m]	[kNm/rad]
В	2.80	fest	frei	fest	frei
Α	0.00	fest	frei	fest	frei

Abschnitt 1

M 1:20

Einwirkungen

Einwirkungen nach DIN EN 1990:2010-12

Gk

Eigenlasten

ٜ} åã* ^ÁÒã; ã\`} * ^}

Qk.N

Qk.W

Nutzlasten Sæe^*[¦ā^Á0ÆÆÁY[@];ËÁ}åÁ0E-^}c@ea|o•¦ê°{^

Wind

Windlasten

Qk.W

min/max Werte

Ò||ê c^| \} * ^}

angesetzt.

Belastungen

Belastungen auf das System

Grafik

Belastungsgrafiken (einwirkungsbezogen)

Auftrags-Nr. Position ST-2.1 ÙVPËÜPÄÄÛ¢4&\@ã ÁÛ>å 2023 300 Seite: 2-101 Einwirkungen Gk Qk.N Qk.N Qk.W Gk 165 165 50.0 50.0 2.80 Streckenlasten Gleichlasten in x-Richtung Ges. Komm. а S q_{u} q_o [m] [m] [kN/m] [kN/m] 2. OG Einw. Gk Eigengew 0.00 2.80 2.80 Punktlasten Einzellasten in x-Richtung Ges. Komm. F_{x} а еу ez [kN] [cm] [m] [cm] Einw. Gk 2. OG 2.80 165.00 0.0 0.0 Einw. Qk.N 2. OG 2.80 50.00 0.0 0.0 Streckenlasten Gleichlasten in z-Richtung Ges. Komm. а s q_{u} q_o [m] [m][kN/m][kN/m]Einw. Qk.W 2. OG 0.00 2.80 1.00 <u>Imperfektionen</u> Grafik Figur 7 w_z[cm] Figur 13 w_z[cm] Tabelle Figur 7 Wyu Wyk W_{zk} Х \mathbf{W}_{zu} [m][cm] [cm] [cm] [cm] 2. OG 2.80 0.00 0.00 0.00 0.00 1.40 0.00 0.69 * 0.00 0.02 * 0.00 * 0.00 * 0.00 * 0.00 0.00 * Figur 13 Wyu Wzu Wyk Wzk Х [m] [cm] [cm] [cm] [cm] 2. OG 2.80 0.00 0.00 0.00 0.00 1.70 0.48 * 0.00 0.00 0.00 0.45 1.40 0.00 0.00 0.00 0.00 * 0.00 * 0.00 0.00 * 0.00 * Ungewollte Ausmitte affin zur Biegelinie bzw. affin zur Knickfigur bei Kombinationen ohne] |æ} { êi â*^ÂX^¦-{ | { ` } * Á*^} \ | ^&@Á ` |ÁŬoc ^} æ&@^È

Richtung

Ζ

|ei|

[cm]

0.69

[m]

1.38

0.99

Figur

Auftrags-Nr. Position ST-2.1 ÙVPËÜPÄÄÛ¢4&\@ã ÁÛ>å 2023 300 Seite: 2-102 Figur Richtung |ei| Χ [-] 13 [m] [cm] <u>[-]</u> 0.69 1.67 0.48 Ζ Kombinationen Kombinationsbildung nach DIN EN 1990 Darstellung der mai gebenden Kombinationen (* *EW) Ek Imp. •œ} åã Ð[¦>à^¦* È 9 1.35*Gk +1.50*Qk.W 1 10 2 1.35*Gk +1.50*Qk.W 7 15 1.35*Gk +1.50*Qk.N +0.90*Qk.W **Brand** 39 1.00*Gk +0.30*Qk.N 13 +0.20*Qk.W Ó^{ \(\begin{array}{c} \begin{array}{c nach Th. II. Ordnung Nicht-Linear nichtlineare Berechnung nach Th. II. Ordnung **Grafik** Ù&@ ãct | 4i ^} ÁÇN(@>||^} å^D $N_{x,d}[kN]$ $M_{y,d}[kNm]$ $M_{z,d}[kNm]$ $V_{y,d}[kN]$ $V_{z,d}[kN]$ <u>Tabelle</u> Ù&@; ãct | 4i ^} ÁÇN{ @||^} å^D

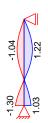
	X	$N_{x,d,min}$	Ek	$M_{y,d,min}$	Ek	$V_{z,d,min}$	Ek
		$N_{x,d,max}$		$M_{y,d,max}$		$V_{z,d,max}$	
	[m]	[kN]		[kNm]		[kN]	
2. OG	2.80	-297.75	5	0.00	1	-3.90	11
		-165.00	17	0.00	1	2.38	8
	1.40	-303.04	5	-2.21	8	-0.03	15
		-168.92	17	3.14	11	0.03	8
	0.00	-308.33	5	0.00	1	-2.44	8
		-172.84	17	0.00	1	3.96	11

	X	$M_{z,d,min}$	Ek	$M_{z,d,max}$	Ek	$V_{y,d,min}$	Ek	$V_{y,d,max}$	Ek
	[m]	[kNm]		[kNm]		[kN]		[kN]	
2. OG	2.80	0.00	1	0.00	1	-2.37	13	2.37	14
	1.40	-2.11	13	2.11	14	-0.03	13	0.03	14
	0.00	0.00	1	0.00	1	-2.40	6	2.40	5

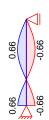
Brandfall Nicht-Linear

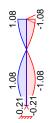
nichtlineare Berechnung nach Th. II. Ordnung

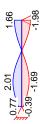
<u>Grafik</u> Ù&@ ãct | 4i ^ } ÁQW @||^ } å^D


 $M_{z,d}[kNm] \\$

2023 300 ST-2.1 ÙVPËÜPĀĀÛ¢4&\@@{ ÂÛ>å


 $V_{y,d}[kN]$ $V_{z,d}[kN]$




 $N_{x,d}[kN]$

 $M_{y,d}[kNm]$

Seite: 2-103

<u>Tabelle</u>

Ù&@}ãct | 4i ^} ÁÇN{ @>||^} å^D

	x	$N_{x,d,min}$	Ek	$M_{y,d,min}$	Ek	$V_{z,d,min}$	Ek
		$N_{x,d,max}$		$M_{y,d,max}$		$V_{z,d,max}$	
	[m]	[kN]		[kNm]		[kN]	
2. OG	2.80	-180.00	29	0.00	25	-1.98	39
		-165.00	25	0.00	25	1.66	32
	1.80	-182.80	29	-1.04	32	-0.06	40
		-167.80	25	1.22	39	0.04	31
	0.80	-185.60	29	-0.07	31	-1.69	32
		-170.60	25	0.09	40	2.01	39
	0.00	-187.84	29	-1.30	39	-0.39	32
		-172.84	25	1.03	32	0.77	39

	Х	$M_{z,d,min}$	Ek	$M_{z,d,max}$	Ek	$V_{y,d,min}$	Ek	$V_{y,d,max}$	Ek
	[m]	[kNm]		[kNm]		[kN]		[kN]	
2. OG	2.80	0.00	25	0.00	25	-1.08	37	1.08	38
	1.80	-0.66	37	0.66	38	-0.03	30	0.03	29
	0.00	-0.66	30	0.66	29	-0.21	30	0.21	29

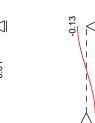
Bem.-verformungen

nach Th. II. Ordnung

 $w_{y,d}[cm]$

Nicht-Linear

nichtlineare Berechnung nach Th. II. Ordnung


 $w_{z,d}[cm]$

Grafik

X^|-{|{ `} * ^} AQ ae * ^ a^} a^D

Komb. 9

0.69	0.01
1	

 $_{y,d}[mrad]$

 $_{z,d}$ [mrad]

ÙVPËJPĀĀJC4& @ ą̃ ÁJ>å 2023 300 ST-2.1

 $w_{y,d}[cm]$

Seite: 2-104

Komb. 10

 $w_{z,d} [cm] \\$

y,d[mrad]

 $_{z,d}[mrad]$

Komb. 15

y,d[mrad]

 $w_{z,d}[cm]$

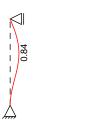
Tabelle

Komb.	9
Komb.	10
Komb.	15

Gesch.	X	$W_{z,d}$	y,d	$W_{y,d}$	z,d
	[m]	[cm]	[mrad]	[cm]	[mrad]
2. OG	2.80	0.00	-0.13 *	0.00	-7.90 *
	1.40	0.01 *	0.00	0.69 *	-0.03
	0.00	0.00	0.13 *	0.00	7.83 *
	2.80	0.00	-0.13 *	0.00	7.90 *
	1.40	0.01 *	0.00	-0.69 *	0.03
	0.00	0.00	0.13 *	0.00	-7.83 *
	2.80	0.00	-8.01 *	0.00	0.00
	1.40	0.72 *	-0.03	0.00	0.00
	0.00	0.00	8.05 *	0.00	0.00

Brandfall Nicht-Linear

nichtlineare Berechnung nach Th. II. Ordnung


Grafik

$$X^{+}_{\{ \ \ \ \}} *^{A}_{Q} a \dot{a} *^{a}_{A} a^{-}_{A}$$

Komb. 39

 $w_{z,d}[cm]$

y,d[mrad]

<u>Tabelle</u>

Seite: 2-105

2023 300 ST-2.1 ÙVPËÜPĀĀŪc4&\@ā, ÂŪ>å

X^{{ \{ `} } *^} AQ aa *^a^} a^D

	Gesch.	Х	$W_{z,d}$	y,d	$\mathbf{W}_{y,d}$	z,d
		[m]	[cm]	[mrad]	[cm]	[mrad]
Komb. 39	2. OG	2.80	0.00	-11.96 *	0.00	0.00
		1.70	0.84 *	-0.35	0.00	0.00
		0.80	0.39	7.74 *	0.00	0.00
		0.00	0.00	0.22	0.00	0.00

Mat./Querschnitt Material- und Querschnittswerte

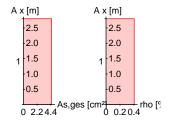
Querschnitte	Q	Тур	Bewehr	b/D	h/Di	Cmin	С
			anordnung	[cm]	[cm]	[mm]	[mm]
	1	Recht	Asu=Aso	56.0	20.0	20	15
	Q	Expositions	sklassen			C _{nom}	C∨

Q	Lxpositionskiassen	Cnom	CV
		[mm]	[mm]
1	XC1	35	35

Materialien	Q B	eton	Betonstahl	min	max		
				[%]	[%]	[-]	ŽİÞÐ() á
	1 C	25/30	B 500SA	0.30	4.50	2.50	25.0

Bemessung (GZT) *^{ êi ÁÖ OÞÁFJJ OËFËFÉÁNÈ ÉÁN È ÉÁN È ÉÁN È

<u>Ól` &@ &@ āct' | 4i ^}</u> nach nichtlinearer Theorie Komb. 9 x Nu


Х	Nu	Myu	Mzu	S	С	
[m]	[kN]	[kNm]	[kNm]	Žáá	Žšá	
2.80	1767.6	0.0	0.0	-2.00	-2.00	0.13
1.40	1615.5	10.6	-11.2	-1.03	-3.15	0.14
0.00	1767.6	0.0	0.0	-2.00	-2.00	0.13

Komb. 10	X	Nu	M yu	IVI zu	S	С	
	[m]	[kN]	[kNm]	[kNm]	Žáá	Žšá	
	2.80	1767.6	0.0	0.0	-2.00	-2.00	0.13
	1.40	1615.5	10.6	11.2	-1.03	-3.15	0.14
	0.00	1767.6	0.0	0.0	-2.00	-2.00	0.13

Komb. 15	x [m]	Nu [kN]	Myu [kNm]	Mzu [kNm]	s Žšá	c Žs á	
	2.80	1767.6	0.0	0.0	-2.00	-2.00	0.17
	1.40	1546.9	15.9	0.0	-1.10	-3.18	0.20
	0.00	1767.6	0.0	0.0	-2.00	-2.00	0.17

Erforderliche	von x	bis x	Q Typ	Bew.Art	d'	As,ges	
Bewehrung	[m]	[m]			[cm]	Ž&{á	[%]
-	0.00	2.80	1 R	Asu=Aso	4.9	4.52	0.40

Erf. Bewehrung M 1:120

Seite: 2-106

2023 300

ST-2.1

ÙVPËÜPÄÄÛ¢4&\@`ã ÁÛ>å

Brandfall

- *^{ êi Ána||*^{ ^a}^{ ÁK^|~æ@^} Á; æ&@#Ö@D•ÆDJJ@#F#EG Berechnungsgrundlagen:
 - spezifische Wêrme vom Beton (3.3.2)
 - Feuchte des Betons 3.0%
 - Wêrme>bertragungskoeffizient 25 W/m K

- thermische Leitfêhigkeit des Betons: obere Grenze
 Emissionswert der Betonoberflêche 0.7
- Festigkeitsred. Bewehrung f>r Klasse N
- Bewehrung kaltverformt
- quarzhaltige Betonzuschlêge
- St>tze am Fui eingespannt

Steifigkeiten im Brandfall

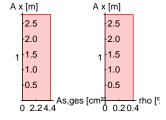
Q	t _{req}	Seiten	EA	Ely	Elz
	[min]	[-]	[kN]	ŽÞ{ á	ŽÞ{ á
1	90	r/l/o/u	534512 29	809.06	9838 46

Temperaturprofil Bewehrung

Q '	Υ	Ž	R		Es, /Es	fy, /fy
	[cm]	[cm]	[cm]	Ž∕á	[-]	[-]
1	-23.10	-5.10		560	0.30	0.51
	23.10	-5.10		560	0.30	0.51
	-23.10	5.10		560	0.30	0.51
	23.10	5.10		560	0.30	0.51

Ó| &@ &@ act | 4i ^}

nach nichtlinearer Theorie


Komb. 39

	IVIzu	IVI yu	Nu	Х
	[kNm]	[kNm]	[kN]	[m]
0.20	0.0	0.0	922.9	2.80
0.23	0.0	-5.8	834.6	0.00

Erforderliche Bewehrung

0.00	2.80	1 R	Asu=Aso	4.9	4.52	0.40
[m]	[m]			[cm]	Ž&{ á	[%]
von x	DIS X	Q Iyp	Bew.Art	a ^r	As,ges	

Erf. Bewehrung M 1:120

Nachweise (GZT) Querkraftbemessung

Pæ&@, ^æ,	^A8(AO;^}:	: •cæ)aÆa	^¦AV¦æ°~e@a	\^a04\aas@A\	JOD AUP A	JJŒFF	
Х	$V_{\text{Ed,y}}$	$V_{Rd,c}$	$V_{Rd,max,y}$	Nx		Z	erf asw
	$V_{\text{Ed,z}}$	$V_{Rd,c}$	$V_{Rd,max,z}$				
[m]	[kN]	[kN]	[kN]	[kN]	Ž∕á	[cm]	Ž&{ Ð()á
2.80	1.78	130.81	279.23	222.75	18.4	43.8	6.32 M
	2.13	130.81	139.23	222.75	18.4	7.80	
0.00	1.81	132.84	279.23	233.33	18.4	43.8	6.32 M
	2 13	132 84	139 23	233 33	18 4	7.80	

Komb. 10 Komb. 9

Mindestquerkraftbew. nach Abs. NDP Zu 9.2.2(5)

Bewehrungswahl

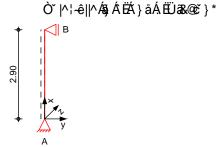
Auftrags-Nr.	Position	m		ens+puller gesellschaft mbH			
2023 300	ST-2.1	ÙVPË	JPÆÄÙ04&\@^ã	ÁÚ>å		Se	ite: 2-107
	von x [m]	bis x Q [m]	Тур	BewLage)	n	ds [mm]
	0.00	2.80 1	Rechteck	je Ecke		1	» %&
Vorhandene Bewehrung	von x [m]	bis x Q [m]	Тур	Cnom [mm]	n	As,ges Ž&{ á	[%]
3	0.00	2.80 1	Rechteck	35	4	4.52	0.40
Querschnitt 1 M 1:20							
	5		stäbe: 4				
Vorhandene Querkraftbewehrung	von x [m] 0.00	bis x Q 7 [m] 2.80 1 F	yp	d _s [mm] 8	s [cm] 14	Schnitt 2	A _{sw} Ž&{ -Ð) á 7.18
OE æ*^ \ ê~e^							
OE - æt^ * 4i^} Áæ(Á Ùc>c^}\[]~	Einw		F _{x,k} [kN]	M _{y,k} [kNm]	M _{z,k} [kNm]	F _{y,k} [kN]	F _{z,k} [kN]
	Gk		0.0	0.0	0.0	0.0	0.0
	Qk.N Qk.W		0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 1.4
Œ~ æ*^ *¦4i^}Áæ(Á Ùo>c^}~i	Einw		F _{x,k} [kN]	M _{y,k} [kNm]	M _{z,k} [kNm]	F _{y,k} [k N]	F _{z,k} [kN]
	Gk Qk.N		172.8 50.0	0.0 0.0	0.0	0.0 0.0	0.0 0.0
	Qk.W		0.0	0.0	0.0	0.0	1.4
Anteile aus Th. II Ordnung			M _{y,k} [kNm]	M _z [kNm		F _{y,k} [kN]	F _{z,k} [kN]
	Gk Qk.N		0.0 0.0	0. 0.		0.0 0.0	0.0
	Qk.W		0.0	0.		0.0	0.0
Zusammenfassung	Zusamme	nfassung der N	achweise				
Nachweise (GZT)	Nachweis	e im Grenzzust	and der Tragf	êhigkeit			
	Nachweis						[-]
	Úczeni ąłaniec	~ +14: 43				OK	
	Ó¦* &@ &@ Querkraftk	emessung				OK OK	0.20
	Brand Bewehrun	gswahl				OK OK	
Nachweise (Brand)		m Grenzzustar	d der Tragfêh	nigkeit			
	Nachweis						

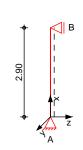
OK

Ó¦ `&@ &@ ãc* |4i ^}

Position

2023 300

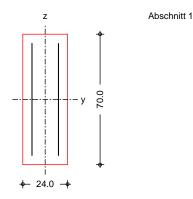

ST-2.2


ÙVPËÜPÄÄÛ¢4&\@ã ÁÛ>å

Pos. ST-2.2

GhV"!Gh~ mY

System M 1:120


Abmessungen Mat./Querschnitt

Geschoss	I	Material	b _y /b
	[m]		[cm
2. OG	2.90	C 25/30	24/70

Auflager

Lager	x	$K_{T,z}$	$K_{R,v}$	$K_{T,v}$	$K_{R,z}$
Ū	[m]	[kN/m]	[kNm/rad]	[kN/m]	[kNm/rad]
В	2.90	fest	frei	fest	frei
Α	0.00	fest	frei	fest	frei

M 1:20

Einwirkungen

Einwirkungen nach DIN EN 1990:2010-12

Gk

Eigenlasten

ٜ}åã*^ÁÒã;ã\`}*^}

Qk.N

Nutzlasten

Sang^*[| að ÁOÐÁÖÁY [@ HÁ } å ÁOÐ -^ } c@andror | ê ~ { ^

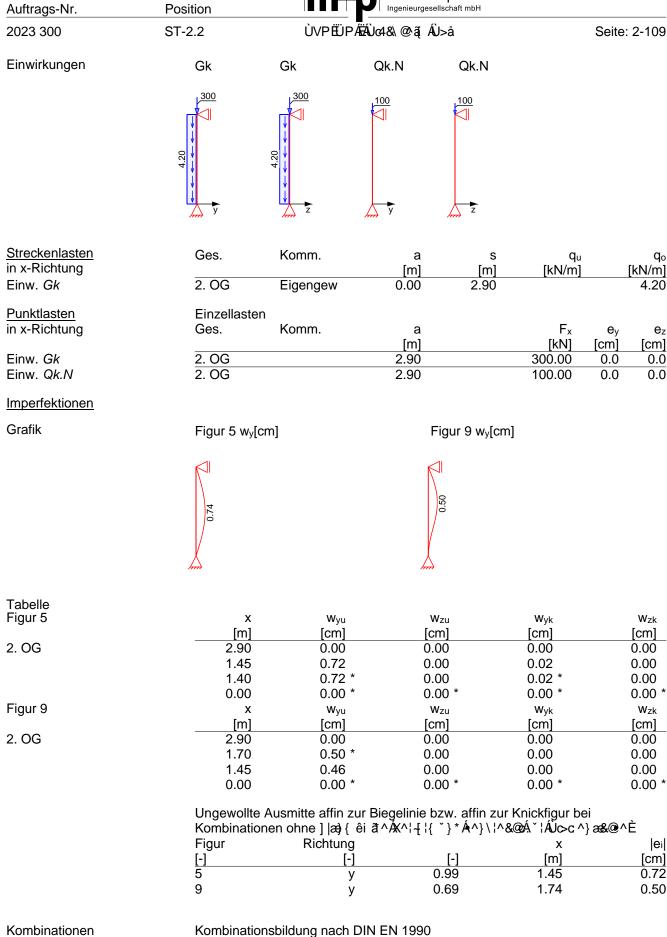
fw

Seite: 2-108

Ò¦|ê ° c^| ° } * ^}

Lastansatz ung>nstig (fw) Öð\ÁŠæ¢\Á\Aj\Á\j *>}•æ\^\ÁLaststellung wirkend

angesetzt.


Belastungen

Belastungen auf das System

Grafik

Belastungsgrafiken (einwirkungsbezogen)

Darstellung der mai gebenden Kombinationen

Auftrags-Nr. Position

ST-2.2

ÙVPËÜPÄÄÛ¢4&\@ã ÁÛ>å

Seite: 2-110

•œ} åð Ð[¦>à^¦*	È
Brand	

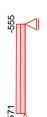
Ek	lmp.	(* *EW)
5	5	1.35*Gk
17	9	1.00*Gk

+1.50*Qk.N +0.30*Qk.N

Ó^{ \(\begin{array}{c} \begin{array}{c

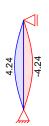
nach Th. II. Ordnung

Nicht-Linear


2023 300

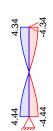
nichtlineare Berechnung nach Th. II. Ordnung

 $M_{y,d}[kNm] \\$


<u>Grafik</u>

Ù&@ act 4i ^ AQW @||^ a^D

 $N_{x,d}[kN]$



 $M_{z,d}[kNm] \\$

 $V_{y,d}[kN]$

 $V_{z,d}[kN]$

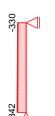
<u>Tabelle</u>

Ù&@ ãct 4i ^ ÁÇW @||^ a^D

	x [m]	N _{x,d,min} N _{x,d,max} [kN]	Ek	M _{y,d,min} M _{y,d,max} [kNm]	Ek	Vz,d,min V _{z,d,max} [kN]	Ek
2. OG	2.90	-555.00	5	0.00	1	-4.34	7
		-300.00	11	0.00	1	4.34	8
	1.40	-563.51	5	-4.06	8	-0.20	8
		-306.30	11	4.06	7	0.20	7
	0.00	-571.44	5	0.00	1	-4.44	8
		-312.18	9	0.00	1	4.44	7

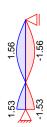
2.	OG

Х	IVIz,d,min	⊏K	IVIz,d,max	⊏K	V y,d,min	⊏K	V y,d,max	⊏K
[m]	[kNm]		[kNm]		[kN]		[kN]	
2.90	0.00	1	0.00	1	-4.43	5	4.43	6
1.40	-4.24	5	4.24	6	-0.21	6	0.21	5
0.00	0.00	1	0.00	1	-4.53	6	4.53	5

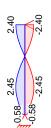

Brandfall Nicht-Linear

nichtlineare Berechnung nach Th. II. Ordnung

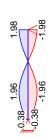
 $M_{y,d}[kNm]$


Grafik

Ù&@ act 4i ^} ÁQM @||^} å^D



 $N_{x,d}[kN]$



 $M_{z,d}[kNm]$

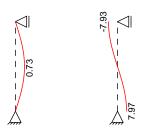
 $V_{y,d}[kN]$

 $V_{z,d}[kN]$

Seite: 2-111

2023 300 ST-2.2 ÙVPËÜPĀĀÛc4&\ @ ą ÁÛ>å

<u>Tabelle</u>	Ù&@; ãcť ¦4i^} ÁQW{	@ ^} å^D


	x [m]	$N_{x,d,min} \ N_{x,d,max} \ [kN]$	Ek	M _{y,d,min} M _{y,d,max} [kNm]	Ek	V _{z,d,min} V _{z,d,max} [kN]	Ek
2. OG	2.90	-330.00	17	0.00	13	-1.98	19
		-300.00	13	0.00	13	1.98	20
	1.90	-334.20	17	-1.26	20	-0.06	19
		-304.20	13	1.26	19	0.06	20
	0.00	-342.18	17	-1.23	19	-0.38	20
		-312.18	13	1.23	20	0.38	19

	Х	$M_{z,d,min}$	Ek	$M_{z,d,max}$	Ek	$V_{y,d,min}$	Ek	$V_{y,d,max}$	Ek
	[m]	[kNm]		[kNm]		[kN]		[kN]	
2. OG	2.90	0.00	13	0.00	13	-2.40	17	2.40	18
	1.90	-1.56	17	1.56	18	-0.06	17	0.06	18
	0.90	-0.07	17	0.07	18	-2.45	18	2.45	17
	0.00	-1.53	18	1.53	17	-0.58	18	0.58	17

Bem.-verformungen nach Th. II. Ordnung

Nicht-Linear nichtlineare Berechnung nach Th. II. Ordnung

 $\label{eq:wyd} \text{Komb. 5} \qquad \qquad w_{y,d}[\text{cm}] \qquad \qquad {}_{z,d}[\text{mrad}]$

	Gesch.	Х	$W_{z,d}$	y,d	$\mathbf{W}_{y,d}$	z,d
		[m]	[cm]	[mrad]	[cm]	[mrad]
Komb. <i>5</i>	2. OG	2.90	0.00	0.00	0.00	-7.93 *
		1.40	0.00	0.00	0.73 *	0.41
		0.00	0.00	0.00	0.00	7 97 *

Brandfall

Nicht-Linear nichtlineare Berechnung nach Th. II. Ordnung

2023 300

ST-2.2

Seite: 2-112

Komb. 17

 $w_{y,d}[cm]$

 $_{z,d}$ [mrad]

<u>Tabelle</u>

$$X^{+}_{\{ \} }^{*} *^{A}_{\{ a = *^a ^\}} a^D$$

Komb. 17

Gescn.	Х	$W_{z,d}$	y,d	W y,d	z,d
	[m]	[cm]	[mrad]	[cm]	[mrad]
2. OG	2.90	0.00	0.00	0.00	-8.83 *
	1.70	0.00	0.00	0.64 *	0.46
	0.90	0.00	0.00	0.34	5.72 *
	0.00	0.00	0.00	0.00	0.21

Mat./Querschnitt

Material- und Querschnittswerte

Querschnitte

Q	Тур	Bewehr	b/D	h/Di	Cmin	С
		anordnung	[cm]	[cm]	[mm]	[mm]
1	Recht	Asl=Asr	24.0	70.0	20	15
Q	Expositions	klassen			C _{nom}	C∨

XC1

OHOH	O V
[mm]	[mm]
35	35

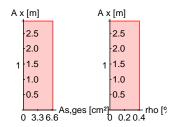
Materialien

Q	Beton	Betonstahl	min	max		
			[%]	[%]	[-]	ŽİÞÐ() á
1	C 25/30	B 500SA	0.30	4.50	2.50	25.0

Bemessung (GZT)

*^{ êi ÁÖ OD ÁÖ ÞÁFJJ GËFËFÉÁN HÈ ÉÁN È ÉÁ È ÉÁ È

Ó¦ &@ &@ ãc* | 4i ^}


Komb. 5

Х	Nu	M yu	Mzu	S	С	
[m]	[kN]	[kNm]	[kNm]	Žáá	Žáá	
2.90	2651.4	0.0	0.0	-2.00	-2.00	0.21
1.40	2449.3	0.0	-18.4	-1.23	-2.90	0.23
0.00	2651.4	0.0	0.0	-2.00	-2.00	0.22

Erforderliche Bewehrung

0.0	2 90	1 R	A al — A ar	10	6.79	0.40
[m	i] [m]			[cm]	Ž&{ á	[%]
von	x bis x	Q Typ	Bew.Art	d'	As,ges	

Erf. Bewehrung M 1:120

2023 300

ST-2.2

ÙVPËJPÆÄJC4& @ã ÁJ>å

Seite: 2-113

Brandfall

^{ êi Ánd|^{ ^3,^{ ÁX^\-æ@^} Á, æ&@#Ö@ ÁÖÞÁFJJŒËE Berechnungsgrundlagen: - spezifische Wêrme vom Beton (3.3.2)

- Feuchte des Betons 3.0%
- Wêrme>bertragungskoeffizient 25 W/m K
- thermische Leitfêhigkeit des Betons: obere Grenze
 Emissionswert der Betonoberflêche 0.7
- Festigkeitsred. Bewehrung f>r Klasse N
- Bewehrung kaltverformt
- quarzhaltige Betonzuschlêge
- St>tze am Fui eingespannt

Steifigkeiten im Brandfall

Q	t _{req}	Seiten	EA	Ely	Elz
	[min]	[-]	[kN]	ŽÞ{ á	ŽÞ{ á
1	90	r/l/o/u	1157900 42	33161 43	2676 43

Temperaturprofil Bewehrung

Q	Υ	Z	R		Es, /Es	fy, /fy
	[cm]	[cm]	[cm]	Ž∕á	[-]	[-]
1	-7.10	-30.10		549	0.32	0.54
	7.10	-30.10		549	0.32	0.54
	-7.10	30.10		549	0.32	0.54
	7.10	30.10		549	0.32	0.54
	-7.10	0.00		364	0.62	0.96
	7.10	0.00		364	0.62	0.96

nach nichtlinearer Theorie

Komb. 17

Х	Nu	Муu	Mzu	
[m]	[kN]	[kNm]	[kNm]	
2.90	1619.4	0.0	0.0	0.20
0.00	1545.5	0.0	6.9	0.22

Erforderliche Bewehrung

0.00	2.90	1 R	Asl=Asr	4.9	6.79	0.40
[m]	[m]			[cm]	Ž&{ á	[%]
von x	bis x	Q Typ	Bew.Art	d'	As,ges	

 N_{x}

[kN]

555.00

571.44

Žγá

18.4

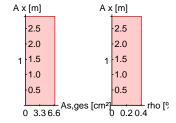
18.4

Ζ

[cm]

11.8

11.8


erf asw

Ż&{ Đ(á

5.82^M

 5.82^{M}

Erf. Bewehrung M 1:120

Nachweise (GZT) Querkraftbemessung

Þæ&@ ^ã^Ái ÁÕ¦^}:: *•æð åÁs^¦ÁV¦æť ÷ê@ð \^ãA æ&@ÁÖQÞÁÖÞÁFJJGËË $V_{Ed,y}$ $V_{Rd,c}$ $V_{Rd,max,y}$ Х $V_{Ed,z}$ V_{Rd,c} $V_{\text{Rd},\text{max},z}$ [kN] [kN] [kN] [m]2.90 4.43 235.20 263.29 0.00 4.53 237.85 263.29

Komb. 5

Komb. 5

Mindestquerkraftbew. nach Abs. NDP Zu 9.2.2(5)

Auftrags-Nr.	Position	n	n-p	marte Ingenieur	ens+puller gesellschaft mbH			
2023 300	ST-2.2	ÙV	PËÜPÆÄÙ	04&\@^aį	ÁÚ>å		Se	ite: 2-114
Bewehrungswahl	von x [m] 0.00	bis x [m] 2.90	Q Typ	teck	BewLage je Ecke je h-Seite		n 1 1	ds [mm] » %& » %&
Vorhandene Bewehrung Querschnitt 1	von x [m] 0.00	bis x [m] 2.90	Q Typ	teck	Cnom [mm]	n 6	As,ges Ž&{ á 6.79	[%] 0.40
M 1:35	Qu 02 Be	ngsstäbe: 6 ierkraftbewehru itondeckung: om = 35 mm	Φ12 ung: Φ8					
Vorhandene Querkraftbewehrung	von x [m] 	[m]	Q Typ 1 Rechte	eck	ds [mm] 8	s [cm] 14	Schnitt 2	A _{sw} <u>Ž&{</u>
Œ †æ*^¦\¦ê- & ^								
Œ ┤æ*^¦*¦4i^}Áæ(Á Ùo>c^}\[]~	Einw Gk Qk.N			F _{x,k} [kN] 0.0 0.0	M _{y,k} [kNm] 0.0 0.0	M _{z,k} [kNm] 0.0 0.0	F _{y,k} [kN] 0.0 0.0	F _{z,k} [kN] 0.0 0.0
Œ ┤æ*^¦*¦4i^}Áæ(Á Ù⇔c^}~ĭi	Einw Gk Qk.N			F _{x,k} [kN] 12.2 00.0	M _{y,k} [kNm] 0.0 0.0	M _{z,k} [kNm] 0.0 0.0	F _{y,k} [kN] 0.0 0.0	F _{z,k} [kN] 0.0 0.0
Anteile aus Th. II Ordnung	Einw Gk Qk.N			M _{y,k} [kNm] 0.0 0.0	M _{z,} [kNm 0.0 0.0	<u>]</u>)	F _{y,k} [kN] 0.0 0.0	F _{z,k} [kN] 0.0 0.0
Zusammenfassung	Zusammen	fassung de	er Nachw	eise				
Nachweise (GZT)	Nachweise	im Grenzz	zustand d	er Tragf	êhigkeit			
	Nachweis							r 1
	Ùœàãããêc Ó¦`&@&@; Querkraftbe Brand Bewehrung	emessung					OK OK OK OK	0.23

Nachweise (Brand)

Brandfall im Grenzzustand der Tragfêhigkeit

Auftrags-Nr. Position
2023 300 ST-2.2

Seite: 2-115

Nachweis

Ó!` &@ &@; ãct' | 4i ^} OK 0.

Viewel Velsial zuzz - Oppyright zuzz I - IIID AEC Software Gillion



ÙVPËÜPÄÄÜ¢4&\@ã ÁÛ>å 2023 300 ST-2.3

Pos. ST-2.3

GhV"!Gh mY

System M 1:120

Abmessungen Mat./Querschnitt

Geschoss	1	Material	b _y /b _z
	[m]		[cm]
2. OG	1.25	C 25/30	20/20

Auflager

Lager	X	$K_{T,z}$	$K_{R,y}$	$K_{T,y}$	$K_{R,z}$
_	[m]	[kN/m]	[kNm/rad]	[kN/m]	[kNm/rad]
A	0.00	fest	fest	fest	fest

M 1:20

Einwirkungen

Einwirkungen nach DIN EN 1990:2010-12

Abschnitt 1

Gk

Eigenlasten

ٜ} åā* ^ ÁÒā; ā\`} * ^}

Qk.N

Nutzlasten

Sæe^*[¦ā^ÁOEÁÉÁY[@]EÁ{}åÁOE-^}c@eaþo•¦ê`{^ Wind

Qk.W

Windlasten

Qk.W

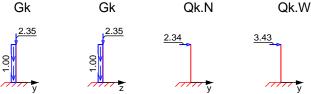
min/max Werte

Ò¦|ê * c^\ * } * ^}

Lastansatz ung>nstig (fw)

Öā\ÁŠæec^}Ás^¦ÁÒā¸ā\`}*Á¸^¦å^}ÁşÁ} +>}•cāt^¦ÁLaststellung wirkend

angesetzt.


Belastungen

Belastungen auf das System

Grafik

Belastungsgrafiken (einwirkungsbezogen)

Einwirkungen

Streckenlasten in x-Richtung Einw. Gk

Ges. Komm. 2. OG Eigengew s

[m]

1.25

а

[m]

0.00

 q_u [kN/m] [kN/m] 1.00

Seite: 2-116

fw

qo

Auftrags-Nr. Position ÙVPËÜPÄÄÜ¢4&\@ã ÁÛ>å 2023 300 ST-2.3 Seite: 2-117 **Punktlasten** Einzellasten in x-Richtung Ges. Komm. а F_x еу e_{z} [m] [kN] [cm] [cm] Einw. Gk (a) 2. OG 2.35 0.0 1.25 0.0 (a) aus Pos. 'RB-2.1', Lager 'B' (Seite 2-137) **Punktlasten** Einzellasten in y-Richtung Komm. F_y Ges. а [kN] [m] (a) 2. OG Einw. Qk.N 1.25 2.34 Einw. Qk.W (a) 2. OG 1.25 3.43 aus Pos. 'RB-2.1', Lager 'B' (Seite 2-137) (a) Imperfektionen Grafik Figur 3 w_y[cm] Figur 5 w_y[cm] Tabelle Figur 3 Х Wyu Wzu Wyk Wzk [m][cm] [cm] [cm] [cm] 2. OG 0.55 0.00 1.25 0.02 0.00 0.00 * 0.00 0.00 * 0.00 * 0.00 * Figur 5 Χ \mathbf{W}_{VU} Wzu W_{Vk} Wzk [m][cm] [cm] [cm] [cm] 2. OG 1.25 0.55 * 0.00 0.00 0.00 0.00 0.00 * 0.00 * 0.00 * 0.00 * Ungewollte Ausmitte als Schiefstellung eingegeben. Figur Richtung Х |ei| [-] 3 [-] [m] [cm] 1.76 1.25 0.55 У 5 У 1.76 1.25 0.55 Kombinationen Kombinationsbildung nach DIN EN 1990 Darstellung der mai gebenden Kombinationen (* *EW) Ek Imp. •œ} åã Ð[¦>à^¦* È 10 4 1.35*Gk +1.05*Qk.N +1.50*Qk.W 19 3 1.00*Gk +1.05*Qk.N +1.50*Qk.W **Brand** 5 1.00*Gk +0.30*Qk.N +0.20*Qk.W 27 Ó^{ \(\overline{\text{Li}} \&\text{Q} \(\overline{\text{ac}} \\ \ \ \ \ \) nach Th. II. Ordnung Nicht-Linear nichtlineare Berechnung nach Th. II. Ordnung

Grafik

Ù&@ ãct | 4i ^} ÁQW @||^} å^D

2023 300 ST-2.3 ÙVPËUPĀĀÚd& @ ą̃ ÁÚ>å

 $N_{x,d}[kN]$

Seite: 2-118

 $V_{z,d}[kN] \\$

4.85 -3.17	0.02	95.6	.63 7.65	0.02 0.01
,4, 1 ,1,1	کر <mark>ا</mark> کٰ\	,00 1977	9.777	/0.77

 $M_{z,d}[kNm] \\$

 $V_{y,d}[kN]$

<u>Tabelle</u> Ù&@ ãc⁺ ¦4i ^} ÁÇW{ ⊗||^} å^D

	x [m]	N _{x,d,min} N _{x,d,max} [kN]	Ek	M _{y,d,min} M _{y,d,max} [kNm]	Ek	V _{z,d,min} V _{z,d,max} [kN]	Ek
2. OG	1.25	-3.17	1	0.00	1	0.00	1
		-2.35	11	0.00	1	0.01	4
	0.00	-4.85	1	-0.02	2	0.00	1
		-3.60	11	0.00	1	0.02	2

 $M_{y,d}[kNm]$

	Х	$M_{z,d,min}$	Ek	$M_{z,d,max}$	Ek	$V_{y,d,min}$	Ek	$V_{y,d,max}$	Ek
	[m]	[kNm]		[kNm]		[kN]		[kN]	
2. OG	1.25	0.00	1	0.00	1	0.00	2	7.65	9
	0.87	0.00	2	2.94	9	0.00	2	7.65	9
	0.00	0.00	2	9.56	9	0.00	2	7.63	9

Brandfall Nicht-Linear

nichtlineare Berechnung nach Th. II. Ordnung

Grafik Ù&@ ãc⁺ ¦4i ^} ÁÇV{ @→||^} å^D

Tabelle

Ù&@}ãc*¦4i^}ÁÇW{ @>||^}å^D

	Х	$\begin{matrix} N_{x,d,min} \\ N_{x,d,max} \end{matrix}$	Ek	$M_{y,d,min} \ M_{y,d,max}$	Ek	$\begin{matrix} V_{z,d,min} \\ V_{z,d,max} \end{matrix}$	Ek
	[m]	[kN]		[kNm]		[kN]	
2. OG	1.25	-2.35	21	0.00	21	0.00	21
		-2.35	21	0.00	21	0.01	22
	0.00	-3.60	21	-0.02	22	0.00	21
		-3.60	21	0.00	21	0.02	22

	X	$M_{z,d,min}$	Ek	$M_{z,d,max}$	Ek	$V_{y,d,min}$	Ek	$V_{y,d,max}$	Ek
	[m]	[kNm]		[kNm]		[kN]		[kN]	
2. OG	1.25	0.00	21	0.00	21	0.00	22	1.43	27
	0.87	0.00	22	0.55	27	0.00	22	1.43	27
	0.00	0.00	22	1.78	27	0.00	22	1.40	27

Position

2023 300

ST-2.3

ÙVPËÜPÄÄÜ¢4&\@ã ÁÛ>å

Bem.-verformungen

nach Th. II. Ordnung

Nicht-Linear

nichtlineare Berechnung nach Th. II. Ordnung

Grafik

$$X^{+}_{\{ \} }^{*} *^{A}_{\{ a = *^a ^\}} a^D$$

Komb. 10

 $w_{z,d}[cm]$

y,d[mrad]

z,d[mrad]

Seite: 2-119

Komb. 19

 $_{z,d}[mrad]$

Tabelle

Komb.	10

Gesch.	X	$W_{z,d}$	y,d	$W_{y,d}$	z,d
	[m]	[cm]	[mrad]	[cm]	[mrad]
2. OG	1.25	0.55 *	4.39 *	0.74 *	8.75 *
	0.00	0.00	4.39 *	0.00	0.00
	1.25	0.00	0.00	1.29 *	13.24 *
	0.00	0.00	0.00	0.00	4.39 *

Komb. 19

Brandfall Nicht-Linear

nichtlineare Berechnung nach Th. II. Ordnung

Grafik

$$X^{+}_{\{ \} }^{*} *^{A}_{\{ ai *^{a} \}} *^{A}_{\{ ai$$

Komb. 27

w_{y,d}[cm]

z,d[mrad]

<u>Tabelle</u>

Komb. 27

Gesch.	Х	$W_{z,d}$	y,d	$\mathbf{W}_{y,d}$	z,d
	[m]	[cm]	[mrad]	[cm]	[mrad]
2. OG	1.25	0.00	0.00	1.59 *	16.83
	0.00	0.00	0.00	0.00	4 39

Betonstahl

B 500SA

Myu

Auftrags-Nr.	Position	martens+puller
2023 300	ST-2.3	ÙVPËÜPÄÄÜ¢&\@ã(AÛ>å

Beton

C 25/30

Q

Auftrags-Nr.
2023 300
Mat./Querschnitt
Querschnitte
Materialien
Bemessung (GZT)
<u>Ó¦`&@ &@ ãc*¦4i ^}</u> Komb. 10
Komb. 19

Material- und Quers	chnittswerte

Q	Тур	Bewehr anordnung	b/D [cm]	h/Di [cm]	Cmin [mm]	c [mm]
1	Recht	Ò&\•œâ^	20.0	20.0	20	15
Q	Expositions	Expositionsklassen				
1	XC1				35	35

min

[%]

0.30

Mzu

max

[%]

2.50

c Žáá

4.50

Seite: 2-120

ŽÞÐ á

25.0

* ^ (^	: <i>(</i> Ö@ <i>(</i> Ò)	s ÁE LLOÜE	الشائدة	E ÉÁ È ÉÁ È
~^{ e	I AUW AU	>\#JJ\G#		

Ó¦ * &@ &@ ac* ¦4i ^}	nach nichtline	earer Theorie
Komb. 10	X	Nu
	[m]	[kN]
	1 25	7/7 6

	[m]	[kN]	[kNm]	[kNm]	Žáá	Žšá	
	1.25	747.6	0.0	0.0	-2.00	-2.00	0.00
	0.00	7.0	0.0	13.7	7.50	-3.50	0.70
		Nu	Mvu	Mzu		_	
	Х	INU	iviyu	IVIZU	. S	C	
	x [m]	[kN]	[kNm]	[kNm]	š Žšá	ž á	
_			, .				0.00
_	[m]	[kN]	[kNm]	[kNm]	Žá	Žšá	0.00 0.70

Erforderliche Bewehrung	von x [m]	bis x [m]	Q Typ	Bew.Art	d' [cm]	As,ges Ž&{ á	[%]
-	0.00	1.25	1 R	9 W gl} VY	4.9	4.52	1.13

Erf. Bewehrung M 1:120

Brandfall

^{ êi Áse|^{ ^ã,^{ ÁK^¦~æ@^}} Á,æ&@ÁÖ@ÞÁÖÞÁFJJŒËËG

- Berechnungsgrundlagen:
 spezifische Wêrme vom Beton (3.3.2)
 Feuchte des Betons 3.0%
 Wêrme>bertragungskoeffizient 25 W/m K
- thermische Leitfêhigkeit des Betons: obere Grenze
 Emissionswert der Betonoberflêche 0.7
 Festigkeitsred. Bewehrung f>r Klasse N

- Bewehrung kaltverformtquarzhaltige Betonzuschlêge
- St>tze am Fui eingespannt

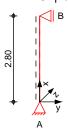
Steifigkeiten im Brandfall

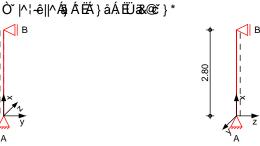
Q	t_{req}	Seiten	EA	Ely	Elz
	[min]	[-]	[kN]	ŽÞ{ á	ŽÞ{ á
1	90	r/l/o/u	103867.22	191.30	191.30

Temperaturprofil Bewehrung

Auftrags-Nr.	Position		n -p	martens-				
2023 300	ST-2.3	ÙVF	PËÜPÆÄÙ	x4&\@āį ÁÛ	>å		S	eite: 2-121
	Q 1	Y [cm] -5.10	Z [cm] -5.10	R [cm]	<u>Ž</u> ⁄á 570	E	s, /Es [-] 0.29	fy, /fy [-] 0.48
		5.10 5.10 -5.10	-5.10 5.10 5.10	 	570 570 570		0.29 0.29 0.29	0.48 0.48 0.48
<u>Ói`&@&@</u> ãcc*¦4i^}	nach nicht Komb. 27 x	linearer The Nເ		Myu	Mzu			
	[m] 1.25 0.00	[kN] 234.6 13.4] [k	Nm] 0.0 0.0	[kNm] 0.0 6.7			0.01 0.27
Erforderliche Bewehrung	von x [m]	bis x [m]	Q Typ			d' [cm]	As,ges Ž&{ á	[%]
Erf. Bewehrung M 1:120	0.00	1.25	1 R	9 W_gh} \	ſΥ	4.9	4.52	1.13
	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	rh í						
Nachweise (GZT) Querkraftbemessung	Þæ&@, ^ã.^ x	Á á [ÁÕ¦^}∷` VEd,y VEd,z	∙ cæ) å ⁄å å^ V _{Rd,c} V _{Rd,c}	∖¦ÁV¦æ*-ê@ VRd,max,y VRd,max,z	î∖^ ãoÁ,æ& @i Nx	ÁÖŒAÒÞÁ	JJŒË z	erf asw
Komb. 10	[m] 1.25	[kN] 7.63	[kN] 16.33	[kN] 49.73	[kN] 3.17	<u>Ž</u> ∕á 18.4	[cm] 7.80	Ž&{ ₽() á 3.33 ^M
Komb. 10	0.00 м: Mindestqu	0.01 7.61 0.02 erkraftbew. nach	28.24 16.48 28.77 Abs. NDP Zu	49.73 49.73 49.73 49.2.2(5)	3.17 4.85 4.85	18.4 18.4 18.4	7.80 7.80 7.80	3.33 ^M
Bewehrungswahl	von x		Q Typ	В	ewLage		n	ds [mm]
	[m] 0.00	[m] 1.25	1 Rech	teck je	Ecke		1	[mm] » %
Vorhandene Bewehrung	von x [m] 0.00	bis x [m] 1.25	Q Typ 1 Recht	teck	Cnom [mm] 35	n 4	As,ges Ž&{ á 4.52	[%] 1.13
Querschnitt 1 M 1:20								
	Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q	ingsstäbe: 4 Jerkraftbewehrun etondeckung: om = 35 mm	Ø12 g: Ø8					
Vorhandene Querkraftbewehrung	von x [m] 	bis x C [m] 1.25 1	Typ Rechte		d _s [mm]	s S [cm]	Schnitt 2	A _{sw} Ž&{ E) á

Auftrags-Nr.	Position		ens+puller			
2023 300	ST-2.3	ÙVPËÜPÆÄÛ¢4&\@@	[ÁÛ>å		Seit	e: 2-122
OE +æ*^!\¦ê-&^						
Œ - æ≛^ * 4i^} Áæ{ Á Ùc>c^}~i	Einw	F _{x,k} [kN]	M _{y,k} [kNm]	M _{z,k} [kNm]	F _{y,k} [kN]	F _{z,k} [kN]
,	Gk	3.6	0.0	0.0	0.0	0.0
	Qk.N	0.0	0.0	2.9	2.3	0.0
	Qk.W	0.0	0.0	4.3	3.4	0.0
Anteile aus Th. II Ordnung	g Einw	M _{y,k} [kNm]	M [kNr	z,k ml	F _{y,k} [kN]	F _{z,k} [kN]
	Gk	0.0	-	.0	0.0	0.0
	Qk.N	0.0	0	.0	0.0	0.0
	Qk.W	0.0	0	.0	0.0	0.0
Zusammenfassung	Zusammenfass	sung der Nachweise				
Nachweise (GZT)	Nachweise im	Grenzzustand der Tragt	fêhigkeit			
	Nachweis					[-]
	Úcæàãlãcêc				OK	[-]
	Ó¦`&@&@`ãc*¦4	4i ^}			OK	0.70
	Querkraftbeme				OK	
	Brand	J			OK	
	Bewehrungswa	ahl			OK	
Nachweise (Brand)	Brandfall im Gr	enzzustand der Tragfêh	nigkeit			
	Nachweis					
						[-]
	Ó¦`&@&@; ãc*¦4	4i ^}			OK	0.27

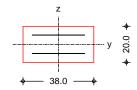



ÙVPËÜPÄÄÜ¢4&\@ã ÁÛ>å Seite: 2-123

Pos. ST-2.4

GhV"!Gh~ mY

System M 1:120


Abmessungen Mat./Querschnitt

Geschoss	1	Material	b _y /b _z
	[m]		[cm]
2. OG	2.80	C 25/30	38/20

Auflager

Lager	X	$K_{T,z}$	$K_{R,y}$	$K_{T,y}$	$K_{R,z}$
_	[m]	[kN/m]	[kNm/rad]	[kN/m]	[kNm/rad]
В	2.80	fest	frei	fest	frei
Α	0.00	fest	frei	fest	frei

M 1:20

Abschnitt 1

Einwirkungen

Einwirkungen nach DIN EN 1990:2010-12

Gk

Eigenlasten

ٜ} åã* ^ÁÒã; ã\`} * ^}

Qk.N

Nutzlasten

Qk.W Wind

Sæe^*[¦ā^Á0ÆÆÁY[@];ËÁ}åÁ0E-^}c@ea|o•¦ê°{^

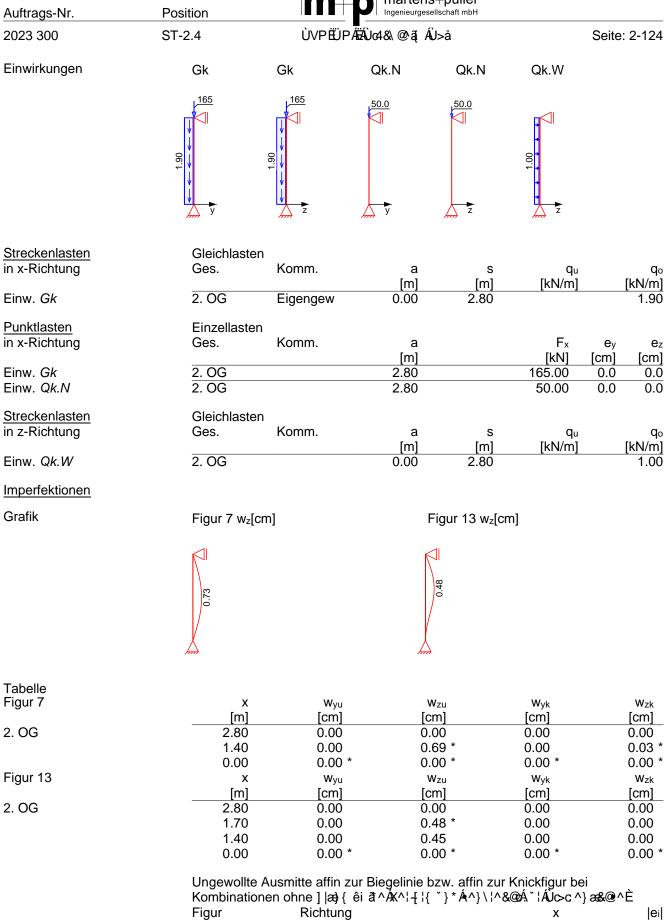
Windlasten

Qk.W min/max Werte

Ò||ê c^| \} * ^}

Lastansatz ung>nstig (fw) Öðl∕Ásæ c\}Ás^¦ÁÒðj, ðl\`}*Á, ^¦å^}Áş Á;}*>} •æt ^¦ÁLaststellung wirkend

fw


angesetzt.

Belastungen

Belastungen auf das System

Grafik

Belastungsgrafiken (einwirkungsbezogen)

Ζ

[m]

1.38

0.99

[cm]

0.70

martens+puller
Ingenieurgesellschaft mbH Auftrags-Nr. Position ST-2.4 ÙVPËÜPÄÄÜ¢4&\@ã ÁÛ>å 2023 300 Seite: 2-125 Richtung Figur |ei| Χ [m] [cm] [-<u>]</u> [-] 13 0.69 1.67 0.49 Ζ Kombinationen Kombinationsbildung nach DIN EN 1990 Darstellung der mai gebenden Kombinationen (* *EW) Imp. •œ} åã Ð[¦>à^¦* È 9 1.35*Gk +1.50*Qk.W 1 7 15 1.35*Gk +1.50*Qk.N +0.90*Qk.W **Brand** 39 13 1.00*Gk +0.30*Qk.N +0.20*Qk.W nach Th. II. Ordnung nichtlineare Berechnung nach Th. II. Ordnung Nicht-Linear **Grafik** Ù&@; ãct ¦4i ^} ÁQW(@>||^} å^D $N_{x,d}[kN] \\$ $M_{y,d}[kNm]$ $M_{z,d}[kNm]$ $V_{y,d}[kN]$ $V_{z,d}[kN]$ Tabelle Ù&@; ãct | 4i ^} ÁQW(@>||^} å^D

n EK
ıx
l]
7 11
8 8
2 15
2 8
7 8
8 11
46 02 02 47 98

	X	$M_{z,d,min}$	Ek	$M_{z,d,max}$	Ek	$V_{y,d,min}$	Ek	$V_{y,d,max}$	Ek
	[m]	[kNm]		[kNm]		[kN]		[kN]	
2. OG	2.80	0.00	1	0.00	1	-2.35	13	2.35	14
	1.40	-2.14	13	2.14	14	-0.02	13	0.02	14
	0.00	0.00	1	0.00	1	-2.39	14	2.39	13

Brandfall Nicht-Linear

nichtlineare Berechnung nach Th. II. Ordnung

Grafik Ù&@ ãct | 4i ^ } ÁQW @||^ } å^D

2023 300 ST-2.4 ÙVPËÜPĀÄŪc4&\@ā ÂŪ>å Seite: 2-126

$N_{x,d}[kN]$	$M_{y,d}[kNm]$	$M_{z,d}[kNm]$	$V_{y,d}[kN]$	$V_{z,d}[kN]$
-185	1.15	0.69	1.15 1.022 1.032 1.13 1.15	0.77 2.27 1.91 0.38 -1.90 -2.29

<u>Tabelle</u> Ù&@ ãct ¦4i ^} ÁÇW{ ⊗||^} å^D

	X	$N_{x,d,min}$	Ek	$M_{y,d,min}$	Ek	$V_{z,d,min}$	Ek
		$N_{x,d,max}$		$M_{y,d,max}$		$V_{z,d,max}$	
	[m]	[kN]		[kNm]		[kN]	
2. OG	2.80	-180.00	29	0.00	25	-2.29	39
		-165.00	25	0.00	25	1.91	32
	1.80	-181.90	29	-1.18	32	-0.06	40
		-166.90	25	1.39	39	0.05	31
	0.80	-183.80	29	-0.08	31	-1.90	32
		-168.80	25	0.10	40	2.27	39
	0.00	-185.32	29	-1.46	39	-0.38	32
		-170.32	25	1.15	32	0.77	39

	X	$M_{z,d,min}$	Ek	$M_{z,d,max}$	Ek	$V_{y,d,min}$	Ek	$V_{y,d,max}$	Ek
	[m]	[kNm]		[kNm]		[kN]		[kN]	
2. OG	2.80	0.00	25	0.00	25	-1.15	37	1.15	38
	1.80	-0.70	37	0.70	38	-0.03	38	0.03	37
	0.00	-0.69	38	0.69	37	-0.22	38	0.22	37

Bem.-verformungen

nach Th. II. Ordnung

 $w_{y,d}[cm]$

Nicht-Linear

nichtlineare Berechnung nach Th. II. Ordnung

 $w_{z,d}[cm]$

Grafik

X^\{\{\`\}*^\}\A\@\a\\a\\^\a\\D

Komb. 9

		-0.20	-7.83
		\	\
0.70	0.02		1
		0.20	7.86
\longrightarrow	$\stackrel{\frown}{\longrightarrow}$	∭ oʻ	<u></u>

y,d[mrad]

 $_{z,d}$ [mrad]

Seite: 2-127

0.00

Komb. 15

 $w_{z,d}[cm]$

 $_{y,d}$ [mrad]

<u>Tabelle</u>

Komb. 9

Gesch.	Х	$W_{z,d}$	y,d	$\mathbf{W}_{Y,d}$	z,d
	[m]	[cm]	[mrad]	[cm]	[mrad]
2. OG	2.80	0.00	-0.20 *	0.00	-7.83 *
	1.40	0.02 *	0.00	0.70 *	-0.03
	0.00	0.00	0.20 *	0.00	7.86 *
	2.80	0.00	-8.36 *	0.00	0.00
	1 40	0.73 *	-0.03	0.00	0.00

8.27 *

0.00

0.00

Komb. 15

Brandfall Nicht-Linear

nichtlineare Berechnung nach Th. II. Ordnung

0.00

Grafik

$$X^{+}_{\{ \{ \} ^* \}} A_{\{ a \in ^* ^a \}} a^D$$

Komb. 39

 $w_{z,d}[cm]$ $y_{,d}[mrad]$

<u>Tabelle</u>

Komb. 39

Gesch.	X	Wz,d	y,d	Wy,d	z,d
	[m]	[cm]	[mrad]	[cm]	[mrad]
2. OG	2.80	0.00	-13.98 *	0.00	0.00
	1.70	0.97 *	-0.36	0.00	0.00
	0.80	0.45	8.90 *	0.00	0.00
	0.00	0.00	-0.10	0.00	0.00

Mat./Querschnitt

Material- und Querschnittswerte

Querschnitte

Q	Тур	Bewehr	b/D	h/Di	Cmin	С
		anordnung	[cm]	[cm]	[mm]	[mm]
1	Recht	Asu=Aso	38.0	20.0	20	15

			_	_
Q	Expositionsklassen		Cnom	C∨
			[mm]	[mm]
1	XC1		35	35

Myu

Auftrags-Nr.	Position	Ingenieurgesellschaft mbH
2023 300	ST-2.4	ÙVPËÜPÄÄÜ¢4&\@ãAÛ>å

Materialien	Q	Beton	Betonstahl	min	max		* <i>'</i>
				[%]	[%]	[-]	ŽÞÐ()á
	1	C 25/30	B 500SA	0.30	4.50	2.50	25.0

Bemessung (GZT)

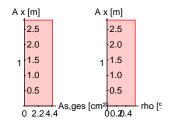
*^{ êi ÁÖ OÞÁÐ ÞÁFJJ GËFËFÐÁ HÈÐÁ HÌÐÁ HÌÐÁ HÌÐÁ HÌÐÁ

Ó¦ * &@ &@ * ac* | 4i ^} Komb. 9

nach nichtlinearer	Theorie	
v	Nu	

	[m]	[kN]	[kNm]	[kNm]	Zšá	ZS á	
_	2.80	1257.6	0.0	0.0	-2.00	-2.00	0.18
	1.40	1141.9	7.6	-8.1	-0.97	-3.22	0.20
	0.00	1257.6	0.0	0.0	-2.00	-2.00	0.18
	х	Nu	Myu	Mzu	s	С	
	[m]	[kN]	[kNm]	[kNm]	Žáá	Žšá	
	2.80	1257.6	0.0	0.0	-2.00	-2.00	0.24
	1.40	1097.3	11.6	0.0	-1.10	-3.18	0.27
	0.00	1257.6	0.0	0.0	-2.00	-2.00	0.24

 M_{zu}


Seite: 2-128

Erforderliche
Bewehrung

Komb. 15

von x	bis x	Q	Тур	Bew.Art	d'	As,ges	
[m]	[m]				[cm]	Ž&{ á	[%]
0.00	2.80	1	R	Asu=Aso	4.9	4.52	0.60

Erf. Bewehrung M 1:120

Brandfall

- Berechnungsgrundlagen:
 spezifische Wêrme vom Beton (3.3.2)

- Feuchte des Betons 3.0%
 Wêrme>bertragungskoeffizient 25 W/m K
 thermische Leitfêhigkeit des Betons: obere Grenze
- Emissionswert der Betonoberflêche 0.7
 Festigkeitsred. Bewehrung f>r Klasse N
 Bewehrung kaltverformt

- quarzhaltiğe Betonzuschlêge
- St>tze am Fui eingespannt

Steifigkeiten im Brandfall

Q	t_{req}	Seiten	EA	Ely	Elz
	[min]	[-]	[kN]	ŽÞ{ á	ŽÞ{ á
1	90	r/l/o/u	316966.77	497.21	2432.11

Temperaturprofil Bewehrung

fy, /fy
[-]
0.51
0.51
0.51
0.51

martens+puller
Ingenieurgesellschaft mbH Auftrags-Nr. ÙVPËÜPÄÄÛ¢4&\@ã ÁÛ>å 2023 300 Seite: 2-129 Ó¦ &@ &@ ãc* ¦4i ^} nach nichtlinearer Theorie Komb. 39 N_{u} Myu M_{zu} Χ [kN] [kNm] [m] [kNm] 782.2 0.23 2.80 0.0 0.0 -5.5 0.0 0.00 696.8 0.27 Erforderliche bis x Q Typ Bew.Art ď von x As,ges Ž&{ á Bewehrung [%] [m] [m][cm] 2.80 R 4.52 0.00 Asu=Aso 4.9 0.60 Erf. Bewehrung M 1:120 A x [m] A x [m] 2.5 2.5 2.0 2.0 1 1.5 1.5 1.0 1.0 0.5 0.5 As,ges [cm²] ... 00.20.4 0 2.24.4 Þæ&@ ^ã^Á[ÁÕ¦^}:: ˇ•æ) åÁå^¦ÁV¦æ* ÷ê@t\^ãAjæ&@ÄÖΦ ÁÖÞÁFJJŒËË Nachweise (GZT) Querkraftbemessung $V_{Ed,y}$ $V_{Rd,c}$ $V_{Rd,max,y}$ N_x Z erf asw Х $V_{Ed,z}$ V_{Rd,c} $V_{Rd,max,z}$ Ž&{ Đ() á Žγá [m][kN] [kN] [kN] [kN] [cm] 4.83^M Komb. 9 2.80 1.76 101.71 164.48 222.75 18.4 25.8 2.14 101.71 94.48 222.75 18.4 7.80 Komb. 9 0.00 1.80 102.92 164.48 229.93 18.4 25.8 4.83^{M} 2.15 102.92 94.48 229.93 18.4 7.80 Mindestquerkraftbew. nach Abs. NDP Zu 9.2.2(5) Bewehrungswahl

von x	bis x	Q	Тур	BewLage		n	ds
[m]	[m]						[mm]
0.00	2.80	1	Rechteck	je Ecke		1	» %&
von x	bis x	Q	Тур	Cnom	n	As,ges	
[m]	[m]			[mm]		Ž&{ á	[%]
0.00	2.80	1	Rechteck	35	4	4.52	0.60

Querschnitt 1 M 1:20

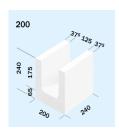
Vorhandene Bewehrung

Vorhandene Querkraftbewehrung	von x [m]	bis x [m]	Q Typ	d _s [mm]	s [cm]	Schnitt	A _{sw} Ž&(-E)á
-	0.00	2.80	1 Rechte	eck 8	14	2	7.18

Auftrags-Nr. Position ÙVPËÜPÄÄÛ¢4&\@ã ÁÛ>å 2023 300 ST-2.4 Seite: 2-130 OE -|æ* ^ | * | 4 i ^ } Áæ (Á Einw $F_{x,k}$ $M_{y,k}$ $M_{z,k}$ $F_{y,k}$ $F_{z,k}$ Ùc>c ^} \[] ~ [kN] [kNm] [kNm] [kN] [kN] Gk 0.0 0.0 0.0 0.0 0.0 Qk.N 0.0 0.0 0.0 0.0 0.0 Qk.W 0.0 0.0 0.0 0.0 1.4 OE +|ae* ^| * | 4i ^} Ase(Á Einw $F_{x,k}$ $M_{y,k}$ $M_{z,k}$ $F_{y,k} \\$ $F_{z,k}$ Ù⇔c ^} ~ i [kN] [kNm] [kNm] [kN] [kN] Gk 170.3 0.0 0.0 0.0 0.0 Qk.N 50.0 0.0 0.0 0.0 0.0 Qk.W 0.0 0.0 0.0 0.0 1.4 Anteile aus Th. II Ordnung Einw $M_{y,k} \\$ $M_{z,k}$ $F_{y,k} \\$ $F_{z,k} \\$ [kNm] [kNm] [kN] [kN] Gk 0.0 0.0 0.0 0.0 Qk.N 0.0 0.0 0.0 0.0 Qk.W 0.0 0.0 0.0 0.0 Zusammenfassung Zusammenfassung der Nachweise Nachweise (GZT) Nachweise im Grenzzustand der Tragfêhigkeit **Nachweis** [-] Ùœàããéc OK Ó| &@ &@ act | 4i ^} OK 0.27 Querkraftbemessung OK Brand OK OK Bewehrungswahl Nachweise (Brand) Brandfall im Grenzzustand der Tragfêhigkeit Nachweis [-] 0.27 Ó¦ * &@ &@ ãc* ¦ 4i ^} OK

2023 300

RB-2.1


ÙVPËÜPÄÄÜ¢4&\@`ã ÁÙ>å

Pos. RB-2.1

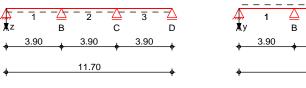
GHV"!F]b[VU_Yb"]b"I !GW(UY'6f" ghi b['@Ui VYb[Ub[

System

Stb.-Ringbalken in U-Schale

System

T ^ @ ~ | å d ê * ^ |


M 1:265

System z-Richtung

System y-Richtung

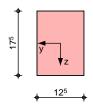
3.90

11.70

[m]

Abmessungen Mat./Querschnitt

> 1-3 3.90


Material b/h [cm] C 25/30 12.5/17.5

Seite: 2-131

Grafik

Querschnittsgrafik

M 1:10

Feld

Auflager

Lager	X	b	Art	$K_{T,z}$	$K_{T,y}$	Gabell.
	[m]	[cm]		[kN/m]	[kN/m]	
A	0.00	25.0	weich	fest	fest	fest
В	3.90	25.0	weich	fest	fest	fest
С	7.80	25.0	weich	fest	fest	fest
D	11.7	25.0	weich	fest	fest	fest

Einwirkungen

Einwirkungen nach DIN EN 1990:2010-12

Gk

Eigenlasten

ٜ^{ aat ^ AOa, a\`}*^}

Qk.N

Nutzlasten

Sang^*[|að ÁOEÁÁY [@] ÉÁ } å ÁOE - ^ } c@anjor | lê ` { ^

fw

Qk.W

Wind

Windlasten

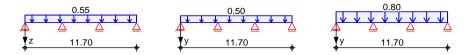
Qk.W

min/max Werte

Ò¦|ê * c^ | * } * ^ }

Lastansatz ung>nstig (fw)

Öā Ášæ c } Ás \ Äôā , ã\` } * Á \ a \ å A \ å \ A \ å


angesetzt.

martens+puller
Ingenieurgesellschaft mbH Auftrags-Nr. Position **RB-2.1** ÙVPËÜPÄÄÜ¢4&\@ã ÁÛ>å 2023 300

Belastungen auf das System Belastungen

Grafik Belastungsgrafiken (einwirkungsbezogen)

Einwirkungen Gk Qk.N Qk.W

Streckenlasten Gleichlasten in z-Richtung Feld Einw. Gk 1 Streckenlasten

Komm. а s qre [kN/m] [m] [m] [kN/m] [cm] Eigengew 0.00 11.70 0.55 0.0 Gleichlasten

Seite: 2-132

Einw. Qk.N Einw. Qk.W

in y-Richtung

Feld Komm. а s qıi q_{re} е [kN/m] [m] [kN/m] [cm] [m] 0.00 11.70 0.50 0.0 0.00 11.70 0.80 0.0

Kombinationen Kombinationsbildung nach DIN FN 1990

Kombinationen	KOHIDIH	EN 1990		
	Ek	(* *EW)		
•œ̂} åðtt͡ð̞[¦>à^¦* È	1	1.35*Gk		
	2	1.00*Gk	+1.50*Qk.N	
			(2)	
	3	1.00*Gk	` ,	
	4	1.00*Gk	+1.05*Qk.N	+1.50*Qk.W
			(1,3)	
	5	1.00*Gk	+1.50*Qk.N	+0.90*Qk.W
			(2)	
	6	1.00*Gk	+1.50*Qk.N	
			(1,3)	
	7	1.00*Gk	+1.05*Qk.N	+1.50*Qk.W
			(1,2)	
	8	1.00*Gk	+1.50*Qk.N	+0.90*Qk.W
			(1,3)	
	9	1.00*Gk	+1.50*Qk.N	
			(3)	
	10	1.00*Gk	+1.50*Qk.N	+0.90*Qk.W
	-			

(2,3)1.00*Gk +1.50*Qk.N 12 (1) st./vor. Auflagerkr. +1.50*Qk.N 13 1.15*Gk (1,2)14 1.15*Gk +1.05*Qk.N

1.00*Gk

11

(1,3)+1.50*Qk.N 15 1.15*Gk (1,2,3)16 1.15*Gk +1.05*Qk.N

(1,2)+1.05*Qk.N

+1.50*Qk.W

+1.50*Qk.W

+1.50*Qk.W

(1,2)+1.50*Qk.N 17 1.15*Gk (1) +1.05*Qk.N 1.15*Gk

Position

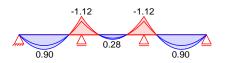
2023 300

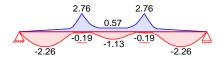
RB-2.1

ÙVPËÜPÄÄÛ¢4&\@@ã ÁÛ>å

Ó^{ \(\overline{\overlin

Ó^{ ^••`} *••&@ ãct |4i ^}

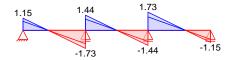

Grafik

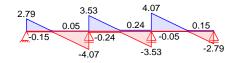

Schnittgr4i en (Umh>llende)

Kombinationen

Moment M_{y,d}[kNm]

 $Moment \ M_{z,d}[kNm]$





Seite: 2-133

Querkraft Vz,d[kN]

Querkraft V_{y,d}[kN]

<u>Tabelle</u>

Schnittgr4i en (Umh>llende)

	x	$M_{y,d,min} \\$	Ek	$V_{z,d,min} \\$	Ek	$M_{z,d,min}$	Ek	$V_{y,d,min} \\$	Ek
		$M_{y,d,max}$	Ek	$V_{z,d,max}$	Ek	$M_{z,d,max}$	Ek	$V_{y,d,max}$	Ek
	[m]	[kNm]		[kN]		[kNm]		[kN]	
Feld 1	0.00	0.00	2	0.85	2	0.00	4	-0.15	2
		0.00	1	1.15	1	0.00	2	2.79	4
	0.08	0.07	2	0.81	2	-0.23	4	-0.15	2
		0.09	1	1.09	1	0.01	2	2.65	4
	1.60	0.67	2	-0.03	1	-2.26	4	-0.18	5
		0.90	1	-0.02	2	0.23	2	0.12	6
	3.78	-0.91	1	-1.64	1	-0.18	9	-3.85	7
		-0.68	2	-1.21	2	2.26	7	0.05	9
	3.90	-1.12	1	-1.73	1	-0.19	9	-4.07	7
		-0.83	2	-1.28	2	2.76	7	0.05	9
Feld 2	0.00	-1.12	1	1.07	2	-0.19	9	-0.24	9
		-0.83	2	1.44	1	2.76	7	3.53	7
	0.13	-0.95	1	1.00	2	-0.16	9	-0.24	9
		-0.70	2	1.35	1	2.33	7	3.32	7
	2.00	0.21	2	-0.04	1	-1.13	5	-0.26	11
		0.28	1	-0.03	2	0.57	6	0.24	12
	3.78	-0.95	1	-1.35	1	-0.16	12	-3.32	11
		-0.70	2	-1.00	2	2.33	11	0.24	12
	3.90	-1.12	1	-1.44	1	-0.19	12	-3.53	11
		-0.83	2	-1.07	2	2.76	11	0.24	12
Feld 3	0.00	-1.12	1	1.28	2	-0.19	12	-0.05	12
		-0.83	2	1.73	1	2.76	11	4.07	11
	0.13	-0.91	1	1.21	2	-0.18	12	-0.05	12
		-0.68	2	1.64	1	2.26	11	3.85	11
	2.30	0.66	2	0.02	2	-2.26	4	-0.12	6
		0.90	1	0.03	1	0.23	2	0.18	5
	3.82	0.07	2	-1.09	1	-0.23	4	-2.65	4
		0.09	1	-0.81	2	0.01	2	0.15	2
	3.90	0.00	2	-1.15	1	0.00	4	-2.79	4
		0.00	1	-0.85	2	0.00	2	0.15	2

Position

Seite: 2-134

2023 300

RB-2.1

ÙVPËÜPÄÄÜd& @ã ÁÜ>å

>> \A\$^} AO^ \AO^ \\ \O \\\ \O \\\ \O \\\ \O \\ \O \\\ \O \\\ \O \\\ \O \\\ \O \\\ \O \\\ \O \\\ \O \\\ \O \\\ \O \\\ \ Bemessung (GZT) Biegung 6.1 N_{xd} M_{yd} M_{zd} T_{Ed} A_s $A_{\text{s},\text{T}}$ A_s Х [m] [kN] [kNm] [kNm] [kNm] Ž&{á Ž&{á Ž&{ á Feld 1 (L = 3.90 m, b/h = 12.5 / 17.5 cm)0.00 0.0 0.0 0.0 0.0 0.00 0.00 0.00 0.08 0.0 0.1 -0.2 0.0 0.02 0.00 0.14^{M} а 1.56 0.0 0.9 -2.3 0.0 0.26 0.00 0.26 1.62 0.0 0.9 -2.3 0.0 0.26 0.00 0.26 3.78 0.0 -0.9 0.0 0.26 0.00 0.26 2.3 а 3.90 0.0 0.0 0.35 0.00 0.35 -1.1 2.8 Feld 2 (L = 3.90 m, b/h = 12.5 / 17.5 cm)0.0 2.8 0.0 0.35 0.00 0.35 0.00 -1.1 0.13 0.0 -0.9 2.3 0.0 0.27 0.00 0.27 а $0.14^{\,M}$ 1.95 0.0 0.3 0.0 0.11 0.00 -1.1 3.78 -0.9 0.0 0.00 0.27 а 0.0 2.3 0.27 3.90 0.0 0.35 0.00 0.35 0.0 -1.1 2.8 (L = 3.90 m, b/h = 12.5 / 17.5 cm)Feld 3 0.00 0.00 0.0 -1.1 2.8 0.0 0.35 0.35 0.13 0.0 -0.92.3 0.0 0.26 0.00 0.26 а 2.28 0.0 0.9 -2.3 0.0 0.26 0.00 0.26 2.34 0.0 0.9 -2.3 0.0 0.26 0.00 0.26 3.82 0.0 0.1 -0.2 0.0 0.02 0.00 0.14^{M} а 0.00 3.90 0.00 0.00 0.0 0.0 0.0 0.0 Ó^{ ^••`}*Á>¦ÁÛ`^¦\¦æďÄ\}åÁV[¦•ã[}•à^æ]•]¦`&@}* Querkraft 6.2 $V_{Ed,z}$ T_{Ed} erf asw,z erf asw,T a_{sw} $V_{Ed,y}$ erf asw,v [kN] [kNm] Ž&{ Ð)á Ž&{ Ð á Ž&{ Ð; á [m] $(L = 3.90 \text{ m}, \overline{b/h} = 12.5 / 17.5 \text{ cm})$ Feld 1 0.00 1.2 0.0 1.04^{M} 0.00 2.50^{M} 2.8 1.46^{M} 0.08 1.04^{M} 0.00 2.50^{M} а 1.1 0.0 1.46^{M} 2.6 1.04^{M} 3.12 -1.2 0.0 0.00 2.50^{M} -2.7 1.46^{M} 3.78 -1.6 0.0 1.04^{M} 0.00 2.50^{M} а -3.9 1.46^{M} 3.90 -1.7 0.0 1.04^{M} 0.00 2.50 M 1.46^{M} -4.1 Feld 2 (L = 3.90 m, b/h = 12.5 / 17.5 cm) 1.04^{M} 0.00 1.4 0.0 0.00 2.50^{M} 3.5 1.46^{M} 0.13 1.3 0.0 1.04^{M} 0.00 2.50^{M} а 3.3 1.46^{M} 1.04^{M} 1.08 0.6 0.0 0.00 2.50^{M} 1.46^{M} 1.7 2.82 -0.60.0 1.04^{M} 0.00 2.50^{M} -1.7 1.46^{M} 3.78 -1.3 0.0 1.04^{M} 0.00 2.50^{M} а -3.3 1.46^{M} 3.90 -1.4 1.04^{M} 0.0 0.00 2.50^{M} -3.5 1.46^M (L = 3.90 m, b/h = 12.5 / 17.5 cm)Feld 3 0.00 1.7 1.04^{M} 0.00 2.50^{M} 0.0 4.1 1.46^{M} 0.13 1.6 0.0 1.04^{M} 0.00 2.50^{M} а 3.9 1.46^{M}

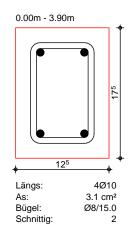
X	Auftrags-Nr.	Position	M	ma Inger	artens+pullei nieurgesellschaft mbF	- I		
	2023 300	RB-2.1	ÙVPĖ	— ■ ÜPÆÄÛα4&\ (@ią̃AÛ>å		Seite	: 2-135
m		х		T_{Ed}			a _{sw,T}	a_{sw}
0.78		[m]		[kNm]		,y á Ž&(Đá Ž8	{ Ð)á
See See		0.78	1.2		1.0	4 M	0.00	2.50 M
Part								o = o M
Section Sec		3.82 a		0.0			0.00	2.50™
Teld Teld		3 90		0.0			0.00	2 50 M
Druckstreben Pask@ ^8 As ^1 As ^1 As ^2 As ^2 As ^3 As ^4 As ^1 As ^2 As ^3 As ^4 As ^4 As		0.50		0.0			0.00	2.00
Feld 1 X	Nachweise (GZT)	ã <i>Á</i> Õ¦^}::`	`•œ)åÁå^¦Á√¦	æ** ~ê @#*\^anA	. æ&@#ÖΦ #ÒÞ	ÆJJŒËËKŒ	FFËF	
Feld 1 X	Druckstreben	Þæ&@^ã/	%a^¦AÖ¦`&\•d^	à^}dæ*rê@a	i∖^ãc			
Feld 1		•				$V_{Rd,max,z}$	$T_{Ed,max}$	
Feld 1					ŢУ			
0.00					Žá	[kN]	[kNm]	[-]
Feld 3 2.8	Feld 1				40.4	40.0	4.0	0.40
0.08		0.00		0.0				0.12
2.6		0.00		0.0				0.12
Feld 2 3.12 1.2 2.7 18.4 29.0 1.9 3.78 3.9 18.4 29.0 1.9 3.9 18.4 29.0 1.9 3.9 18.4 29.0 1.9 3.9 18.4 29.0 1.9 3.9 1.1 3.9 1.1 3.9 1.1 3.9 1.1 3.9 1.1 3.9 1.1 3.9 1.1 3.9 1.1 3.9 1.1 3.9 1.1 3.9 1.1 3.9 1.1 3.9 1.1 3.1 3		0.06		0.0				0.12
Feld 3 2.7		2 12		0.0				0.12
Seminary Color Sem		3.12		0.0				0.12
$ \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$		3.78		0.0				0 17
Feld 2 3.90		0.70		0.0				0.17
Feld 2 A.1		3.90		0.0				0.18
Feld 2 L = 3.90 m, b/h = 12.5 / 17.5 cm)								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Feld 2	L = 3.90 r	$h_{1} = \frac{12.5}{1}$	⁷ 17.5 cm)				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					18.4	40.6	1.9	0.16
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			3.5		18.4	29.0	1.9	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		0.13		0.0				0.15
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		1.08		0.0				0.07
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		2.82		0.0				0.07
Feld 3 $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		2.70		0.0				0.45
Feld 3 $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		3.78		0.0				0.15
Feld 3 $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		2.00		0.0				0.16
Feld 3		3.90		0.0				0.10
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Feld 3	$\sqrt{I = 3.90 \text{r}}$		(17.5 cm)	10.4	20.0	1.0	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$. 0.0 0				18.4	40.6	1.9	0.18
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		0.13		0.0				0.17
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					18.4	29.0		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		0.78	1.2	0.0		40.6	1.9	0.12
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							1.9	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		3.82		0.0				0.12
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		3.90		0.0				0.12
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Device							
Feld 1	Bewenrungswahl	v	A	d .	۸ -	1		_
Feld 1 $(L = 3.90 \text{ m, b/h} = 12.5 / 17.5 \text{ cm})$ 0.00 4 < F€ 3.14 < \grave{l} 15 2 6.70								asw Žor⊓v ∠
0.00 4 < F€ 3.14 < Ì 15 2 6.70	Fold 1				∡o∢ a [m	iiiij [cm]		∠o≼ t∜ a
	ı cıu ı	•			3 14	∠Ì 15	2	6 70
	Feld 2				0.17	<u> </u>		0.70

Auftrags-Nr. Position

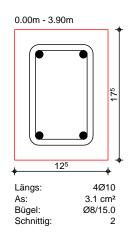
Position

RB-2.1

Discription Ingenieurgesellschaft mbH


UVPEUPÆDval& @ Æ ÅD>å

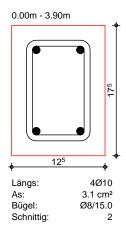
Seite: 2-136


Χ	Anz.	$d_{s,L}$	$A_{s,ges}$	$d_{s,B}$	S	n	a_{sw}
[m]		[mm]	Ž&{ á	[mm]	[cm]		Ž&{ Ð()á
0.00	4	< F€	3.14	< Ì	15	2	6.70
(L = 3.90)	m, b/h = 12.	5 / 17.5 cm)				
0.00	4	< F€	3.14	∠Ì	15	2	6.70

Feld 1 M 1:5

Feld 3

Feld 2 M 1:5



2023 300 RB-2.1

Seite: 2-137

Feld 3 M 1:5

Œ ॄ\æ*^!\¦ê-e^

Ô@datc\ã@&@Á}åÁÓ^{ ^••`}*•æ´;\lê-c^

Char. Auflagerkr.

	Aufl.	$M_{x,k,min}$	$F_{z,k,min}$	$F_{y,k,min}$
		$M_{x,k,max}$	$F_{z,k,max}$	$F_{y,k,max}$
		[kNm]	[kN]	[kN]
Einw. <i>Gk</i>	A	0.00	0.85	0.00
		0.00	0.85	0.00
	В	0.00	2.35	0.00
		0.00	2.35	0.00
	С	0.00	2.35	0.00
		0.00	2.35	0.00
	D	0.00	0.85	0.00
		0.00	0.85	0.00
Einw. Qk.N	A	0.00	0.00	-0.10
		0.00	0.00	0.88
	В	0.00	0.00	-0.20
		0.00	0.00	2.34
	С	0.00	0.00	-0.20
		0.00	0.00	2.34
	D	0.00	0.00	-0.10
		0.00	0.00	0.88
Einw. Qk.W	A	0.00	0.00	1.25
		0.00	0.00	1.25
	В	0.00	0.00	3.43
		0.00	0.00	3.43
	С	0.00	0.00	3.43
		0.00	0.00	3.43
	D	0.00	0.00	1.25
		0.00	0.00	1.25
Ó^{ Œë ∤æ*^¦\¦ê-e^				
(Aufl.	$M_{x,d,min}$	$F_{z,d,min}$	$F_{y,d,min}$
		$M_{x,d,max}$	$F_{z,d,max}$	$F_{y,d,max}$
		[kNm]	[kN]	[kN]
Grundkombinationen	A	0.00	0.85	-0.15
		0.00	1.15	2.79
	В	0.00	2.35	-0.29
		0.00	3.17	7.60
	^	0.00	0.05	0.00

0.00

0.00

2.35

3.17

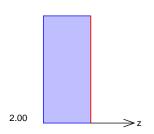
-0.29

7.60

С

Auftrags-Nr.	Position	martens+pt	ıller ^{ft mbH}		
2023 300	RB-2.1	ÙVPËÜPÄÄÜ¢4&\@ā, ÁÛ>å		Se	ite: 2-138
	Aufl.	M _{x,d,min} M _{x,d,max} [kNm]	F _{z,d,min} F _{z,d,max} [kN]		F _{y,d,min} F _{y,d,max} [kN]
	D	0.00 0.00	0.85 1.15		-0.15 2.79
Zusammenfassung	Zusammenf	assung der Nachweise			
Nachweise (GZT)	Nachweise	im Grenzzustand der Tragfêhigke	eit		
	Nachweis			Ort	[_]
	Biegung Querkraft Druckstrebe Bewehrungs			OK OK OK OK	[-]

Auftrags-Nr.	Position	martens+puller Ingenieurgesellschaft mbH			
2023 300	W-2.1	ÙVPËÜPÄÄÜ¢4&\@@{\ ÁÛ>å		Seit	te: 2-139
Pos. W-2.1	Stahlbeto	nwand			
System	Yæ)å@4@/ S}æ&\ ê}*^		lw = lo =	2.90 2.90	m m
Belastungen	Öæ ÁÒð ^}	*^¸ 3&@Ás^¦ÁVæ)åÁ¸ ãåÁs^¦>&\•3&@2ådÈ			
Vertikallasten	Einwirkung)	e _z [cm]		f _x [kN/m]
	Gk Qk.N		0.00 0.00		390.00 125.00
Gleichlasten	Einwirkung)			q ŽÞÐ()á
	Qk.W				2.00
EW Gk M 1:100	in z-Richtu	ng			
EW Qk.N M 1:100	in z-Richtu	▼ 404.50 > z ng ▼ 125.00			


ÙVPËÜPÄÄÛ¢4&\@`ã ÁÛ>å

EW Qk.W M 1:100

2023 300

in z-Richtung

W-2.1

Kombinationen

{ æi * ^ à ^ } å ^ ÁS[{ à ã æ aãi } ^ } Faktor * Einwirkung

•œ} åã Ð[¦>à^¦* È

+1.35*Gk +1.50*Qk.N

Ó^{ \overline{\

{ a i * ^ à ^ } å ^ ÁS[{ à a i a e a i } ^ }

•œ} åð £0[|>à^|* È

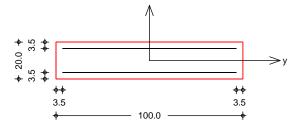
Nr.	X	n_{Ed}	m_{Edy}	VEdz
	[m]	[kN/m]	[kNm/m]	[kN/m]
2	0.0	733.58	0.00	0.00

Mat./Querschnitt

Material- und Querschnittswerte nach DIN EN 1992-1-1:2011-01

Material

Material	f _{yk}	f _{ck}	E
	[N/mm ²]	[N/mm ²]	[N/mm ²]
C 25/30		25	31000
B 500SA	500		200000


Querschnitt

Art	by	h	Α	ly
	[cm]	[cm]	[cm ²]	[cm ⁴]
RE	100.0	20.0	2000	66667

Rechteckquerschnitt

Grafik Querschnitt M 1:20

Querschnittsgrafik

Bewehrungsanordnung

OE&@ianà•œê}å^ Minimaler Bewehrungsgrad Maximaler Bewehrungsgrad

3.50 ď cm 0.00 min

4.00

%

%

Seite: 2-140

Bemessung (GZT)

> | Á&^ } ÁÕ | ^ } :: * • œ } å Á&^ | ÁV | æ * ê @ * \ ^ ãu Á æ & @ #Ö OÞ ÁÖ Þ ÁF J J GËFËF KGEF FËEF

<u>Ùcæàãããêc</u>

Nachweis der Knicksicherheit

Ó^\^&@\`}*•ç^\\aa@\^}KX^\\aa@\^}A(\aa\frac{\`}*\\>{\`}

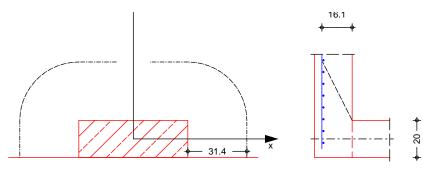
Schlankheiten Abs. 5.8.3.1(1)

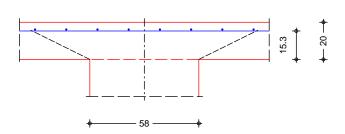
Auftrags-Nr.	Position		Ingenieurgesellsch				
2023 300	W-2.1	ÙVPËÜP	4ÄÜ04&\@ā, ÁÛ>å	à		Seite	e: 2-141
	Achse	Ek	lo [m]	i [cm]	[-]		lin [-
	у	4	2.90	5.8	50.2		31.4
Imperfektionen		h		1/ _{iz}			e _i
Abs. 5.2(7)	1.0	[-] 000	[1,	/rad] 200			[cm 0.73
	Si>{ { `}*•à	à^ą̃ ^¦c		C =	=	10	
Theorie II. Ordnung	Ek	Kr			1/ry		e 22
Abs. 5.8.8.3	4	[- <u>]</u> 1.00	1.0		1/m] 3E-2		[cm] 2.46
Ó^{	x		I_{0Edy}	M _{2y}			MEdy
Komb. 4 (GK)	[m] 2.90		(Nm] 5.32	[kNm] 0.00			[kNm] 5.32
	1.50 0.00		7.21 5.32	18.04 0.00			25.24 5.32
Biegung							
Abs. 6.1	Ek	x [m]	NEd [kN]	Med [kNm			A _{s1} [cm ²]
	4	1.50	733.58	25.24			1.50 _M
				•		3.00	&{
	Õ^•æ{ c^ÂÛ œ M: T∄å^•œ^¸^			A _s =	=	3.00	બ
Nachweise (GZG)	M: Tậੈå^∙cà^,^	@~`}*Á⊷iÁvæ)å	uchstauglichkeit				
<u>Spannungen</u>	M: T∄Â^•œ॓^, ^\	@~`}*Á⊷iÁvæ)å	uchstauglichkeit				
	M: T∄Â^•œ॓^, ^\	ஓ்}∻்கில் அ் tand der Gebra r Spannungen	uchstauglichkeit	nach DIN EN	1992-1- ⁻		
<u>Spannungen</u>	M: T∄Â^•æ^, ^ im Grenzzus Nachweis de	@`}*A⊳¦A∕ a)å tand der Gebra r Spannungen hI	-	nach DIN EN f	1992-1-1 = perm/fck char/fck	1:2011	-01 - C _d /f _{ck} C _d /f _{ck}
<u>Spannungen</u>	M: Tāʾa^•æ̀a^¸a im Grenzzus Nachweis de Endkriechzal x [m]	@`}*Æ⊧Æ æ)å tand der Gebra r Spannungen hI N₅	Ed M E	nach DIN EN f	1992-1- ⁻ = _{perm} /f _{ck}	1:2011	-01 Cd/fck Cd/fck Cd/fyk
<u>Spannungen</u>	m: Taanan and an and an and an and an an and an an an an an an an an an an an an an	@`}*As Ar a) å tand der Gebra r Spannungen hl	Ed Me N] [kNm	nach DIN EN f	1992-1-7 = perm/fck char/fck char/fyk [-] 0.09	1:2011	-01 Cd/fck Cd/fck Cd/fyk [-]
<u>Spannungen</u>	m: Taanananananananananananananananananana	e } AsiAr a) a tand der Gebra r Spannungen hl [kN] 442.0 522.2	Ed Me N] [kNm 0 5 -1.2	nach DIN EN f	1992-1- = nerm/fck char/fck char/fyk [-]	1:2011	-01 C _d /f _{ck} C _d /f _{ck} C _d /f _{yk} [-]
<u>Spannungen</u>	im Grenzzus Nachweis de Endkriechzal x [m] (L = 2.90 m) 0.00 1.45 Keine Zugsp	er Spannungen hl [kN] 442.0 522.2 annung im Stal	ME N] [kNm 0 5 -1.2 nl vorhanden.	nach DIN EN ?	1992-1-7 = perm/fck char/fck char/fyk [-] 0.09	1:2011	-01 C _d /f _{ck} C _d /f _{ck} C _d /f _{yk} [-]
Spannungen Abs. 7.2	im Grenzzus Nachweis de Endkriechzal x [m] (L = 2.90 m) 0.00 1.45 Keine Zugsp	er Spannungen In	Ed Me N] [kNm 0 5 -1.2	nach DIN EN f	1992-1-7 = perm/fck char/fck char/fyk [-] 0.09 0.11	1:2011	Cd/fc+ Cd/fg+ Cd/fy+ 0.45 0.60
Spannungen Abs. 7.2	M: T∄Ã^•æˆ^, ^\ im Grenzzus Nachweis de Endkriechzal x [m] (L = 2.90 m) 0.00 1.45 Keine Zugsp Šê} * • • œ̂ã^Á	er Falik aj å tand der Gebra er Spannungen hl [kh 442.0 522.2 annung im Stal	ME N] [kNm 0 5 -1.2 nl vorhanden.	nach DIN EN f	1992-1-7 = perm/fck char/fck char/fyk [-] 0.09 0.11	1:2011 0.00 6.70	Cd/fck Cd/fck Cd/fyk [-] 0.45 0.60
Spannungen Abs. 7.2	im Grenzzus Nachweis de Endkriechzal x [m] (L = 2.90 m) 0.00 1.45 Keine Zugsp Šê} * • • œà^Á ç[¦ @ÁUcæ@‡ê vorh. Bewehl charakteristis Einwirkung	er Falik aj å tand der Gebra er Spannungen hl [kh 442.0 522.2 annung im Stal	M _E N] [kNm 0 5 -1.2 nl vorhanden.	nach DIN EN f	1992-1-7 = perm/fck char/fck char/fyk [-] 0.09 0.11	1:2011 0.00 6.70	Cd/fck Cd/fgk Cd/fyk Cd/fyk (-] 0.45 0.60 8(E) %
Spannungen Abs. 7.2 Bewehrungswahl CE +at ^!\ ê-e^	im Grenzzus Nachweis de Endkriechzal x [m] (L = 2.90 m) 0.00 1.45 Keine Zugsp Šê} * • • œà^Á ç[¦ ÁJæ@+lê vorh. Bewehl charakteristis Einwirkung	er Falik aj å tand der Gebra er Spannungen hl [kh 442.0 522.2 annung im Stal	Ed Me N] [kNm 0 5 -1.2 nl vorhanden. 7, #/) '\$ fl ") 'V4 Fx,k [kN/m] 404.50	nach DIN EN f	1992-1-7 = perm/fck char/fck char/fyk [-] 0.09 0.11 = =	1:2011 0.00 6.70	-01 Cd/fck Cd/fck Cd/fyk Cd/fyk 0.45 0.60 &{ ₽ % Fz,k [kN/m] 0.00
Spannungen Abs. 7.2 Bewehrungswahl CE +at ^!\ ê-e^	im Grenzzus Nachweis de Endkriechzal x [m] (L = 2.90 m) 0.00 1.45 Keine Zugsp Šê} * • • œà^Á ç[¦ @ÁUcæ@‡ê vorh. Bewehl charakteristis Einwirkung	er Falik aj å tand der Gebra er Spannungen hl [kh 442.0 522.2 annung im Stal	Ed Me N] [kNm 0 5 -1.2 nl vorhanden. • , #/ 3 '\$'fl ") ' V 4 F _{x,k} [kN/m]	nach DIN EN f	1992-1-1 = eerm/fck char/fck char/fyk [-] 0.09 0.11	1:2011 0.00 6.70	Cd/fck Cd/fck Cd/fyk [-] 0.45 0.60 F _{z,k} [kN/m] 0.00 0.00
Spannungen Abs. 7.2 Bewehrungswahl CE +at ^!\ ê-e^	im Grenzzus Nachweis de Endkriechzal x [m] (L = 2.90 m) 0.00 1.45 Keine Zugsp Šê} * • • œà^Á	er Falik aj å tand der Gebra er Spannungen hl [kh 442.0 522.2 annung im Stal	Ed ME N] [kNm 0 5 -1.2 nl vorhanden. 7, #/) '\$'fl ") 'Wa Fx,k [kN/m] 404.50 125.00	nach DIN EN ?	1992-1-7 = perm/fck char/fck char/fyk [-] 0.09 0.11 = = My,k Nm/m] 0.00 0.00	1:2011 0.00 6.70	Cd/fck Cd/fck Cd/fyk [-] 0.45 0.60

Auftrags-Nr.	Position	Ingenieurgesellschaft mbH		
2023 300	W-2.1	ÙVPËÜPÄÄÜd&\@ã ÁÛ>å	5	Seite: 2-142
Œ ∤æ*^¦∖¦ê-e^ am Wandkopf	Einwirkung	F _{x,k} [kN/m]	M _{y,k} [kNm/m]	F _{z,k} [kN/m]
·	Qk.N Qk.W	0.00 0.00	0.00 0.00	-0.00 2.90
Zusammenfassung	Zusammenfa	ssung der Nachweise		
Nachweise (GZT)	Nachweise in	m Grenzzustand der Tragfêhigkeit		
	Nachweis			[-]
	Ùæàájãiêc Biegung Bewehrungs∖	wahl	OK OK OK	
Nachweise (GZG)	Nachweise in	m Grenzzust. der Gebrauchstauglichkeit		
	Nachweis		x [m]	[-]
	Begrenzung l	Betondruckspannungen	0.00 OK	0.19

2023 300

DST-2.1


ÙVPËÜPÄÄÜ¢4&\@`ã ÁÙ>å


Pos. DST-2.1

GHJA `VYhcb!8 i fW ghJbnbUW k Y]g FUbXgh mY

System M 1:20

Üæ}å•c>c^ÊÄÖ^&\^}]|ææc^Á(@}^Á\$~}`}*^}

Deckenplatte

Dicke
vorh. Biegebew.
OE&@ æà•œ̂}å^
{ ã a d^ ^ Á cæ eã & @ Á p ` c @ 4 @ .

Seite: 2-143

Betondeckung

Seite	Expositionsklasse(n)	Cmin,dur	Cdev	Cnom
		[mm]	[mm]	[mm]
oben	XC3	20	15	35
unten	XC1	10	10	20
Breite		c _x =	58.00	cm

Ü^&@^&\•cc^

2.0.0	
P4@	
Abstand zum freien Rand	

Belastungen

Einwirkung	$F_z[kN]$	$M_x[kNm]$	$M_y[kNm]$
Ed.1	146.95	0.00	0.00

Zusammenstellungen

aus Pos. 'D-2.2', Ort 'DS-2' (Seite 2-68)

Kombinationen

Kombinationsbildung nach DIN EN 1990 Darstellung der mai gebenden Kombinationen

•œ} åã Ð[¦>à^¦* È

Bemessung (GZT)

nach DIN EN 1992-1-1, 6.4 und DIBt Ò`;[]êã&@Á/^&@;ÈZ`|æ•`}*ÁÒVŒËFŒ€IÍIÁ(FŒFÏD

Beton C 30/37

Betonstahl B 500SA

Position Auftrags-Nr. 2023 300 DST-2.1 ÙVPËÜPÆÄÙ¢4&\@`ā ÁÙ>å Seite: 2-144 Bemessungswert Querkraft $V_{Ed} =$ 146.95 kN Šæec^¦@4@[¯]}*•~ædq[¦Á⇒¦Áæĕ•{ãncat^Á§æec^} nach 6.4.3(6), Bild 6.21N 1.40 | '^a`: a\'c'\'Ásæc'\@4@} * • -æt q | Á>| Á out nach ETA-12/0454 (12/17), GI(A5) 1.12 red char. Vorwert C_{Rk,c} 0.18 Beiwert Einfluss Plattendicke k = 2.00 { ã d ĐŠể} *•à^, ^@`} *•*¦æå 0.21 % erf. Breite Durchstanzbew. 12.30 cm I_{s,req} Breite Bereich Durchstanzbew. 16.50 ls cm **Nachweis** Rund-Abst. u VEd VRd,c VRd,max schnitt [m]ŽÞÐ) { á Ž>Ð(á **Ž**Þ₽){ á [cm] 0.734 0.542 Ucrit 31.4 1.79 1.063 0.734 m Uout 35.9 1.93 0.542 0.542 : `¦ÁÛ&&@^¦•o^||`}*Á&^¦ÁÛ`^¦\¦æadæ*-ê@#`\^ão Mindestbewehrung NCI Zu 6.4.5 Platten-Richanzusetzende min as m_{Ed} seite [kNm/m] Ž&(Ð)á tung **Breite** 0.250 5.54 oben 36.74 $b_y = 0.15 I_y$ Х 0.125 18.37 2.56 je m Breite У 0.000 0.00 0.00 unten Х 0.125 18.37 2.56 je m Breite У Kollapsbewehrung NCI Zu zur Vermeidung fortschreitenden Versagens ist im Bereich der 9.4.1(3) Šæ•o^āj|^āc`}*•~|ê&@^Áaa):`[¦å}^} Bemessungsw. Querkraft (F=1.0) $V_{Ed} =$ 104.96 kΝ min. untere Bewehrung min A_{su} = 2.10 &{ |ê| * • Áå^• Á¦^ã\} ÁÚ|æ@^} ¦æ} å^• Randbewehrung 6.4.2(5) POŠØÒÞÁPÖÓÁÖ>à^||^ã c^Á æ&@ÁÖÓÓc Bewehrungswahl Ò`¦[]êã&@^Á/^&@;ÈŽ`|æ••`}*ÁÒVOËË GEEIÍIÁQFGEFÏD **HDB** Systemelemente 6 * HDB-10/145-2/220 (55/110/55) *^, ê@c Ankerdurchmesser $d_A =$ 10 mm Û ^ | • &@ 㜕 + ê &@ Á& ÁOE \ ^ | 0.79 &{ A_{s i} = OE \ ^ | @4 @ 145 $h_A =$ mm Øætd¦ÁÓ^¦>&\•ÉÁcææÉÁÞčc@4@ 1.00 OF, \^\a): æ@AÓE, \^\aà• cê} å^ Bereich m n S_r zul s_r St zul st [cm] [-] [-] [cm] [cm] [cm] [cm]

16.5

Durchstanzwiderstand

11.0

11.8

 $V_{Rd,sy}$ =

26.0

409.77

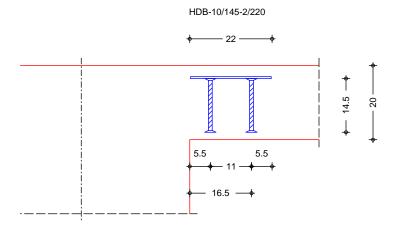
26.7

kΝ

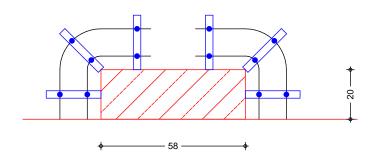
 $\overline{\mathsf{C}}$

Auftrags-Nr.

Position


Seite: 2-145

2023 300

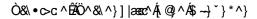

DST-2.1

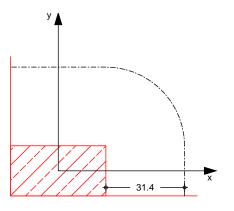
ÙVPËÜPĀÄÛ¢4&\@`ą̃ ÁÛ>å

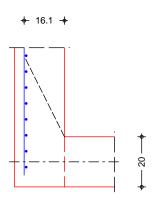
Verlegeplan M 1:10

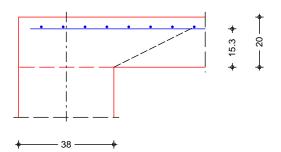
M 1:15

——— ■ ÙVPËÜPÆÄÙœ4&\@?{(AÛ>å


2023 300


DST-2.2


Pos. DST-2.2


GHU\`VYhcb!8ifWtghUbnbUWtkY]g'FUbXYW_ghimY

System M 1:15

Deckenplatte

Dicke vorh. Biegebew. OB&@eaai•cê}å^ { acc|^¦^Áncaaaã&@Ápັc@k@

20.00 cm 3.35 & EQ 3.90 cm 15.70 cm

Seite: 2-146

Betondeckung

Seite	Expositionsklasse(n)	C _{min,dur}	C _{dev}	Cnom
		[mm]	[mm]	[mm]
oben	XC3	20	15	35
unten	XC1	10	10	20

Ü^&@^&\•c>c ^

P4@ Üæ)åæà•œê}å^

Breite

Belastungen

Zusammenstellungen

aus Pos. 'D-2.2', Ort 'DS-1' (Seite 2-68)

Kombinationen

Kombinationsbildung nach DIN EN 1990 Darstellung der mai gebenden Kombinationen

•œ̂} åð t͡ð[¦>à^¦* È

Ek (* *EW) 1 1.00*Ed.1

Bemessung (GZT)

nach DIN EN 1992-1-1, 6.4 und DIBt Ò`¦[] êã &@ Á/^&@ ÉZ` |æ • ` } * ÁÒVŒË ŒE Í I ÁÇ ŒF Ï D

ÙVPËJPÆÄJC4& @ã ÁJ>å 2023 300 DST-2.2 Seite: 2-147 Beton C 30/37 Betonstahl B 500SA Bemessungswert Querkraft $V_{Ed} =$ 69.70 kΝ Šæ•c^¦@4@{}*•~æàq[¦Á⇒¦Áæĕ•{ãncãt^ÁSæ•c^} nach 6.4.3(6), Bild 6.21N 1.50 ¦^å`: a^\c^\ÁŠæ•c^\@4@}*•~aàq[¦Á>¦Á`out nach ETA-12/0454 (12/17), GI(A5) 1.23 = red char. Vorwert $C_{\mathsf{Rk},\mathsf{c}}$ 0.18 = Beiwert Einfluss Plattendicke 2.00 k = { ã d d B S ê } * • à ^ , ^ @ ` } * • * ¦ æ å 0.21 % ı = erf. Breite Durchstanzbew. 3.50 cm I_{s,req} = Breite Bereich Durchstanzbew. 16.50 ls = cm Nachweis Rund-Abst. u V_{Rd,c} $v_{\text{Rd},\text{max}}$ VEd **Ž**Þ₽(á schnitt [cm] [m]ŽDÐ0 { á **Ž**Þ-₽(á U_{crit} 31.4 1.07 0.620 0.542 0.620 m 1.063 Uout 27.1 1.00 0.542 0.542 : ` | ÁÛ3&@ | • c^ || ` } * Á&^ | ÁÛ ` ^ | \ | æcdæt -ê @# \ ^āc Mindestbewehrung Platten-NCI Zu 6.4.5 Rich m_{Ed} min as anzusetzende seite tung [kNm/m] Ž&√ Ð)á **Breite** oben Х 0.500 34.85 5.24 je m Breite У 0.500 34.85 4.95 je m Breite je m Breite unten Х 0.500 34.85 5.24 0.500 34.85 4.95 je m Breite У |ê| * • Áå^• Á¦^ã\} ÁÚ|ææ^} ¦æ) å^• Randbewehrung 6.4.2(5) POŠØÒÞÁPÖÓÁÖ>à^||^ã c^Á; æ&@ÁÖÓÓc Bewehrungswahl Ò`¦[]êã&@^Á/^&@;ÈŽ`|æ•`}*ÁÒVOËË GEEIÍIÁ(FGEFÏD **HDB** Systemelemente *^ ê@c 4 * HDB-10/145-2/220 (55/110/55) Ankerdurchmesser $d_A =$ 10 mm Û `^{• &@; 㜕 +ê &@ Áx^ ÁOE; \^{ A_{s i} 0.79 &{ OE \ ^ | @4 @^ $h_A =$ 145 mm Øæld;¦ÁÓ^¦>&\•ÉÁncædÉAp~co@4@ 1.00 OF \^\a): æ@EÁOF \^\a)• cê} å^ **Bereich** zul s_r zul st m n Sr St [-] [-] [cm] [cm] [cm] [cm] [cm]

16.5

Durchstanzwiderstand

11.0

11.8

 $V_{Rd,sy} =$

21.6

273.18

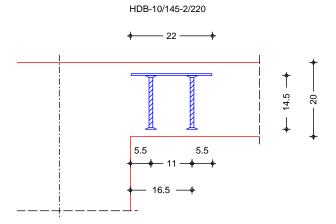
26.7

kΝ

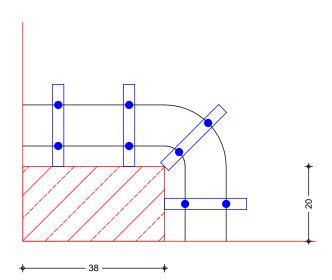
 $\overline{\mathsf{C}}$

Auftrags-Nr.

Position


Seite: 2-148

2023 300


DST-2.2

ÙVPËÜPĀÄÛc4&\@ã ÁÛ>å

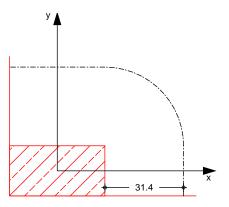
Verlegeplan M 1:10

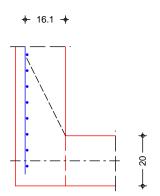
M 1:10

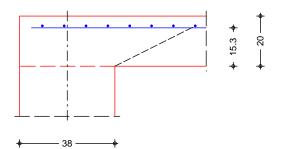
ÙVPËÜPĀÄÛ¢4&\@@ā[ÁÛ>å

2023 300

3 300 DST-2.3


Seite: 2-149


Pos. DST-2.3


GHU\`VYhcb!8ifWtghUbnbUWtkY]g'FUbXYW_ghimY

System M 1:15

Expositionsklasse(n)

Deckenplatte

Betondeckung

		[mm]	[mm]	[mm]
oben	XC3	20	15	35
unten	XC1	10	10	20
Breite		C _X =	38.00	cm

Ü^&@^&\•c>c^

Seite

$$c_x = 38.00$$
 cm $c_y = 20.00$ cm $d_x / d_y = 0.00$ / 0.00 cm

Cmin,dur

Cdev

Cnom

Belastungen

Einwirkung	$F_z[kN]$	$M_x[kNm]$	$M_y[kNm]$
Ed.1	111.74	0.00	0.00

Zusammenstellungen

Kombinationen

Kombinationsbildung nach DIN EN 1990 Darstellung der mai gebenden Kombinationen

•œ̂} åð t͡ð[¦>à^¦* È

Bemessung (GZT)

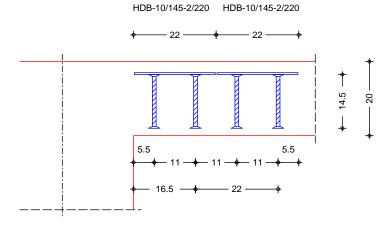
2023 300 DST-2.3 ÙVPËÜPĀĀŪd&\@ā ÂJ>å Seite: 2-150

2023 300	DST-2.3 UVPEUPARAUGH& @ a AU>a Seite:				e: 2-150				
	Beton C 30	/37					Be	tonstahl	B 500SA
		gswert Querkra		Š⇔a∧\		V_{Ed}	=	111.74	kN
	nach 6.4.3(ærev'¦@4@}*•-æàq'¦Á⊳¦Ásĕ•{ãncã^ÁSærev} ach 6.4.3(6), Bild 6.21N °å`:ãn¦ev¦ÁSærev¦@4@}*•-æàq'¦Á⊳¦Á′ _{out} nach					=	1.50	-
		54 (12/17), GI(Tout Hac	<i>,</i> 11	red	=	1.10	-
	char. Vorwe		,			$C_{Rk,c}$		0.18	-
	Beiwert Ein	fluss Plattendi	icke				=	2.00	-
	{ãad, ÈAŠê}*•	à^, ^@`}*•*	¦æå			ı	=	0.21	%
	erf. Breite D	Ourchstanzbev	٧.			$I_{s,req}$	=	31.45	cm
	Breite Bere	ich Durchstan	zbew.			Is	=	38.50	cm
Nachweis	Rund-	Abst.	u	¥	VEd			Rd,c	VRd,max
	schnitt	[cm]	[m]	4	>-E() { á		Z Þ₽ {		Z Þ-₽(á
	U _{crit}	31.4	1.07		0.995 0.995		0.5	42	1.062
	U _{out}	55.0	1.44		0.542	1111	0.5	:42	1.063
	Oout	33.0	1.44		0.542		0.5	42	
Mindestbewehrung	:*¦ÁÛ&&@^{•	ơ\ `}*Á&^¦ÁÛ`	^ \ æedæ*	-ê@a*∖^a	ãc				
NCI Zu 6.4.5	Platten-	Rich-		1	m_{Ed}	min		anzus	setzende
	seite	tung	[-]	[kNm		Ž8{ €			Breite
	oben	Х	0.500		5.87		86		m Breite
		У	0.500		5.87	8.		-	m Breite
	unten	Χ	0.500		5.87	8.		•	m Breite
		У	0.500	55	5.87	8.3	31	je	m Breite
Randbewehrung 6.4.2(5)	ê}*•Æå^•Á¦ Ùơ^&\à>*^	-^ ã ^} ÁÚ æec^}¦a ∕‱‱	a)å^• kk _w m 100	mm					
Bewehrungswahl		ÖÓÁÖ>à^ ^ãœ ®ÁV^&@ ÉÆ* æ melemente			lÁÇFŒEF	ΪD			
*^, ê@c	innen:				1 * H	DR-10	/1/15-1	2/220 (55	/110/55)
, ७ ७०	æi^}K								/110/55) /110/55)
	Ankerdurch	messer				d_{A}	=	10	mm
	Û `^¦∙&@)ãn	o•,∔ê&@^Áxô^ÁOE;∖	^{			A_{s_i}	=	0.79	&{
	O∄ / ^¦@4@^	., .,				h_A	=	145	mm
	Øeet ({ AO^ >	-&• ÉAicæedÉA⊃`c	:@4@				=	1.00	-
OF;\^¦æ);æ@PÁOF;\^¦æà•cê}	å^ Bereich	I	m	n	Sr	zul		St	zul s _t
		[cm]	<u>[-]</u>	[-]	[cm]		m]	[cm]	[cm]
	C	16.5	4	2	11.0		.8	21.6	26.7
	D	22.0	4	2	11.0	11	.8	38.9	55.0
	Durchstanz	widerstand			,	$V_{Rd,sy}$	=	273.18	kN

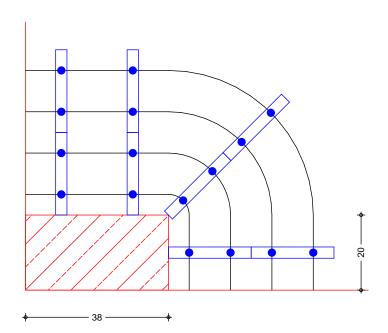
THE VIEWEL VELOCIAL EXCEL - COPY LIGHT EXCEL - THE ALCO COLLWAY CHIEFT

Auftrags-Nr.

Position


Seite: 2-151

2023 300


DST-2.3

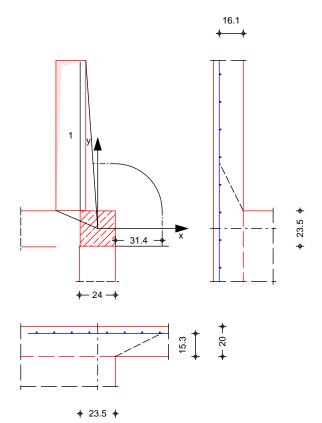
ÙVPËÜPĀÄÛc4&\@ã ÁÛ>å

Verlegeplan M 1:10

M 1:10

2023 300

DST-2.4


ÙVPËÜPÆÄÛ¢4&\@^ãį ÁÛ>å

Pos. DST-2.4

Stahlbeton-Durchstanznachweis Wandecke

System M 1:25

Yæ}åā}}^}^&\^ÊÖ^&\^}]|ææc^Á(ãoÁ\$~-}`}*^}

Deckenplatte

Dicke vorh. Biegebew. OE&@ianana• de}å^ {ãcd^\^Áncaseãn&@Áp~c@4@

Betondeckung

Expositionsklasse(n)	Cmin,dur	Cdev	Cnom
	[mm]	[mm]	[mm]
XC3	20	15	35
XC1	10	10	20
	XC3	XC3 [mm] 20	[mm] [mm] XC3 20 15

\$ ~} * } * ^}

Nr.	Art	Xs	Уs	d_x	d_y	d	unw.
		[cm]	[cm]	[cm]	[cm]	[cm]	Ž∕á
1	Rechteck	-18.0	62.0	20.0	100.0		62.7

Wand

cm

cm

cm

& E)

Seite: 2-152

Belastungen

Einwirkung	$F_z[kN]$	$M_x[kNm]$	$M_v[kNm]$
Fd 1	122 37	0.00	0.00

Zusammenstellungen

aus Pos. 'D-2.1', Ort 'DS-8' (Seite 2-2)

Kombinationen

Kombinationsbildung nach DIN EN 1990 Darstellung der mai gebenden Kombinationen

Ek (* *EW)

•œ} åã Ð[¦>à^¦* È

1.00*Ed.1

Auftrags-Nr. Position ÙVPËÜPÄÄÛ¢4&\@`ã ÁÛ>å 2023 300 DST-2.4 Seite: 2-153

Bemessung (GZT)

nach DIN EN 1992-1-1, 6.4 und DIBt

Ò`¦[]êã&@Á/^&@,ÈŹĽ|æ•`}*ÁÔVŒËFŒEEÍIÁĢFŒFÏD

Beton C 30/37

Betonstahl B 500SA

V_{Ed}	=	122.37	kN
	=	1.20	-
$C_{Rk,c}$	=	0.18	-
		2.00	-
1	=	0.43	%
$I_{s,req}$	=	59.25	cm
I_s	=	60.50	cm
	C _{Rk,c} k	VEd = CRk,c = k = I = Is,req = Is =	$\begin{array}{cccc} & = & 1.20 \\ C_{Rk,c} & = & 0.18 \\ k & = & 2.00 \\ i & = & 0.43 \\ I_{s,req} & = & 59.25 \end{array}$

Nachweis

Rund-	Abst.	u	VEd	V Rd,c	V Rd,max
schnitt	[cm]	[m]	Ž⊃Đ({á	ŽD-Ð(á	Ž⊃Đ({ á
U _{crit}	31.4	0.88	1.064 >	0.562	
			1.064 m		1.101
U _{out}	82.8	1.73	0.542	0.542	

Mindestbewehrung NCI Zu 6.4.5

: ` | ÁÛ 38,@ \ • e^ || ` } * Á\$ ^ | ÁÛ ` ^ | \ | 2000 at -ê @ ti \ ^ ãc

. 170000	O) / 04 / 10	11100000	C Gar 1 Ga		
Platten-	Rich-		m_{Ed}	min a _s	anzusetzende
seite	tung	[-]	[kNm/m]	Ž&{ Ð()á	Breite
oben	Х	0.125	15.30	2.24	b _y =0.3 l _y
	У	0.125	15.30	2.13	$b_x = 0.3 l_x$
unten	X	0.000	0.00	0.00	-
	У	0.000	0.00	0.00	-

Bewehrungswahl

POBŠØÒÞÁPÖÓÁÖ>à^||^ãrc^Ájæ&®ÄÖÓÓc Ò`¦[]êãr&@ÁV^&@PÁZ`|æ••`}*ÁÖVOÆËFŒHEÍIÁĀFŒHFÏD

HDB Systemelemente

*^, ê@c

innen: æi^}K

4 * HDB-10/145-2/220 (55/110/55) 4 * 2 * HDB-10/145-2/220 (55/110/55)

Ankerdurchmesser	d _A =	10	mm
Û`^¦•&@, ãœ-, ê&@. Á&. ÁOE; \^¦	$A_{s_i} =$	0.79	&{
OF \^\@\@\	h _A =	145	mm
Øeeko[¦ÁÓ^¦>&\•ÉAceeeÉAP`c @4@	=	1.00	-

OF \^\a): æ@EÁOF \^\aà• cê} å^

l	m	n	Sr	zui s _r	St	zui St
[cm]	[-]	[-]	[cm]	[cm]	[cm]	[cm]
16.5	4	2	11.0	11.8	17.6	26.7
44.0	4	4	11.0	11.8	51.8	55.0
	16.5	[cm] [-] 16.5 4	[cm] [-] [-] 16.5 4 2	[cm] [-] [-] [cm] 16.5 4 2 11.0	[cm] [-] [-] [cm] [cm] 16.5 4 2 11.0 11.8	[cm] [-] [-] [cm] [cm] [cm] 16.5 4 2 11.0 11.8 17.6

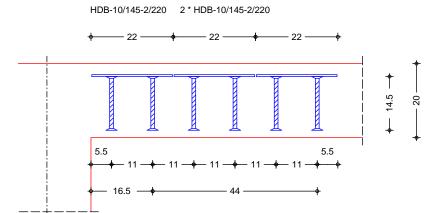
Durchstanzwiderstand

273.18

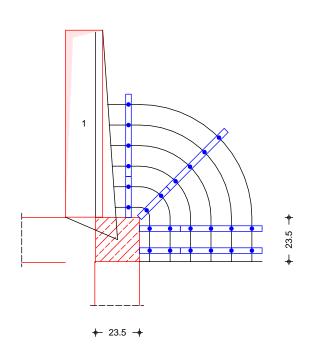
kΝ

Auftrags-Nr.

Position


Seite: 2-154

2023 300

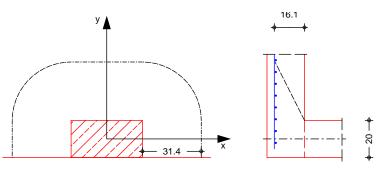

DST-2.4

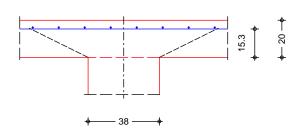
ÙVPËÜPĀÄÛ¢4&\@`ą̃ ÁÛ>å

Verlegeplan M 1:10

M 1:20

2023 300 DST-2.5 ÙVPËÜPĀĀÚc4&\ @ ą ÁÚ>å


Seite: 2-155


Pos. DST-2.5

GHJA `VYhcb!8 i fW ghJbnbUW k Y]g FUbXgh mY

System M 1:20

Üæ)å•o>c^ÉÉÖ^&\^}]|æec^Á;@,^Á\$~}`}*^}

Deckenplatte

Dicke vorh. Biegebew. OB&@ æaa• œê} å^ { acc/\^Árcæaa* &@ Áp~c @4 @

 $a_{sx} / a_{sy} = 3.35$ $d'_x / d'_y = 4.70$

h = 20.00 35 / 3.35 70 / 3.90 d = 15.70 cm

Ð

cm

cm

Betondeckung

Seite	Expositionsklasse(n)	Cmin,dur	Cdev	Cnom
	•	[mm]	[mm]	[mm]
oben	XC3	20	15	35
unten	XC1	10	10	20
Breite		c _x =	38.00	cm

Ü^&@^&\•c>c ^

P4@ Abstand zum freien Rand

Belastungen

 $\begin{array}{c|cccc} \underline{Einwirkung} & F_z[kN] & M_x[kNm] & M_y[kNm] \\ \hline Ed.1 & 147.31 & 0.00 & 0.00 \\ \end{array}$

Zusammenstellungen

aus Pos. 'D-2.2', Ort 'DS-6' (Seite 2-68)

Kombinationen

Kombinationsbildung nach DIN EN 1990 Darstellung der mai gebenden Kombinationen

•œ} åã Ð;[¦>à^¦*È

Ek (* *EW) 1 1.00*Ed.1

Bemessung (GZT)

nach DIN EN 1992-1-1, 6.4 und DIBt Ò '[] êã &@ Á/^ &@ ÉZ ' |æ• * } * ÁÖVOŒ Œ Í I ÁÇ Œ Î D

Beton C 30/37

Betonstahl B 500SA

Position Auftrags-Nr. 2023 300 DST-2.5 ÙVPËÜPÆÄÙ¢4&\@`ā ÁÙ>å Seite: 2-156 Bemessungswert Querkraft $V_{Ed} =$ 147.31 kN Šæec^¦@4@[¯]}*•~ædq[¦Á⇒¦Áæĕ•{ãncat^Á§æec^} nach 6.4.3(6), Bild 6.21N 1.40 | '^a`: a\'c'\'Ásæc'\@4@} * • -æt q | Á>| Á out nach ETA-12/0454 (12/17), GI(A5) 1.11 red char. Vorwert C_{Rk,c} 0.18 Beiwert Einfluss Plattendicke k = 2.00 { ã d ĐŠể} *•à^, ^@`} *•*¦æå 0.21 % erf. Breite Durchstanzbew. 12.95 cm I_{s,req} Breite Bereich Durchstanzbew. 16.50 ls cm **Nachweis** Rund-Abst. u VEd VRd,c VRd,max schnitt [m]ŽÞÐ) { á Ž>Ð(á **Ž**Þ₽){ á [cm] 0.744 Ucrit 31.4 0.542 1.77 1.063 0.744 m Uout 36.5 1.93 0.542 0.542 : `¦ÁÛ&&@^¦•o^||`}*Á&^¦ÁÛ`^¦\¦æadæ*-ê@#`\^ão Mindestbewehrung NCI Zu 6.4.5 Platten-Richanzusetzende min as m_{Ed} seite Ž&{ Đ() á tung [kNm/m] **Breite** 0.250 oben 36.83 5.55 $b_y = 0.15 I_y$ Х 0.125 18.41 2.57 je m Breite У 0.000 0.00 0.00 unten Х 0.125 18.41 2.57 je m Breite У Kollapsbewehrung NCI Zu zur Vermeidung fortschreitenden Versagens ist im Bereich der 9.4.1(3) Šæ•o^āj|^āc`}*•~|ê&@^Áaa):`[¦å}^} Bemessungsw. Querkraft (F=1.0) $V_{Ed} =$ 105.22 kΝ min. untere Bewehrung min A_{su} = 2.10 &{ |ê| * • Áå^• Á¦^ã\} ÁÚ|æ@^} ¦æ} å^• Randbewehrung 6.4.2(5) POŠØÒÞÁPÖÓÁÖ>à^||^ã c^Á æ&@ÁÖÓÓc Bewehrungswahl Ò`¦[]êã&@^Á/^&@;ÈŽ`|æ••`}*ÁÒVOËË GEEIÍIÁQFGEFÏD **HDB** Systemelemente *^, ê@c 6 * HDB-10/145-2/220 (55/110/55) Ankerdurchmesser $d_A =$ 10 mm Û ^ | • &@ 㜕 + ê &@ Á& ÁOE \ ^ | 0.79 &{ A_{s i} = OE \ ^ | @4 @ 145 $h_A =$ mm Øætd¦ÁÓ^¦>&\•ÉÁcææÉÁÞčc@4@ 1.00 OF, \^\a): æ@AÓE, \^\aà• cê} å^ Bereich m n S_r zul s_r St zul st [cm] [-] [-] [cm] [cm] [cm] [cm] $\overline{\mathsf{C}}$ 16.5 11.0 11.8 21.6 26.7

kΝ

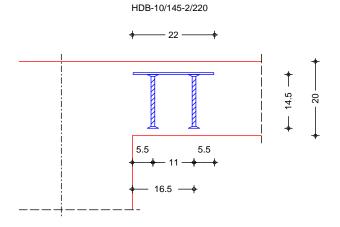
409.77

 $V_{Rd,sy} =$

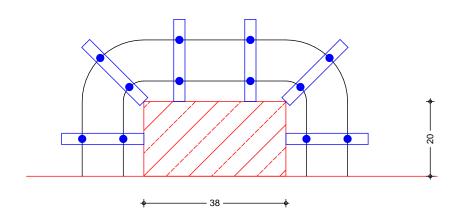
Durchstanzwiderstand

Auftrags-Nr.

Position


Seite: 2-157

2023 300


DST-2.5

ÙVPËÜPĀÄÛc4&\@ã ÁÛ>å

Verlegeplan M 1:10

M 1:10

Seite: 2-158

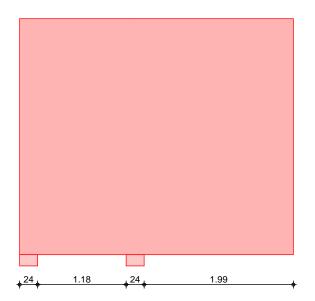
2023 300

WT-2.1-1

ÙVPËÜPĀÄÛc4&\@ã ÁÛ>å

Pos. WT-2.1-1

K UbXUffj[Yf 'Hf} [Yf


System

Yæ)åædæð*^¦ÁV¦ê*^¦Ájæ&@ÁÖΦÞÁÐÞÁFJJŒËËËÆP^æÂiHF

M 1:50

M 1:50

Abmessungen Mat./Querschnitt

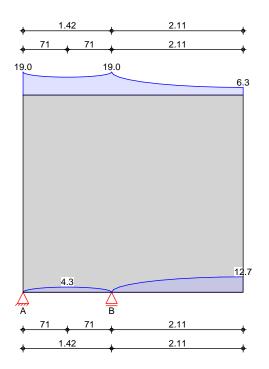
Feld	b	h		Material	h/l
	[cm]	[m]	[m]		[-]
Feld 1	24.0	3.16	1.42	C 25/30	2.23
Krag.r.	24.0	3.16	2.11	C 25/30	1.50
Διıfl		Δrt		2	+

Auflager

Aufl.	Art	а	t
		[cm]	[cm]
Aufl.A	direkt	24.0	24.0
Aufl.B	direkt	24.0	24.0

Auftrags-Nr.

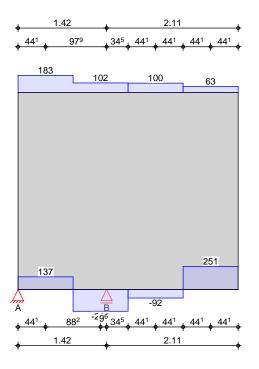
martens+puller
Ingenieurgesellschaft mbH


ÙVPËPÆĴØ4& @ ą ÂJ>å

Seite: 2-159

2023 300 WT-2.1-1

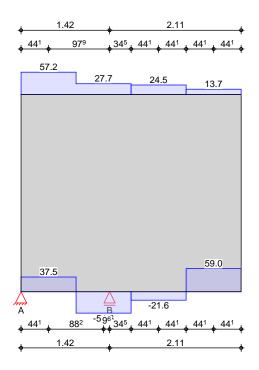
Position


Belastungen Gk (Eigenl.)

Eigenlast

161 DAISD HEIT 631		
Kommentar	gesamt	unten, max
	[kN/m]	[kN/m]
Eigengewicht	18.96	4.26
Eigengewicht	18.96	12.66
	Kommentar Eigengewicht	Kommentar gesamt [kN/m] Eigengewicht 18.96

Gk


Auftrags-Nr.	Position

2023 300 WT-2.1-1 ÙVPËÜPĀĀŪ¢4&\@ā ÂÛ>å Seite: 2-160

Trapezlasten	Nr.	Feld	Angriff	a [m]	s [m]	qı [kN/m]	q _r [kN/m]
	(a) 1	Feld 1	unten	0.00	0.88	137.31	137.31
	(a) 2	Feld 1	unten	0.88	0.88	-235.99	-235.99
	(a) 3	Krag.r.	unten	0.34	0.88	-92.35	-92.35
	(a) 4	Krag.r.	unten	1.23	0.88	250.65	250.65
	(a) 5	Feld 1	oben	0.00	0.88	183.07	183.07
	(a) 6	Feld 1	oben	0.88	0.88	102.06	102.06
	(a) 7	Krag.r.	oben	0.34	0.88	100.00	100.00
	(a) 8	Krag.r.	oben	1.23	0.88	63.16	63.16

(a) aus Pos. 'D-3.1 - WT-1'

Qk.N

_							
	ra	n	`	n	~ 1	\sim	\sim
- 1	ıa	υt	: _	ıa	SI	.CI	ш

Nr.	Feld	Angriff	а	S	qı	q r
			[m]	[m]	[kN/m]	[kN/m]
(a) 1	Feld 1	unten	0.00	0.88	37.54	37.54
(a) 2	Feld 1	unten	0.88	0.88	-54.60	-54.60
(a) 3	Krag.r.	unten	0.34	0.88	-21.57	-21.57
(a) 4	Krag.r.	unten	1.23	0.88	59.02	59.02
(a) 5	Feld 1	oben	0.00	0.88	57.17	57.17
(a) 6	Feld 1	oben	0.88	0.88	27.65	27.65
(a) 7	Krag.r.	oben	0.34	0.88	24.46	24.46
(a) 8	Krag.r.	oben	1.23	0.88	13.72	13.72

(a) aus Pos. 'D-3.1 - WT-1'

Kombinationen

Kombinationsbildung nach DIN EN 1990 Darstellung der mai gebenden Kombinationen

+1.50*Qk.N (1,Kr)

2023 300	WT-2.1-1	ÙVPËÜPĀĀÛ¢4&\@ā[AÛ>å

Ek	(* *EW)		
4	1.35*Gk	+1.50*Qk.N	
		(Kr)	
5	1.00*Gk		
6	1.00*Gk	+1.50*Qk.N	
		(1)	

Grundkombinationen

{ [åBÁOE√ æ*^¦\¦ê~e^	Тур	Aufl.	$F_{z,max}$	EK	$F_{z,min}$	ΕK
			[kN]		[kN]	
	Grundkombin.	Α	-76.25	6	-327.61	4
		В	1130.47	3	673.64	5

Nachweise (GZT)

*^{ EÄÖ (DÞÁÐ ÞÁFJ J GËFËFÉÄÖ CEÙ càÁP ^- «ÁÀ HFÉÄQÙ & @caa& @bù & @e - ^ \ D

Material	Beton C 25/30
	Ò æ•cããnêo•{[åˇ

Betonstahl *B 500SA* Ecm = 31000 N/mm²

Seite: 2-161

Betondeckung	Feld	Ort	Expositionskl.	Cmin	С	Cnom
_				[mm]	[mm]	[mm]
	Feld 1	oben	XC1	10	10	20
		unten	XC1	10	10	20
		seitl.	XC1	10	10	20
		Stirnfl.	XC1	10	10	20
	Krag.r.	oben	XC1	10	10	20
	•	unten	XC1	10	10	20
		seitl.	XC1	10	10	20
		Stirnfl.	XC1	10	10	20

Netzbewehrung	
je Seite	

b	As,erf.
[cm]	Ž&{ Ð() á
24	1.80

Ort	Med	EK	Z	Z	As,erf.
	[kNm]		[m]	[kN]	Ž&{ á
Aufl.B	-838.4	3	0.64	1312.1	30.2

OE ~@6}	*^à^、	^@"	}	*
Strecke				

Fela	von x	DIS X	Aea	ΕK	As,erf.
	[m]	[m]	[kN/m]		Ž&(E()á
Feld 1	0.00	1.42	253.17	2	5.82
Krag.r.	0.00	2.11	461.09	3	10.60

2023 300

WT-2.1-1

ÙVPËÜPÄÄÜ¢4&\@ã ÁÛ>å

Seite: 2-162

Grundkombinationen

Knotennachweise Auflager B

Beton C 25/30

Innenauflager nach Heft 600, Kap. 9.7

Ek	F_{Ed}	, A _c	gew.	, A _s	F_Rd	
	[kN]	Ž&{ á		Ž&{ á	[kN]	[-]
3	1130.47	563.68	Ì < FI	12.32	1129.20	1.00

Keine Verankerung erforderlich

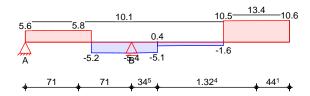
Bewehrungswahl

B 500SA

Netzbewehrung
je Seite

Fela	As,erf.	^^¸e@pc	As,vorh.	
	Ž&{ Ð()á	[mm/cm]	Ž&{ Đ(á	[-]
alle	1.80	<Ì∰€È€	5.03	0.36

Ort	von h [m]	bis h [m]	As,erf. [cm ²]	Zulage	As,vorh.* [cm ²]	[-]
Aufl.B	0.63	1.90	15.07	FEG< FI	15.78	0.95
Aufl.B	1.90	3.16	15.11	FEG< FI	15.78	0.96


* inkl. Netzbewehrung

OE ~@e} * ^ à^, ^ @^` } * Streckenlasten

Feld	von x	bis x	As,erf.	Zulage	As,vorh.*	
	[m]	[m]	[cm ² /m]	Ó>*^	[cm ² /m]	[-]
Feld 1	0.00	1.42	5.82	-/-	10.05	0.58
Krag.r.	0.00	2.11	10.60	<ÌÐH€È€	13.40	0.79
* inkl Notzhowak	arung durch Stock	chagol zu coblic	ni on			

OE ~@e} * ^ à^, ^ @^` } *

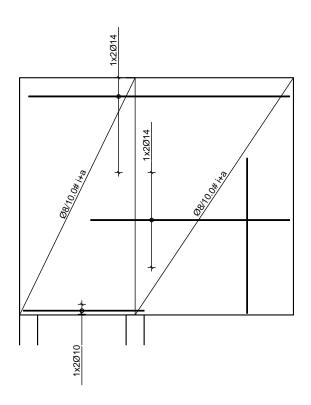
Streckenlasten

ÙVPËÜPĀĀŪc4&\@ā, ÁŪ>å

Seite: 2-163

[-]

1.00


n.OK

OK

OK

Bewehrungsskizze M 1:50

2023 300

Ø8/30

Randeinfassung umlaufend 2Ø12 + Bügel Ø8/15

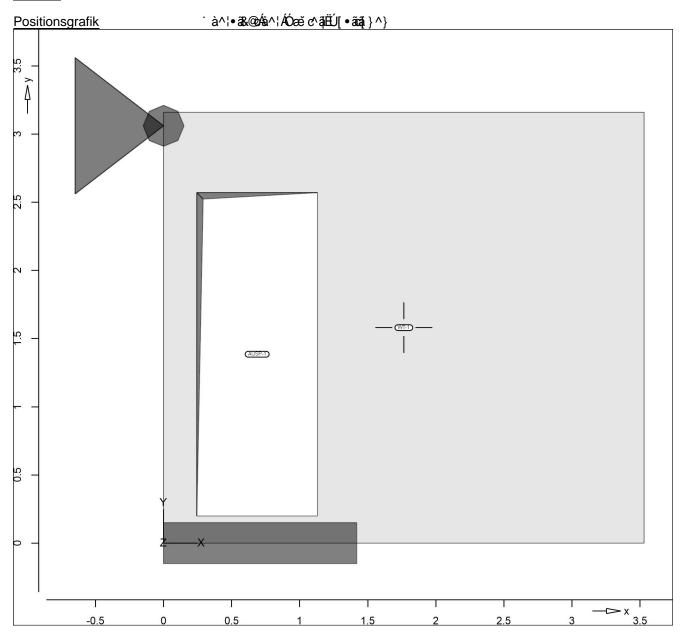
Œ ┤æ*^¦\¦ê-&^	charakteristische Lasten nach Heft 631						
·	EW	Auflager	F _{z,max} [kN]	F _{z,min} [kN]			
	Gk	Auflager A	-158.5	-158.5			
		Auflager B	673.6	673.6			
	Qk.N	Auflager A	54.9	-75.7			
		Auflager B	147.4	0.0			
Zusammenfassung	Zusammenfassung	Zusammenfassung der Nachweise					
Nachweise (GZT)	Nachweise im Grenzzustand der Tragfêhigkeit						
	Nachweis						

Auflagerpressung

Bewehrungswahl

Auflager A

Auflager B


2023 300 WT-2.1-2 ÙVPËÜPÆÄÚ¢4&\@-@-a ÂÚ>å Seite: 2-164

Pos. WT-2.1-2 K UbXUffj[Yf 'Hf} [Yf '! 'GW Y]VYbbUW k Y]gY

System

Positionsplan Positionsplan

Bauteile Bauteil-Positionen

<u>Scheiben</u>

Scheiben-Positionen

<u>Stahlbeton</u> Position Winkel Art

<u>Ž</u>⁄á

WT-1 0.0 iso

 Material
 Dicke

 Šê} * •
 Quer
 [cm]

 C 25/30 Q
 24.0

 B 500SA
 B 500SA

Winkel: iso: Q: Bewehrungsrichtung r isotropes Material Õ^• �^ ð • \ 4¦} ` } * ÁÛ ` æ: ã:

0.20

2.57

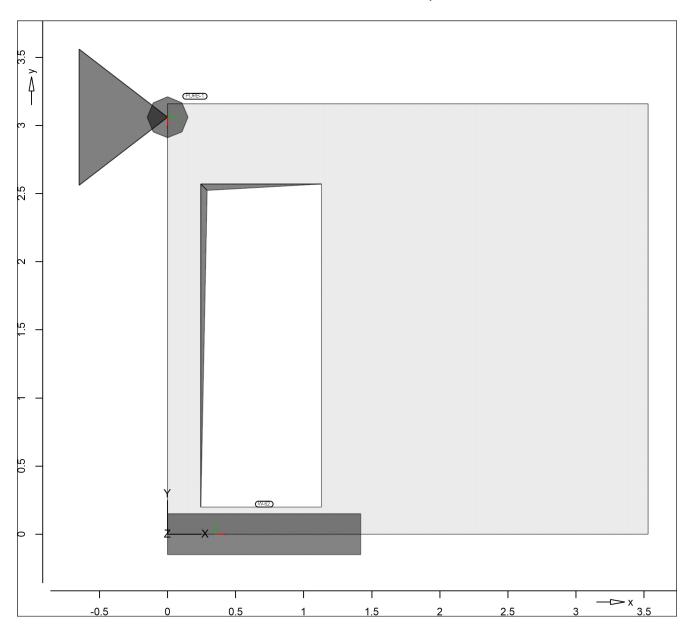
2.57

1.13

1.13

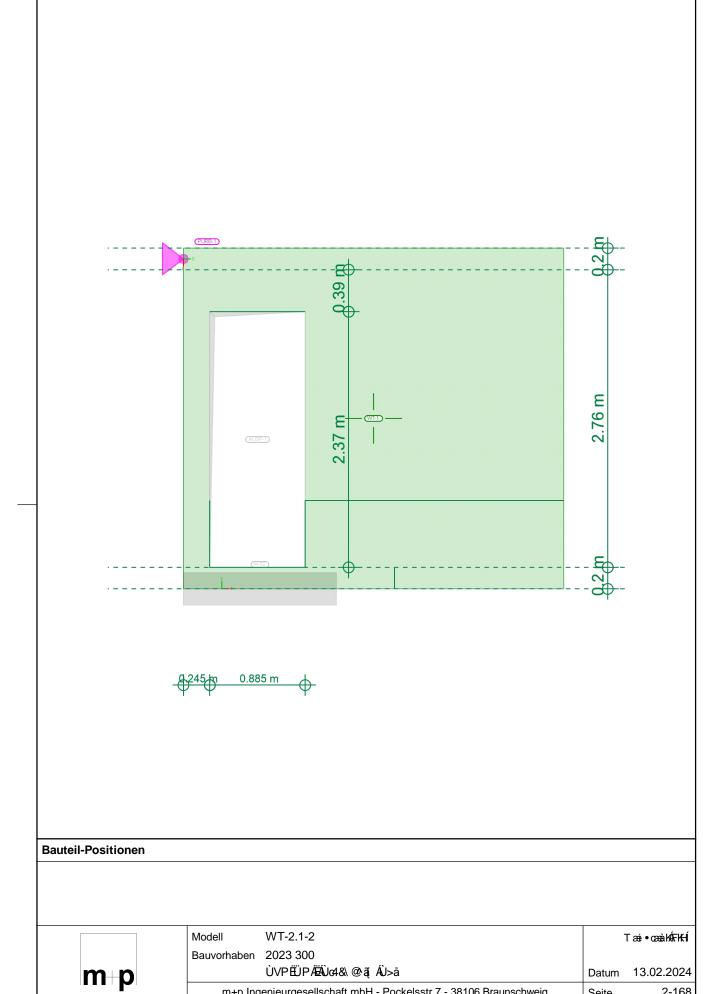
0.25

Auftrags-Nr. Position ÙVPËÜPĀÄÛc4&\@ã ÁÛ>å 2023 300 WT-2.1-2 Seite: 2-165


Expositionsklasse	*^{ êi ÁÖO(ÞÁÖ)ÞÁFJJO莊莊ÉÁVæàLÁA.È								
	Position	Seite	KI	Kommentar					
	WT-1	umlaufend	XC1	d[&\^} A[å^¦Aœ}}åã7	Áæ•				
Koordinaten	Position			Х	у				
				[m]	[m]				
	WT-1			0.00	0.00				
				3.53	0.00				
				3.53	3.16				
				0.00	3.16				
Aussparungen	Position			Х	у				
				[m]	[m]				
	AUSP-1			0.25	0.20				

Auflager Auflager-Positionen

`à^¦•ã&@Ás^¦ÁOE~|æ*^¦ËÚ[•ãā[;}^} **Positionsgrafik**


2023 300 WT-2.1-2 ÙVPËUPÄÄJv4&\@ã ÁJ>å Seite: 2-166

<u>Punktlager</u>	Punktlager-Po	sitionen					
	Position		K _{T,r}		K _{T,s}		K _{R,t}
	PURB-1	+/-	[kN/m] 30000000	+/-	[kN/m] 30000000		[kNm/rad] frei
Koordinaten	Position				Ž⊵á	x [m]	y [m]
	PURB-1			-9	0.00	0.00	3.06
<u>Linienlager</u>	Linienlager-Po	sitionen					
lokal	W-62		K _{T,r} [kN/m/m]	. /	K _{T,s} [kN/m/m]		K _{R,t} [kNm/rad/m]
	vv-6∠	+/-	fest	+/-	798464		frei

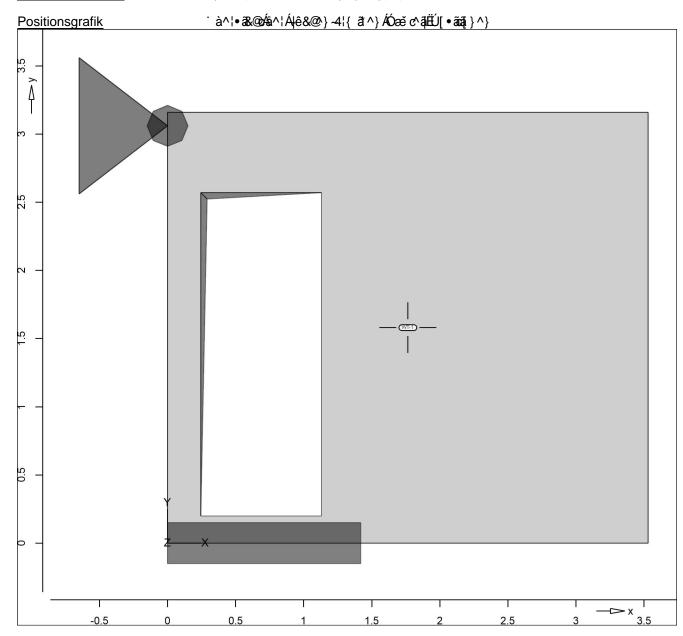
Auftrags-Nr.	Position	Ingenieurgesell	schaft mbH		
2023 300	WT-2.1-2	ÙVPËÜPÄÄĴG4&\@ā, ÁĴ	>å	S	Seite: 2-167
<u>Koordinaten</u>	Position			x [m]	y [m]
	W-62			0.00 1.42	0.00
<u>Material</u>	Materialkenn	werte			
Stahlbeton DIN EN 1992-1-1	Position	Material	Wichte	E _{cm} G	f_{ck}
			ŽtÞÐ() á	ŽD-E0 { á	ŽD-E0{ á
	WT-1	C 25/30 Q	25.00	31000 12900	25.00 2.60
	Q: Õ^•¢^ã,•\4¦}`	`}*ÁÛ`æd:ão			
Betonstahl DIN EN 1992-1-1	Position	Material	Wichte	E _s G	f _{yk} f _{tk,cal}
			ŽÞÐ) á	Ž⊃Đ(á	Ž⊃Đ(á
	WT-1	B 500SA	78.50	200000 77000	500.00 525.00
Auswertung	Geometrisch	e Auswertung der Positionen			
<u>Ø ê&@}</u>	Ø ê&@} -4¦{	ã^ÁÓæĕc^ā́LÉÚ[•ããā[}^}			
Stahlbeton	Position		Dicke [cm]	Ø ê&@ Ž(á	Volumen <u>Ž</u> á 2.17
	WT-1		24.0	9.06	2.17

m+p Ingenieurgesellschaft mbH - Pockelsstr.7 - 38106 Braunschweig

Seite

2-168

Position 2023 300 WT-2.1-2


Seite: 2-169

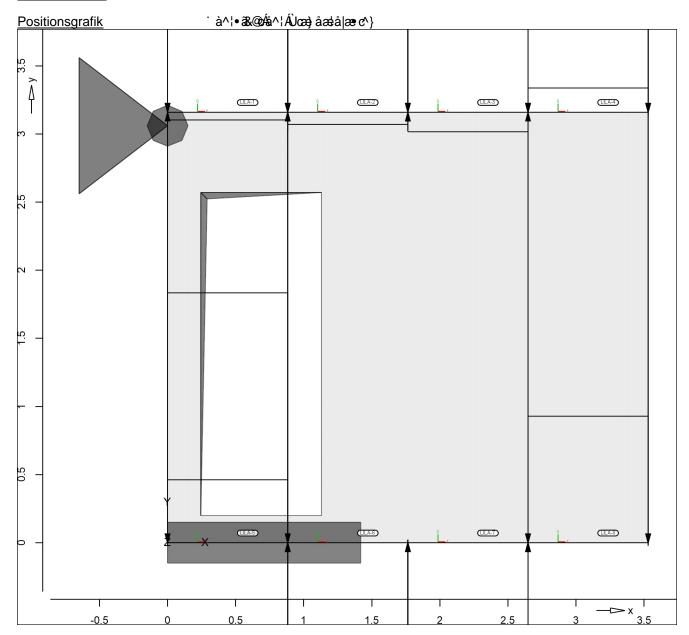
Belastungen

Lastplan Lasten des FE-Modells

<u>Bauteillasten</u> Bauteilbezogene Lasten

Ø|ê&@}~4¦{ ã*^ÁÓæĕ c^ãËÚ[•ããã;}^} Ø|ê&@\}][•ãaa[}^}

Eigengewicht	Position	EW	Lastfall	Art	g
					[kN/m ²]
	WT-1	Gk	LF-1	PGr	6.00
	PGr: Gravitations	last; positive Laste	en wirken senkrecht na	ich unten	


2023 300 WT-2.1-2

ÙVPËÜPÄÄÜ¢4&\@ãį ÁÜ>å

Seite: 2-170

Standardlasten

Standardlasten im FE-Modell

Linienlasten	Position	EW	Lastfall	Art	p _A ,m _A [kN/m]	p _E ,m _E [kNm/m]
	LILA-1	aus D-2.	.1 - WT-1_Abs_1			
		Gk	#WT1 #1 LF-1	pGr	91.71	91.71
		Gk	#WT1 LF-1	pGr	91.36	91.36
		Qk.N	#WT1 #1 (PL-1)-1	pGr	20.80	20.80
		Qk.N	#WT1 LF-2	pGr	-0.35	-0.35
		Qk.N	#WT1 (PL-1)-1	pGr	36.38	36.38
	LILA-2	aus D-2.	.1 - WT-1_Abs_2			
		Gk	#WT1 #1 LF-1	pGr	68.48	68.48
		Gk	#WT1 LF-1	pGr	33.59	33.59
		Qk.N	#WT1 #1 (PL-1)-1	pGr	14.15	14.15
		Qk.N	#WT1 LF-2	pGr	-0.54	-0.54
		Qk.N	#WT1 (PL-1)-1	pGr	13.50	13.50

Seite: 2-171

Auftrags-Nr. Position

WT-2.1-2

2023 300

ÙVPËÜPÄÄÛ¢4&\@ã ÁÛ>å

Position	EW	Lastfall	Art	p _A ,m _A	p _E ,m _E [kNm/m]
LILA-3	aus D-2	1 - WT-1_Abs_3		[KIN/III],	[KINIII/III]
LILITO	Gk	#WT1 #1 LF-1	pGr	72.16	72.16
	Gk	#WT1 LF-1	pGr	27.84	27.84
	Qk.N	#WT1 #1 (PL-1)-1	pGr	13.15	13.15
	Qk.N	#WT1 LF-2	pGr	-0.86	-0.86
	Qk.N	#WT1 (PL-1)-1	pGr	11.31	11.31
LILA-4		1 - WT-1 Abs 4	р С.		
	Gk	#WT1 #1 LF-1	pGr	37.83	37.83
	Gk	#WT1 LF-1	pGr	25.33	25.33
	Qk.N	#WT1 #1 (PL-1)-1	pGr	3.99	3.99
	Qk.N	#WT1 LF-2	pGr	1.06	1.06
	Qk.N	#WT1 (PL-1)-1	pGr	9.73	9.73
LILA-5	aus D-3.	1 - WT-1_Abs_1	•		
	Gk	LF-1	pGr	61.93	61.93
	Gk	#1 gk	pGr	75.37	75.37
	Qk.N	LF-2	pGr	2.78	2.78
	Qk.N	(PL-1)-1	pGr	23.75	23.75
	Qk.N	#1 qk.n	pGr	11.01	11.01
LILA-6	aus D-3.	1 - WT-1_Abs_2			
	Gk	LF-1	pGr	-55.62	-55.62
	Gk	#1 gk	pGr	-180.38	-180.38
	Qk.N	LF-2	pGr	-4.87	-4.87
	Qk.N	(PL-1)-1	pGr	-20.60	-20.60
	Qk.N	#1 qk.n	pGr	-29.14	-29.14
LILA-7		1 - WT-1_Abs_3			
	Gk	LF-1	pGr	-19.57	-19.57
	Gk	#1 gk	pGr	-72.78	-72.78
	Qk.N	LF-2	pGr	-2.84	-2.84
	Qk.N	(PL-1)-1	pGr	-6.90	-6.90
	Qk.N	#1 qk.n	pGr	-11.83	-11.83
LILA-8		1 - WT-1_Abs_4			
	Gk	LF-1	pGr	63.22	63.22
	Gk	#1 gk	pGr	187.43	187.43
	Qk.N	LF-2	pGr	5.58	5.58
	Qk.N	(PL-1)-1	pGr	23.40	23.40
	Qk.N	#1 qk.n	pGr	30.04	30.04
pGr: Gravitationslast; pc	sitive Lasten v	wirken senkrecht nach unten	1		

Einwirkungen

Šæ cê||^

DIN EN 1990 Einwirkungen nach DIN EN 1990

S>:\^	Beschreibung
	Typisierung
Gk	Eigenlasten
	Ùœ^} å at ^ ÁÒaj _ al\ ` } * ^}
Qk.N	Nutzlasten
	Sæe^*[¦a?Á02ÆÄY[@,ËÄ(}åÁ0E-^}c@eqo•¦ê`{^

Šærgê||^Á\}åÁs^\^}ÁZ*[¦å}*)*Á`Ás^}ÁÒā;ā\`}*^}

Gk LF-1, #1|gk, #WT1|#1|LF-1, #WT1|LF-1 Qk.N LF-2, (PL-1)-1, #1|qk.n, #WT1|#1|(PL-1)-1, #WT1|LF-2, #WT1|(PL-1)-1

Bemessung (GZT+GZG)

Auftrags-Nr. Position ÙVPËJPÆÄJC4& @ã ÁJ>å 2023 300 WT-2.1-2 Seite: 2-172

Biegung S-As-erf-Iso Scheibenbemessung nach DIN EN 1992-1-1

Ó^{ ^••`} * Á>¦ÁÛ&@ãa^ÁQÙæ@@à^{{}} DÁY VËF WT-1

Scheibenbemessung nach DIN EN 1992-1-1

(je Scheibenseite)

Mat./Querschnitt

Beton C 25/30, Betonstahl B 500SA

Õ^• c^ã,•\4¦} `} * ÁÛ`æ: ãc Dicke konstant h = 24.00 cm

*^{ êi ÁÖ OÞÁÖÞÁFJJ GËFËFÉVæà ÉÁ ÈF Expositionsklasse

> Position Seite ΚI Kommentar

WT-1 umlaufend XC1 d[&\^} A\ a^\A\ ce\} aa A\ æ•

Bewehrung Vorgaben zur Bewehrungsdefinition

Ó^{ ^••`}*•¸ã,\^|ÁÁ,ÊÐÁMÁÆÁAÁJ€Á>

Betondeckung 10 / c_{min} D &def = 10 mm mm

20 C_{nom} =

Grundbewehrung Bewehrung je Scheibenseite

Tænc^ÉAÙcêà^ $a_{\text{sg,s}}$ $a_{\text{sg,r}}$ < Ž[{ aB9Ž8{ á ₽)á ₽)á 5.03

5.03

nach DIN EN 1992-1-1 <u>Nachweisparameter</u>

Tājå^•cà^, ^@`}*ÁÇJĒĖĐDĄ́`¦å^Áà^!>&\•a&@ātcÈ

Tæi*^à^}å^ÁS[{àãjæaãj}^}Ájæ&@ÄÖOÞÁÖÞÁFJJ€ Kombinationen

> Einwirkungsname Ew

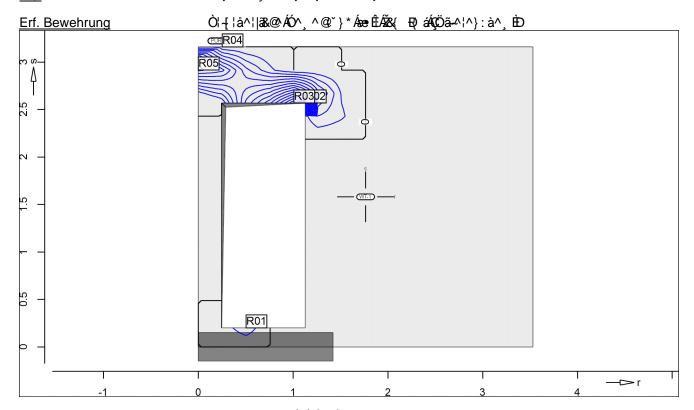
Lastkombinationsnummer Lkn

c[| @ | | • & @ } a^Ac^| ê } a^| | a& @ AOa _ a\ ` } *

Öðl ÁÓ v ð ð ð * Á ð : ^|} ^ ¦ Á ð e cê|| Áð } ^ ; @ d Áeiner Einwirkung wird mit diesem

Ausgabeformat nicht dokumentiert.

Ew Gk Qk.N Lkn Grundkombination


1-5 1.35 1.50 !

2023 300 WT-2.1-2 ÙVPËUPĀĀŪd& @ ą̃ ÂŪ>å Seite: 2-173

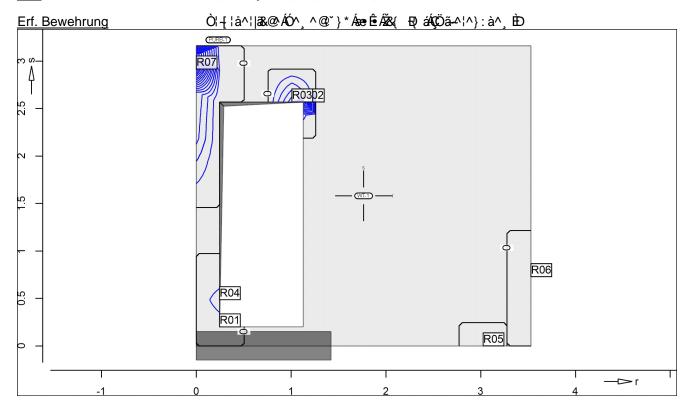
as,r

Šê}*•à^¸^@^`}*Á§ÁEÜæ&@`}*

Q[|ã,ã}•č.^}ÁMÁQÈ€ÉÆ{&{ ₽}

O¦*}åà^			

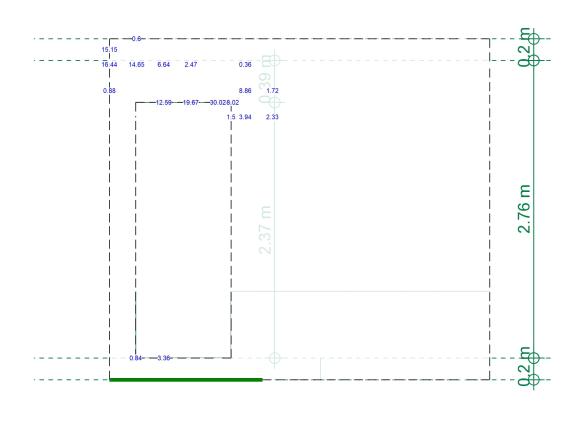
			C. , c.c. ,	,				
Punkt	X	У	Sr,Ed	S _{s,Ed}	Srs,Ed	n_{Ed}	$a_{s,r}$	Lkn
		[m]			ŽD-Ð(á	[kN/m]	Ž&{ Ð()á	
PURB-1			6.22	9.11	-1.46	921.42	15.15	1
R01	0.50	0.20	2.77	0.27	-0.42	383.18	3.36	2
R02	1.13	2.57	11.68	6.49	-4.70	1965.39	38.02	3
R03	1.01	2.57	11.14	3.31	-2.19	1600.15	30.02	3
R04	0.25	3.16	1.00	-1.13	-1.14	256.86	0.60	4
R05	0.00	2 92	6.09	13 12	-2.07	980 32	16 44	5



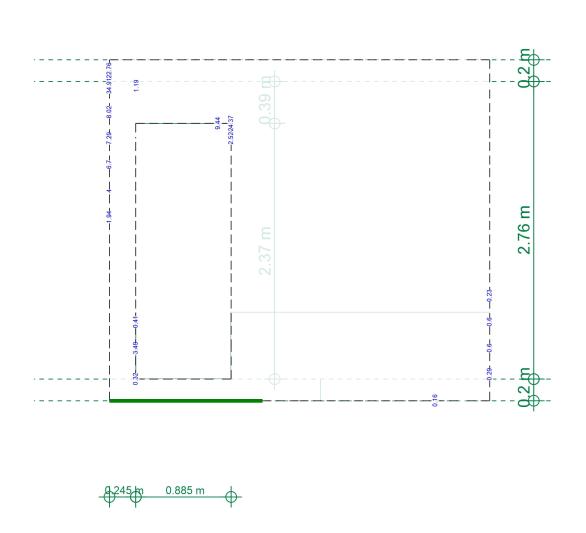
2023 300 WT-2.1-2 Ù

Seite: 2-174

as,s


Šê}*•à^¸^@`}*Á§ÁEÜæ&@`}*

Q[|ã,ã})•č.^}ÁMÁCHÈ€Á&{ Ð


$\tilde{O}|^*$ } $\mathring{a}a^, ^@^*$ } * $\mathring{A}ee$ * \hat{E} $\mathring{A}M$

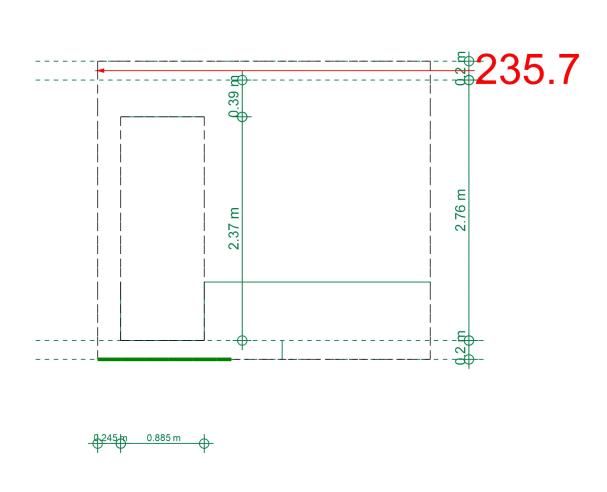
Punkt	X	у	Sr,Ed	S _{s,Ed}	S _{rs,Ed}	n_{Ed}	$a_{s,s}$	Lkn
		[m]			Ž⊃Đ({á	[kN/m]	Ž&{ Ð()á	
PURB-1			6.21	9.11	-1.46	1268.52	22.76	5
R01	0.25	0.20	1.66	1.62	0.41	244.14	0.32	3
R02	1.13	2.57	11.68	6.49	-4.70	1342.40	24.37	3
R03	1.01	2.57	11.14	3.31	-2.19	660.78	9.44	3
R04	0.25	0.49	0.46	2.79	-0.45	388.81	3.49	5
R05	3.03	0.00	0.56	1.84	0.13	237.00	0.16	5
R06	3.53	0.73	0.02	2.10	-0.04	257.06	0.60	5
R07	0.00	2.92	6.09	13.12	-2.07	1823.32	34.91	5

: `} WY YbVYa Yggi b[Erforderliche Bewehrung as,erf (Differenzbew.)		
Max = 38.02 (Kn. 7), Min = 0 (Kn. 7), Mi	<n. 1)<="" th=""><th></th><th></th><th></th></n.>			
Beton C 25/30		aus allen Nachweisen		
Bauteildicke h = 24.00 cm		¦ÉÜa&@č}*Áç,≫¦Ánàj^ÁÙ&@iña^}•^ãc^DÁnjÁã&(Ð(á		
	Modell	WT-2.1-2		Tæi•cæàkÁFKHÍ
	Bauvorhaben	2023 300		
m-p		ÙVPËJPÆÄJG4&\@ãį ÁJ>å	Datum	13.02.2024
	m+p Ing	enieurgesellschaft mbH - Pockelsstr.7 - 38106 Braunschweig	Seite	2-175

0.885 m

: `} WY YbVYa Yggi b[Erforderliche Bewehrung as,erf (Differenzbew.)		
Max = 34.91 (Kn. 159), Min =	0 (Kn. 1)			
Grundbewehrung asg = 5.03				
Beton C 25/30		aus allen Nachweisen		
Bauteildicke h = 24.00 cm		•ËÜ&&@č}*Áç>¦Án?aj^AûU&@@aa^}•^ãa^DÁnjAÃ&(Đ(á		
	Modell	WT-2.1-2		Tæi•oæàkÁFKHÍ
	Bauvorhaben	2023 300		
m-p		ÙVPËÜPÆÄÛ¢I&I @•ą̃ ÁÛ>å	Datum	13.02.2024
	m+p Inc	genieurgesellschaft mbH - Pockelsstr.7 - 38106 Braunschweig	Seite	2-176

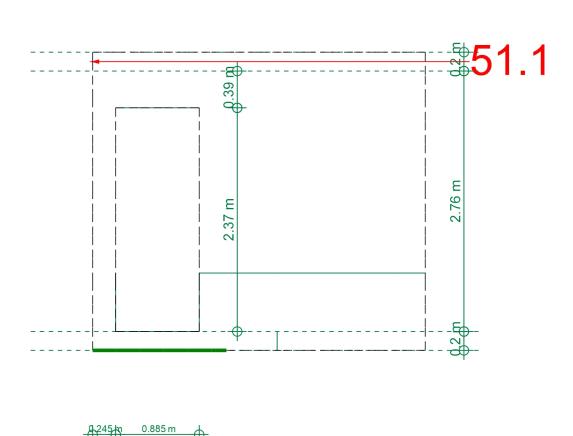
Auftrags-Nr. Position


Seite: 2-177

2023 300

WT-2.1-2

5 i ZU[Yf_f} ZhY



Punktlagerergebnisse		Lagerkraft in s-Richtung in [kN]	
einwirkungsweise dargestellt Maximum aus Einwirkung Gk (I Max = -235.7, Min = -235.7	Eigenlasten)		
	Modell	WT-2.1-2	Tæi•cæàkÁFKK.€

= -235.7, Min = -235.7				
	Modell	WT-2.1-2	-	Γæi∙cæàk/kFK/€
	Bauvorhaben	2023 300		
m-p		ÙVPËÜPÄÄÄJG4&\@ãį ÁĴ>å	Datum	13.02.2024
1111 P	m+p lng	enieurgesellschaft mbH - Pockelsstr.7 - 38106 Braunschweig	Seite	2-178

Punktlagerergebnisse		Lagerkraft in s-Richtung in [kN]	
einwirkungsweise dargestellt Minimum aus Einwirkung Qk.N Max = -51.1, Min = -51.1	l (Nutzlasten)		
	Modell	WT-2.1-2	Tæi•cæàkÁFK(€

	Modell	WT-2.1-2	-	Γæi•cæàk/kFKK.€
	Bauvorhaben	2023 300 ÙVPËÜPÆÜJG4&\@@#\ AÛ>å	Datum	13.02.2024
m-p	m+p Ing	enieurgesellschaft mbH - Pockelsstr.7 - 38106 Braunschweig	Seite	2-179

Auftrags-Nr. Position

2023 300 WT-2.1-2

ÜPÄÄÜd4&\@ãį ÁÜ>å Seite: 2-180

Bewehrungsmenge horizontales Punktlager

F_{Ed} MÁFÊHÍ ÁÁGHÍ ÉLÁ ÞÁEÁFÉLÁÁ Á FÊFÁ ÞÁMÁHUÍ Á Þ

As, erf MÁHUÍÁÞÁÐÁ HÉÍÁÞÐ& ÁMÁJÊFÁ&{

ÎÁ-ÁFIÁ, ãOÁOEs,vor MÁJÊGIÁS{

in viewer version zozz - Oopy ight zoz - Tilb Azo Oottware Official

Seite: 2-181

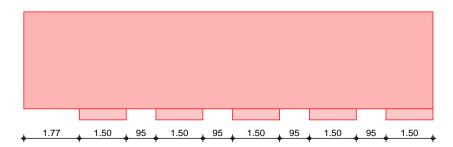
2023 300

WT-2.2-1

ÙVPËÜPÄÄÜ¢4&\@@ã ÁÛ>å

Pos. WT-2.2-1

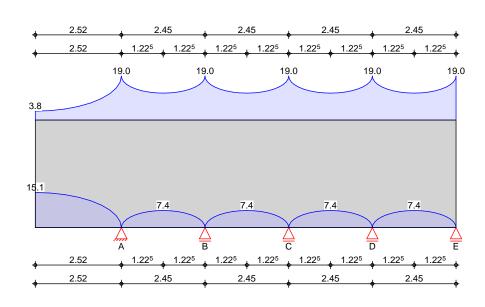
K UbXUffj[Yf 'Hf} [Yf


System

Yan) åædæð ^¦ÁV¦ê*^¦Ájæ&@ÁÖQÞÁÖÞÁFJJGËFËFÉÆP^-AÁÌHF

M 1:120

M 1:120

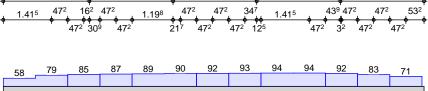

Abmessungen Mat./Querschnitt

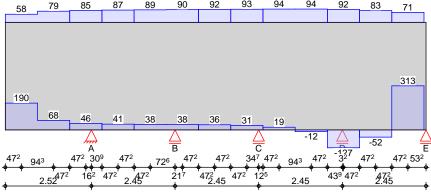
Feld	b	h	- [Material	h/l
	[cm]	[m]	[m]		[-]
Krag.l.	24.0	3.16	2.52	C 25/30	1.25
Feld 1	24.0	3.16	2.45	C 25/30	1.29
Feld 2	24.0	3.16	2.45	C 25/30	1.29
Feld 3	24.0	3.16	2.45	C 25/30	1.29
Feld 4	24.0	3.16	2.45	C 25/30	1.29

Auflager

Auli.	AIL	a	ι
		[cm]	[cm]
Aufl.A	direkt	150.0	24.0
Aufl.B	direkt	150.0	24.0
Aufl.C	direkt	150.0	24.0
Aufl.D	direkt	150.0	24.0
Aufl.E	direkt	150.0	24.0

Belastungen Gk (Eigenl.)



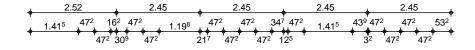

2023 300 WT-2.2-1 ÙVPËUPĀĀŪc4&\@ā, ÂU>å Seite: 2-182

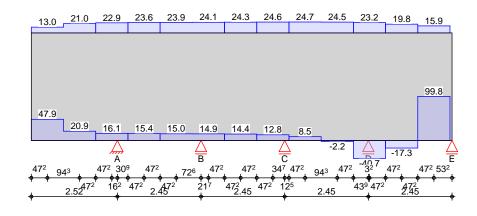
Eigenlast

Aufteilung gemêi	DAfSb Heft 631		
Feld	Kommentar	gesamt	unten, max
		[kN/m]	[kN/m]
Krag.l.	Eigengewicht	18.96	15.12
Feld 1	Eigengewicht	18.96	7.35
Feld 2	Eigengewicht	18.96	7.35
Feld 3	Eigengewicht	18.96	7.35
Feld 4	Eigengewicht	18.96	7.35
Feld 2 Feld 3	Eigengewicht Eigengewicht	18.96 18.96	7.3

Gk

Nr.	Feld	Angriff	а	S	qı	q r
			[m]	[m]	[kN/m]	[kN/m]
(a) 1	Krag.l.	unten	0.00	0.94	190.25	190.25
(a) 2	Krag.l.	unten	0.94	0.94	67.55	67.55
(a) 3	Krag.l.	unten	1.89	0.94	46.19	46.19
(a) 4	Feld 1	unten	0.31	0.94	40.64	40.64
(a) 5	Feld 1	unten	1.25	0.94	38.31	38.31
(a) 6	Feld 1	unten	2.20	0.94	37.56	37.56
(a) 7	Feld 2	unten	0.69	0.94	36.17	36.17
(a) 8	Feld 2	unten	1.63	0.94	31.28	31.28
(a) 9	Feld 3	unten	0.12	0.94	18.70	18.70
(a) 10	Feld 3	unten	1.07	0.94	-12.29	-12.29
_(a) 11	Feld 3	unten	2.01	0.94	-127.50	-127.50
(a) 12	Feld 4	unten	0.50	0.94	-51.65	-51.65
(a) 13	Feld 4	unten	1.45	0.94	313.12	313.12
(a) 14	Krag.l.	oben	0.00	0.94	57.58	57.58
_(a) 15	Krag.l.	oben	0.94	0.94	79.09	79.09
(a) 16	Krag.l.	oben	1.89	0.94	84.50	84.50
(a) 17	Feld 1	oben	0.31	0.94	87.10	87.10
_(a) 18	Feld 1	oben	1.25	0.94	88.77	88.77
(a) 19	Feld 1	oben	2.20	0.94	90.17	90.17
(a) 20	Feld 2	oben	0.69	0.94	91.61	91.61
(a) 21	Feld 2	oben	1.63	0.94	93.05	93.05
(a) 22	Feld 3	oben	0.12	0.94	94.20	94.20
(a) 23	Feld 3	oben	1.07	0.94	94.35	94.35
(a) 24	Feld 3	oben	2.01	0.94	91.73	91.73
(a) 25	Feld 4	oben	0.50	0.94	83.28	83.28
(a) 26	Feld 4	oben	1.45	0.94	70.85	70.85


ÙVPËÜPÄÄÛ¢4&\ @ ą ÂÛ>å Seite: 2-183


2023 300

aus Pos. 'D-3.1 - WT-2'

Qk.N

(a)

	ez		

Nr.	Feld	Angriff	а	s	qı	Qr
			[m]	[m]	[kN/m]	[kN/m]
(a) 1	Krag.l.	unten	0.00	0.94	47.95	47.95
(a) 2	Krag.l.	unten	0.94	0.94	20.89	20.89
(a) 3	Krag.l.	unten	1.89	0.94	16.11	16.11
(a) 4	Feld 1	unten	0.31	0.94	15.37	15.37
(a) 5	Feld 1	unten	1.25	0.94	15.02	15.02
(a) 6	Feld 1	unten	2.20	0.94	14.89	14.89
(a) 7	Feld 2	unten	0.69	0.94	14.43	14.43
(a) 8	Feld 2	unten	1.63	0.94	12.78	12.78
(a) 9	Feld 3	unten	0.12	0.94	8.49	8.49
(a) 10	Feld 3	unten	1.07	0.94	-2.15	-2.15
_(a) 11	Feld 3	unten	2.01	0.94	-40.70	-40.70
(a) 12	Feld 4	unten	0.50	0.94	-17.29	-17.29
_(a) 13	Feld 4	unten	1.45	0.94	99.84	99.84
(a) 14	Krag.l.	oben	0.00	0.94	13.04	13.04
_(a) 15	Krag.l.	oben	0.94	0.94	20.97	20.97
(a) 16	Krag.l.	oben	1.89	0.94	22.87	22.87
(a) 17	Feld 1	oben	0.31	0.94	23.58	23.58
_(a) 18	Feld 1	oben	1.25	0.94	23.89	23.89
(a) 19	Feld 1	oben	2.20	0.94	24.09	24.09
(a) 20	Feld 2	oben	0.69	0.94	24.31	24.31
(a) 21	Feld 2	oben	1.63	0.94	24.55	24.55
(a) 22	Feld 3	oben	0.12	0.94	24.70	24.70
(a) 23	Feld 3	oben	1.07	0.94	24.48	24.48
(a) 24	Feld 3	oben	2.01	0.94	23.23	23.23
(a) 25	Feld 4	oben	0.50	0.94	19.84	19.84
(a) 26	Feld 4	oben	1.45	0.94	15.87	15.87

(a)

aus Pos. 'D-3.1 - WT-2'

Kombinationen

Kombinationsbildung nach DIN EN 1990 Darstellung der mai gebenden Kombinationen

Auftrags-Nr.	Position	r	n-p	martens+puller Ingenieurgesellschaft mbH	
2023 300	WT-2.2-1	Ùν	—— ■ /PËÜPÆÄÛœ	4&\@^ą̃ ÁÙ>å	Seite: 2-184
	Ek	(* *EW)			
•œ̂} åðî Ð̞[¦>à^¦* È	1	1.35*Gk			
	4	1.35*Gk		+1.50*Qk.N	
				(KI,1,3)	
	6	1.35*Gk		+1.50*Qk.N	
				(KI,2,3)	
	7	1.35*Gk		+1.50*Qk.N	
				(KI,2,4)	
	8	1.35*Gk		+1.50*Qk.N	
				(KI,3)	
	10	1.35*Gk		+1.50*Qk.N	
				(1,3,4)	
	15	1.00*Gk		+1.50*Qk.N	
				(KI,2)	
	17	1.00*Gk		+1.50*Qk.N	
				(1,2,4)	
	19	1.00*Gk		+1.50*Qk.N	
				(2,4)	
	21	1.00*Gk		+1.50*Qk.N	
				(1,3)	
	22	1.00*Gk		+1.50*Qk.N	
				(1,4)	
Grundkombinationen	Mome	ent Med			
		-1223			

-1223	-18	37 -123	
A 2.45	B 236 C C	13 <u>D</u> 1.20 ³ 9 ⁸ 1.14 ⁹	214 E 1.67 ⁵ 77 ⁵

Grundkombinationen	Feld	Position [m]	M _{max} [kNm]	EK	M _{min} [kNm]	EK
	Krag.l.	0.00	-0.00	1	-0.00	1
	•	1.26	-206.69	13	-350.22	2
		2.52	-718.07	13	-1223.34	2
	Feld 1	0.00	-718.07	13	-1223.34	2
		1.23	-167.92	21	-374.25	7
		2.45	199.84	8	53.43	17
	Feld 2	-0.00	199.84	8	53.43	17
		0.67	235.50	7	112.04	21
		1.22	195.56	7	92.66	21
		2.45	-90.29	22	-186.92	6
	Feld 3	-0.00	-90.29	22	-186.92	6
		1.20	12.61	21	-29.60	7
		1.22	12.40	21	-29.44	7

2.45

-0.00

1.22

1.67

2.45

-58.48

-58.48

156.62

213.67

0.00

15

-122.79

-122.79

82.73

116.89

0.00

10

10

21

21

21

{ [å ÞÁOE -|æ* ^:\\ ¦ ê -e^

Feld 4

Auftrags-Nr. Position ÙVPËJPÆÄJC4& @ã ÁJ>å 2023 300 WT-2.2-1 Seite: 2-185 Тур Aufl. ΕK $F_{z,min}$ ΕK $F_{z,max}$ [kN] [kN] Grundkombin. 2009.55 1158.57 Α 4 19 В 39.88 17 8 -373.58 С 22 749.63 6 389.38 D 305.56 10 156.57 15 Ε 590.94 327.50 21 7 *^{ EÁO OD ÁO ÞÁFJJ GËFËFÉÁO OEÙ CÁÁP ^~Á HFÉÁQÙ & @ COSE & COSE Nachweise (GZT) Material Beton C 25/30 Betonstahl B 500SA Ò|æ•cããêo•{[åˇ| Ecm = 31000 N/mm² Feld Ort Expositionskl. Betondeckung Cmin С Cnom [mm] [mm] [mm] XC1 Krag.I. 10 20 oben 10 XC1 10 10 20 unten XC1 seitl. 10 10 20 XC1 10 10 Stirnfl. 20 Feld 1 XC1 10 10 oben 20 10 20 unten XC1 10 seitl. XC1 10 10 20 Feld 2 oben XC1 10 10 20 unten XC1 10 10 20 seitl. XC1 10 10 20 Feld 3 oben XC1 10 10 20 unten XC1 10 10 20 seitl. XC1 10 10 20 Feld 4 XC1 10 10 20 oben unten XC1 10 10 20 XC1 10 10 20 seitl. Stirnfl. XC1 10 20 10 As,erf. Netzbewehrung b [cm] Ž&{ Đ() á je Seite 24 1.80 Šê} * •: ` * à^, ^ @ ` } * Ζ Ort ΕK Med Z As,erf. Ž&{á [kN] [kNm] [m]7 Aufl.A 1248.3 28.7 -1223.30.98 Feld 1 199.8 8 0.98 203.9 4.7 Feld 2 235.5 7 0.98 240.3 5.5 Aufl.C -186.9 6 0.98 190.7 4.4 Feld 3 12.6 21 0.98 12.9 0.3 Aufl.D 0.98 125.3 -122.810 2.9 Feld 4 213.7 7 1.10 193.8 4.5 OE ~@e} * ^ a^ (^ @ ~) * Feld Aed ΕK von x bis x As,erf. Streckenlasten Ž&{ Ð()á [kN/m] [m] [m]

0.00

0.00

0.00

0.00

0.00

2.52

2.45

2.45

2.45

2.45

2

2

2

2

3

9.91

2.93

2.76

2.00

14.29

430.82

127.52

120.08

621.22

87.04

Krag.I.

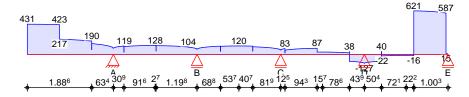
Feld 1

Feld 2

Feld 3

Feld 4

2023 300


WT-2.2-1

ÙVPËÜPÄÄÛ¢4&\@`ã ÁÛ>å

Seite: 2-186

Grundkombinationen

{ æ¢ā[æ|Ásĕ ∻ ĭ@ê}*^}å^ÁŠæ•oÁsĕ•ÁÕ¦ĭ}å\[{àā]ææā[}^}

Knotennachweise Auflager A Beton C 25/30

Innenauflager nach Heft 600, Kap. 9.7

Ek	F_{Ed}	A_c	gew.	A_s	F_Rd	
	[kN]	Ž&{ á	-	Ž&{ á	[kN]	[-]
4	2009.55	3600.00	l<€	0.00	4590.00	0.44

Verankerungsart Beiwert a gerader Stab 1.00

gut

1.00

gut

Verbundbedingung

ÖðÀÁX^¦æ}\^¦*} *ÁY¦-{|* oÁ>¦ÁF€€Ã Á&^¦ÁZ**\¦æ€

i	<	lb	As,erf/As,vorh	lb,erf	lb,vorh
	[mm]	[cm]	[-]	[cm]	[cm]
td1	12	0.0	0.00	0.0	-
td2	12	48.4	0.67	32.6	_

Auflager B

Innenauflager nach Heft 600, Kap. 9.7

Ek	F_{Ed}	Ac	gew.	As	F_Rd	
	[kN]	Ž&{á		Ž&{ á	[kN]	[-]
17	39.88	3600.00	l<€	0.00	4590.00	0.01

Verankerungsart Beiwert a gerader Stab

Nerbundpeqingung

Öâ^Áx^¦æ}\^¦`}*Án¦-[|* αÁ⊳|ÁF€€Ã Áå^¦ÁZ`*\¦æ€

i	<	lb	As,erf/As,vorh	lb,erf	lb,vorh
	[mm]	[cm]	[-]	[cm]	[cm]
td1	12	0.0	3.04	0.0	-
td2	12	0.0	3.58	0.0	-

Auflager C

Innenauflager nach Heft 600, Kap. 9.7

⊨K	⊢Ed	Ac	gew.	As	⊦Rd	
	[kN]	Ž&{ á	_	Ž&{ á	[kN]	[-]
6	749.63	3600.00	l<€	0.00	4590.00	0.16

Verankerungsart Beiwert a gerader Stab 1.00

Verbundbedingung

gut

Verbundbedingung Öa^Áx^¦æ}\^¦`}*Á^¦-{|*Ó⇔¦ÁF€€ÃÁå^¦ÁZ`*\¦æ€

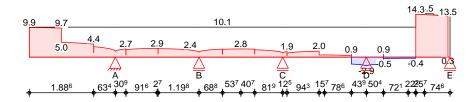
i	<	lь	As,erf/As,vorh	lb,erf	lb,vorh
	[mm]	[cm]	[-]	[cm]	[cm]
td1	12	48.4	0.79	38.4	-
td2	12	48.4	0.06	14.5	-

Auftrags-Nr.	Position	n		artens+puller			
2023 300	WT-2.2-1	ÙV	PËÜPÆÄÛ¢4&\	@aį̃AÛ>å		Seite	: 2-187
Auflager D		flager nach H			_	_	
	Ek 	F _{Ed} [kN]	A _c Ž&{á	gew.	A₅ Ž&{á	F _{Rd} [kN]	[-]
	10	305.56	3600.00	l<€	0.00	4590.00	0.07
	Veranke Beiwert Verbund					gerad	er Stab 1.00 gut
) }\^¦`}*Æ\{	*oÁ>¦ÁF€€ÃÁ&	å^¦ÆZ*\¦æ€			J
	i	< [mm]	lb [cm]	As,erf/As,vorh		b,erf	lb,vorh
	td1	[mm] 12	[cm] 48.4	0.06		cm] 4.5	[cm] -
	td2	12	48.4	0.94		5.6	-
Auflager E	Endaufla	ager nach Hef	t 600, Kap. 9.	.7			
	Ek	F_{Ed}	Ac	gew.	As	F_{Rd}	
	7	[kN] 590.94	Z { á 3600.00	l<€	Ž&(á 0.00	[kN] 4080.00	[-] 0.14
			3600.00	1<€	0.00		
	Veranke Beiwert					gerad	er Stab 1.00
	Verbund	bedingung	, , ~ ,	,			gut
	Oa^AX^¦a	; }\^¦`}*Á [°] ;{{	*oA>¦AF€€A A&	a^¦ÆZ**\¦æ€			
	i	<	lb [a]	As,erf/As,vorh		b,erf	lb,vorh
	td1	[mm] 12	[cm] 48.4	[- <u>]</u> 0.94		cm] 60.4	[cm] 148.0
Bewehrungswahl	B 500SA	1					
Netzbewehrung	Feld		As,erf.	*^	As,vo	rh.	
je Seite	alle	<u>Ž</u> &	{ ₽) á 1.80	[mm/cm] <Ì∰€E€	Ž&{ - Ę 5.0		[-] 0.36
Ŏ^1 * - · * * }							0.00
Šê}*•: `*à^¸ ^@`}*	Ort	von h [m]	bis h [m]	A _{s,erf.} [cm ²]	Zulage	A _{s,vorh.} * [cm²]	[-]
	Aufl.A	0.76	1.96	12.00	-	12.08	0.99
	Aufl.A	1.96	3.16	16.71	ŒG< FI	18.24	0.92
	Feld 1	0.00	0.25	4.69	ŒG< FG	6.99	0.67
	Aufl.B Aufl.B	0.00 0.00	0.00 0.00	0.00 0.00	-	0.00 0.00	-
	Feld 2	0.00	0.00	5.53	- ŒG≺ FG	6.99	0.79
	Aufl.C	0.25	0.98	2.19	-	7.39	0.30
	Aufl.C	0.98	1.72	2.19	FEG< FI	10.47	0.21
	Feld 3	0.00	0.25	0.30	FEG< FG	4.72	0.06
	Aufl.D	0.25	0.98	1.44	-	7.39	0.20
	Aufl.D Feld 4	0.98 0.00	1.72 0.25	1.44 4.46	FEG <fi FEG<fg< td=""><td>10.47 4.72</td><td>0.14 0.94</td></fg<></fi 	10.47 4.72	0.14 0.94
	* inkl. Netzb		0.25	4.40	rus ru	4.72	0.94
OE ~@e} * ^ à^, ^ @* } *	Feld	von x	bis x	As,erf.	Zulage	As,vorh.*	
Streckenlasten	Krag.l.	[m] 0.00	[m] 2.52	[cm ² /m] 9.91	Ó>*^ -/-	[cm ² /m] 10.05	[-] 0.99
	Feld 1	0.00	2.32	2.93	-/- -/-	10.05	0.99
	Feld 2	0.00	2.45	2.76	-/-	10.05	0.23
	Feld 3	0.00	2.45	2.00	-/-	10.05	0.20
	Feld 4	0.00	2.45	14.29	<Ì£090∰	14.52	0.98
	* inkl. Netzb	ewehrung, durch S	teckb>gel zu schlie	ı en			

Auftrags-Nr.

Position

2023 300


WT-2.2-1

ÙVPËÜPÄÄÜ04&\@ã ÁÛ>å

Seite: 2-188

OE~@e}*^à^, ^@^`}*

Streckenlasten

2023 300

martens+puller
Ingenieurgesellschaft mbH

ÙVPËÜPĀÄÛc4&\@ã ÁÛ>å

Seite: 2-189

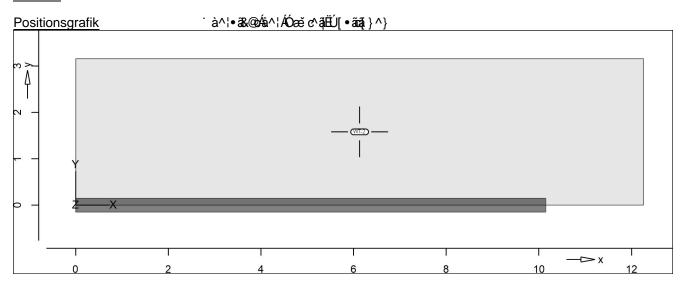
Bewehrungsskizze M 1:80

Œ ∤æ*^¦\¦ê-e^

charakteristische Lasten nach Heft 631

EW	Auflager	$F_{z,max}$	$F_{z,min}$
		[kN]	[kN]
Gk	Auflager A	1167.2	1167.2
	Auflager B	-130.1	-130.1
	Auflager C	418.3	418.3

Auftrags-Nr.	Position	Ingenieurgesellschaft mbH		
2023 300	WT-2.2-1	ÙVPËÜPÄÄĴø4&\@ā, ÂĴ>å	Sei	te: 2-190
	EW	Auflager	F _{z,max} [kN]	F _{z,min} [kN]
	Qk.N	Auflager D Auflager E	179.3 332.5 289.2	179.3 332.5 -5.8
	QN.IV	Auflager A Auflager B Auflager C Auflager D Auflager E	113.4 123.3 42.4 94.7	-131.9 -19.3 -15.1 -3.4
Zusammenfassung	Zusammer	nfassung der Nachweise	•	
Nachweise (GZT)	Nachweise	im Grenzzustand der Tragfêhigkeit		
	Nachweis			[-]
Auflager A	Auflagerpre		OK	0.44
Auflager B Auflager C	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	剩 都¦*}*植4* 銀@	n.OK OK	0.16
Auflager D	Auflagerpre		OK OK	0.10
Auflager E	Auflagerpre		OK	0.14
•	X^{a)\^{``}	} * • ê} * ^	OK	
	Bewehrung	gswahl	OK	


ÄÜPÄÄÜd& @ ą̃ ÁÜ>å Seite: 2-191

Pos. WT-2.2-2 K UbXUffj[Yf 'Hf} [Yf '! 'GW Y]VYbbUW k Y]gY

System

Positionsplan Positionsplan

Bauteile Bauteil-Positionen

Scheiben Scheiben-Positionen

Position Winkel Material Dicke Stahlbeton Art Žγá Šê} * • Quer [cm] WT-2 0.0 C 25/30 Q 24.0 iso B 500SA B 500SA

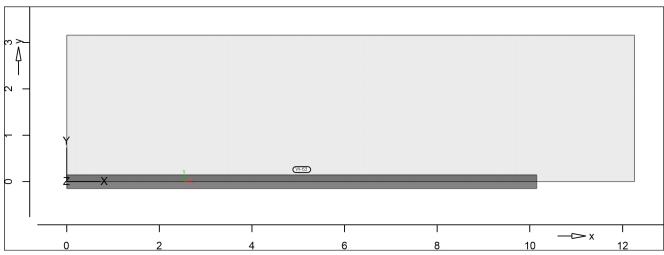
Winkel: Bewehrungsrichtung r iso: isotropes Material Q: Õ^• �� • \ 4{}` * ÅÛ` æ: ã:

Expositionsklasse *^{ êi ÁÖQÞÁÖÞÁFJJQËFËFÉVæàÈÁÈ

Position Seite KI Kommentar
WT-2 umlaufend XC1 d[&\ ^} /\hat{A} \cdot \hat{A} dinaten
 Position
 x
 y

 [m]
 [m]
 [m]

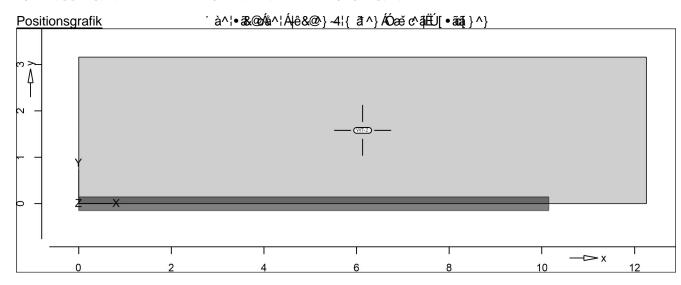
 WT-2
 0.00
 0.00


0.00 0.00 12.26 0.00 12.26 3.16 0.00 3.16

<u>Auflager</u> Auflager-Positionen

ÜPÄÄĴud& @ aį ÁĴu>å Seite: 2-192

<u>Linienlager</u>	Linienlager-Position	onen				
lokal			$K_{T,r}$ [kN/m/m]	[kN/m	K _{T,s} n/m1	K _{R,t} [kNm/rad/m]
	W-63	+/-	fest	+/- 798		frei
Koordinaten	Position				x [m]	y [m]
	W-63				0.00 10.15	0.00
<u>Material</u>	Materialkennwerte	Э				
Stahlbeton DIN EN 1992-1-1	Position		Material	Wichte	E _{cm}	
				ŽÞÐ(á	ŽÞÐ(8	á ŽÞÐ({á
	WT-2		C 25/30 Q	25.00	31000	
	Q: Õ^•¢^⏕\4¦} `}*ÁÛ`	æd:ão			12900	2.60
Betonstahl But Evidence 4 4 4	Position		Material	Wichte	Es	•
DIN EN 1992-1-1				ŽÞÐ)á	G ŽÞÐ(á	
	WT-2		B 500SA		200000	
					77000	525.00
Auswertung	Geometrische Aus	swertung	der Positionen			
<u>Ø ê&@}</u>	Ø ê&@\}~4 {	æĕ ¢^¶#Ü[•	ãã { } ^ }			
Stahlbeton	Position			Dicke [cm]	Ø∣ê&@ Ž(á	Volumen Ž(á
	WT-2			24.0	38.74	9.30

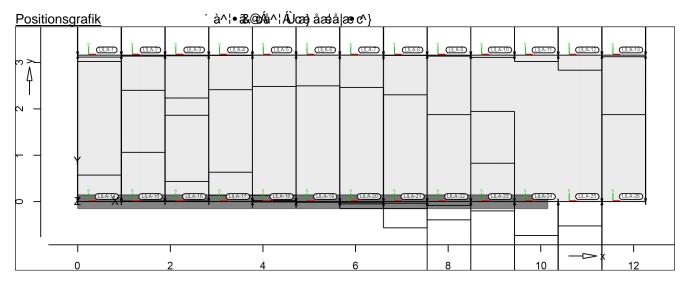

Belastungen

Auftrags-Nr. Position

2023 300 WT-2.2-2 ÙVPËÜPĀĀŪc4&\@ā ÂÛ>å Seite: 2-193

Lastplan Lasten des FE-Modells

<u>Bauteillasten</u> Bauteilbezogene Lasten



Eigengewicht Position EW Lastfall Art [kN/m²]

WT-2 Gk LF-1 PGr 6.00

PGr: Gravitationslast; positive Lasten wirken senkrecht nach unten

<u>Standardlasten</u> Standardlasten im FE-Modell

<u>Linienlasten</u>	Position	EW	Lastfall	Art	p_A, m_A	p _E ,m _E
					[kN/m],[kNm/r	
	LILA-1	aus D-2	.1 - WT-2_Abs_1			
		Gk	#WT1 #1 LF-1	pGr	44.04	44.04
		Gk	#WT1 LF-1	pGr	13.54	13.54
		Qk.N	#WT1 #1 (PL-1)-1	pGr	7.56	7.56
		Qk.N	#WT1 LF-2	pGr	-0.25	-0.25
		Qk.N	#WT1 (PL-1)-1	pGr	5.48	5.48

Position

2023 300 WT-2.2-2 ÙVPËJPÆÄJC4& @ã ÁJ>å

Seite: 2-194 Position EW Lastfall Art p_A, m_A p_E, m_E [kN/m],[kNm/m] LILA-2 aus D-2.1 - WT-2_Abs_2 47.24 47.24 Gk #WT1|#1|LF-1 pGr Gk #WT1|LF-1 31.85 pGr 31.85 Qk.N #WT1|#1|(PL-1)-1 pGr 8.35 8.35 Qk.N #WT1|LF-2 pGr -0.11-0.11Qk.N #WT1|(PL-1)-1 pGr 12.62 12.62 LILA-3 aus D-2.1 - WT-2_Abs_3 48.48 Gk #WT1|#1|LF-1 pGr 48.48 Gk #WT1|LF-1 pGr 36.02 36.02 Qk.N #WT1|#1|(PL-1)-1 pGr 8.54 8.54 Qk.N #WT1|LF-2 pGr -0.10-0.10Qk.N 14.33 #WT1|(PL-1)-1 pGr 14.33 LILA-4 aus D-2.1 - WT-2 Abs 4 49.82 49.82 Gk #WT1|#1|LF-1 pGr #WT1|LF-1 Gk 37.28 37.28 pGr Qk.N #WT1|#1|(PL-1)-1 pGr 8.75 8.75 Qk.N #WT1|LF-2 pGr -0.05-0.05#WT1|(PL-1)-1 Qk.N pGr 14.83 14.83 LILA-5 aus D-2.1 - WT-2_Abs_5 Gk #WT1|#1|LF-1 pGr 51.27 51.27 37.50 37.50 Gk #WT1|LF-1 pGr Qk.N #WT1|#1|(PL-1)-1 pGr 8.98 8.98 Qk.N #WT1|LF-2 pGr -0.02-0.02Qk.N #WT1|(PL-1)-1 pGr 14.90 14.90 LILA-6 aus D-2.1 - WT-2_Abs_6 52.76 Gk #WT1|#1|LF-1 pGr 52.76 Gk #WT1|LF-1 pGr 37.41 37.41 Qk.N #WT1|#1|(PL-1)-1 pGr 9.23 9.23 Qk.N #WT1|(PL-1)-1 pGr 14.86 14.86 LILA-7 aus D-2.1 - WT-2 Abs 7 Gk #WT1|#1|LF-1 pGr 54.24 54.24 #WT1|LF-1 Gk pGr 37.36 37.36 Qk.N #WT1|#1|(PL-1)-1 pGr 9.47 9.47 Qk.N #WT1|(PL-1)-1 pGr 14.84 14.84 LILA-8 aus D-2.1 - WT-2_Abs_8 #WT1|#1|LF-1 pGr 55.70 Gk 55.70 #WT1|LF-1 pGr Gk 37.36 37.36 9.71 Qk.N #WT1|#1|(PL-1)-1 pGr 9.71 Qk.N #WT1|LF-2 -0.03-0.03pGr #WT1|(PL-1)-1 14.84 14.84 Qk.N pGr LILA-9 aus D-2.1 - WT-2_Abs_9 Gk #WT1|#1|LF-1 pGr 57.12 57.12 Gk #WT1|LF-1 pGr 37.08 37.08 #WT1|#1|(PL-1)-1 Qk.N pGr 9.94 9.94 Qk.N #WT1|LF-2 pGr -0.11-0.11 Qk.N #WT1|(PL-1)-1 pGr 14.76 14.76 LILA-10 aus D-2.1 - WT-2 Abs 10 Gk #WT1|#1|LF-1 pGr 58.55 58.55 Gk #WT1|LF-1 pGr 35.79 35.79 Qk.N #WT1|#1|(PL-1)-1 pGr 10.17 10.17 Qk.N #WT1|LF-2 pGr -0.30-0.30 Qk.N #WT1|(PL-1)-1 pGr 14.31 14.31

Gk

Gk

Qk.N

Qk.N

aus D-2.1 - WT-2 Abs 11

#WT1|#1|LF-1

#WT1|#1|(PL-1)-1

#WT1|LF-1

#WT1|LF-2

pGr

pGr

pGr

pGr

60.24

31.49

10.47

-0.83

60.24

31.49

10.47

-0.83

LILA-11

Position

Seite: 2-195

2023 300 WT-2.2-2

ÙVPËÜPÄÄÜd4&\@4 ÁÛ>å

Position	EW	Lastfall	Art	p_A, m_A	p _E ,m _E
					[kNm/m]
I II A 40	Qk.N	#WT1 (PL-1)-1	pGr	12.76	12.76
LILA-12		1 - WT-2_Abs_12	nC*	64.00	64.00
	Gk Gk	#WT1 #1 LF-1	pGr	61.92	61.92
	Qk.N	#WT1 LF-1 #WT1 #1 (PL-1)-1	pGr pGr	21.37 10.75	21.37 10.75
	Qk.N Qk.N	#WT1 LF-2	pGr pGr	-1.96	-1.96
	Qk.N Qk.N	#WT1 (PL-1)-1	pGr	9.08	9.08
LILA-13		1 - WT-2_Abs_13	рОі	3.00	3.00
2.2, (10	Gk	#WT1 #1 LF-1	pGr	51.13	51.13
	Gk	#WT1 LF-1	pGr	19.72	19.72
	Qk.N	#WT1 #1 (PL-1)-1	pGr	7.97	7.97
	Qk.N	#WT1 LF-2	pGr	-0.23	-0.23
	Qk.N	#WT1 (PL-1)-1	pGr	7.90	7.90
LILA-14		1 - WT-2_Abs_1			
	Gk	LF-1	pGr	62.99	62.99
	Gk	#1 gk	pGr	127.25	127.25
	Qk.N	LF-2	pGr	3.44	3.44
	Qk.N	(PL-1)-1	pGr	18.13	18.13
	Qk.N	#1 qk.n	pGr	26.38	26.38
LILA-15		1 - WT-2_Abs_2		40.04	40.04
	Gk	LF-1	pGr	40.04	40.04
	Gk	#1 gk	pGr	27.51	27.51
	Qk.N	LF-2	pGr	0.10	0.10
	Qk.N	(PL-1)-1	pGr	14.41	14.41
LILA-16	Qk.N	#1 qk.n	pGr	6.38	6.38
LILA-10	Gk	<i>1 - WT-2_Abs_3</i> LF-1	pGr	35.01	35.01
	Gk	#1 gk	pGr	11.18	11.18
	Qk.N	LF-2	pGr	0.08	0.08
	Qk.N	(PL-1)-1	pGr	13.40	13.40
	Qk.N	#1 qk.n	pGr	2.62	2.62
LILA-17		1 - WT-2_Abs_4	μο.		
	Gk	LF-1	pGr	36.83	36.83
	Gk	#1 gk	pGr	3.81	3.81
	Qk.N	LF-2	pGr	0.01	0.01
	Qk.N	(PL-1)-1	pGr	14.50	14.50
	Qk.N	#1 qk.n	pGr	0.85	0.85
LILA-18		1 - WT-2_Abs_5			
	Gk	LF-1	pGr	37.47	37.47
	Gk	#1 gk	pGr	0.84	0.84
	Qk.N	LF-2	pGr	-0.01	-0.01
	Qk.N	(PL-1)-1	pGr	14.90	14.90
	Qk.N	#1 qk.n	pGr	0.13	0.13
LILA-19		1 - WT-2_Abs_6		07.04	07.04
	Gk	LF-1	pGr	37.61	37.61
	Gk N	#1 gk LF-2	pGr	-0.05	-0.05
	Qk.N Qk.N	(PL-1)-1	pGr pGr	-0.03 14.99	-0.03 14.99
	Qk.N Qk.N	#1 qk.n	pGr	-0.08	-0.08
LILA-20		1 - WT-2_Abs_7	рОі	-0.00	-0.00
	Gk	LF-1	pGr	37.05	37.05
	Gk	#1 gk	pGr	-0.88	-0.88
	Qk.N	LF-2	pGr	-0.07	-0.07
	Qk.N	(PL-1)-1	pGr	14.77	14.77
	Qk.N	#1 qk.n	pGr	-0.28	-0.28
LILA-21		1 - WT-2_Abs_8	•	-	
	Gk	LF-1	pGr	34.67	34.67

Position

martens+puller
Ingenieurgesellschaft mbH

2023 300 WT-2.2-2 ÙVPËÜPÄÄÛ¢4&\@ã ÁÛ>å Seite: 2-196

Position	EW	Lastfall	Art	p_A, m_A	p _E ,m _E
				[kN/m	n],[kNm/m]
	Gk	#1 gk	pGr	-3.39	-3.39
	Qk.N	LF-2	pGr	-0.19	-0.19
	Qk.N	(PL-1)-1	pGr	13.85	13.85
	Qk.N	#1 qk.n	pGr	-0.88	-0.88
LILA-22	aus D-	3.1 - WT-2_Abs_	_9		
	Gk	LF-1	pGr	28.03	28.03
	Gk	#1 gk	pGr	-9.33	-9.33
	Qk.N	LF-2	pGr	-0.47	-0.47
	Qk.N	(PL-1)-1	pGr	11.28	11.28
	Qk.N	#1 qk.n	pGr	-2.33	-2.33
LILA-23	aus D-	3.1 - WT-2_Abs_	_10		
	Gk	LF-1	pGr	11.68	11.68
	Gk	#1 gk	pGr	-23.97	-23.97
	Qk.N	LF-2	pGr	-1.19	-1.19
	Qk.N	(PL-1)-1	pGr	4.99	4.99
	Qk.N	#1 qk.n	pGr	-5.95	-5.95
LILA-24	aus D-	3.1 - WT-2_Abs_	_11		
	Gk	LF-1	pGr	-39.64	-39.64
	Gk	#1 gk	pGr	-87.86	-87.86
	Qk.N	LF-2	pGr	-4.39	-4.39
	Qk.N	(PL-1)-1	pGr	-14.54	-14.54
	Qk.N	#1 qk.n	pGr	-21.78	-21.78
LILA-25	aus D-	3.1 - WT-2_Abs_	_12		
	Gk	LF-1	pGr	-16.74	-16.74
	Gk	#1 gk	pGr	-34.91	-34.91
	Qk.N	LF-2	pGr	-3.14	-3.14
	Qk.N	(PL-1)-1	pGr	-5.75	-5.75
	Qk.N	#1 qk.n	pGr	-8.40	-8.40
LILA-26	aus D-	3.1 - WT-2_Abs_	_13		
	Gk	LF-1	pGr	101.06	101.06
	Gk	#1 gk	pGr	212.06	212.06
	Qk.N	LF-2	pGr	11.26	11.26
	Qk.N	(PL-1)-1	pGr	36.68	36.68
	Qk.N	#1 qk.n	pGr	51.90	51.90
pGr: Gravitationsla	ast; positive Laste	n wirken senkrecht nac	ch unten		

Einwirkungen

Auftrags-Nr.

Einwirkungen nach DIN EN 1990 **DIN EN 1990**

S> : ^	Beschreibung
	Typisierung
Gk	Eigenlasten
	Ùœ}åã*^ÁÒã;ã\`}*^}
Qk.N	Nutzlasten
	Sæe^*[¦ãNÁOEÁÉÁY[@]ÉÁ}åÁOE^}c@eo∤o•¦ê*{^

Šærcê||^Á}åÁå^\^}ÁZ*[¦å}*}*Á.*Áå^}ÁÒā, ā*}*A; Šær cê∥^

Gk LF-1, #1|gk, #WT1|#1|LF-1, #WT1|LF-1 Qk.N

LF-2, (PL-1)-1, #1|qk.n, #WT1|#1|(PL-1)-1, #WT1|LF-2, #WT1|(PL-1)-1

Bemessung (GZT+GZG)

Auftrags-Nr. Position ÙVPËÜPÄÄÛ¢4&\@`ã ÁÛ>å 2023 300 WT-2.2-2 Seite: 2-197

Biegung S-As-erf-Iso Scheibenbemessung nach DIN EN 1992-1-1

Ó^{ ^••`} * Á>¦ÁÙ&@ãa^ÁÇÙææ@à^q{} DÁY VËG WT-2

Scheibenbemessung nach DIN EN 1992-1-1

(je Scheibenseite)

Mat./Querschnitt

Beton C 25/30, Betonstahl B 500SA

Õ^• c^ã,•\4¦} `} * ÁÛ`æ: ãc Dicke konstant h = 24.00 cm

*^{ êi ÁÖ OÞÁÖÞÁFJJ GËFËFÉVæà ÉÁ ÈF Expositionsklasse

> Position Seite Kommentar

WT-2 umlaufend XC1 d[&\^} A\ a^\A\ ce\} aa A\ æ•

Bewehrung Vorgaben zur Bewehrungsdefinition

Ó^{ ^••`}*•¸ã,\^|ÁÁ,ÊÐÁMÁÆÁAÁJ€Á>

Betondeckung 10 / c_{min} D &def = 10 mm

Cnom

20 mm

Grundbewehrung Bewehrung je Scheibenseite

Tænc^ÉAÙcêà^ $a_{\text{sg,s}}$ $a_{\text{sg,r}}$ <Ž,{ aB9Ž&{ á ₽)á ₽a 5.03

5.03

nach DIN EN 1992-1-1 <u>Nachweisparameter</u>

Tājå^•cà^, ^@`}*ÁÇJĒĖĐDĄ́`¦å^Áà^!>&\•a&@ātcÈ

Tæi*^à^}å^ÁS[{àãjæaãj}^}Ájæ&@ÄÖOÞÁÖÞÁFJJ€ Kombinationen

> Einwirkungsname Ew

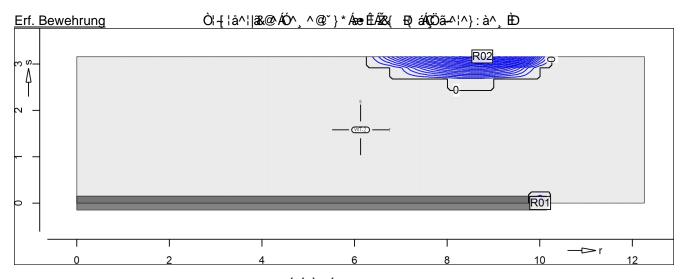
Lastkombinationsnummer Lkn

c[| @ | | • & @ } a^ Aç^ | ê } a^ | | a& @ AOa _ a \ ` } *

Öðl ÁÓ v ð ð ð * Á ð : ^|} ^ ¦ Á ð e cê|| Áð } ^ ; @ d Áeiner Einwirkung wird mit diesem

Ausgabeformat nicht dokumentiert.

Ew Gk Qk.N Lkn Grundkombination 1-2 1.35 1.50 !


2023 300

ÙVPËÜPĀÄÛc4&\@ã ÁÛ>å

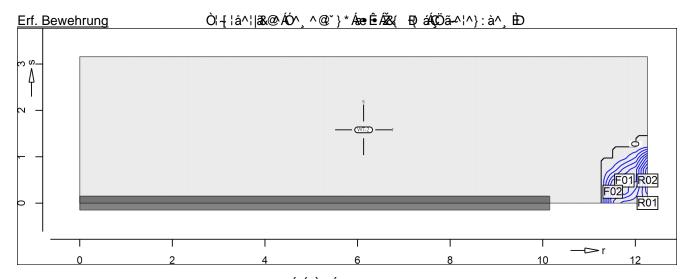
Seite: 2-198

as,r

Šê}*•à^¸^@^`}*Á§ÁËÜæ&@č}*

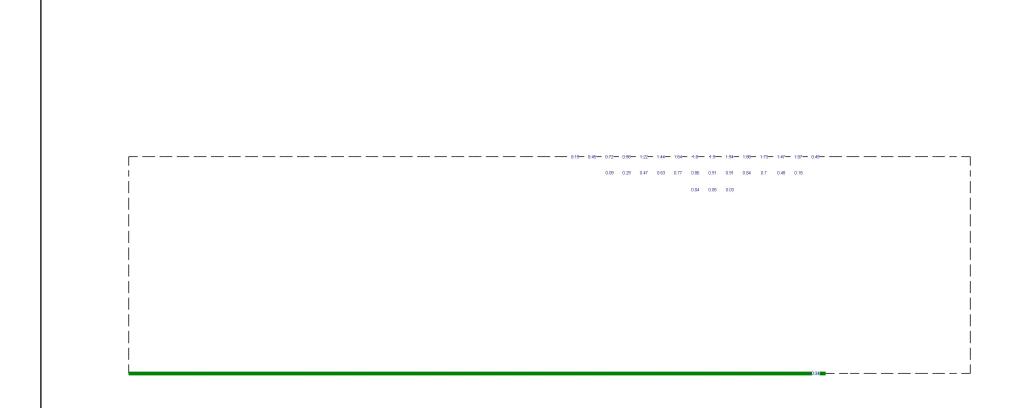
Q[|ã,ã^}•č.^}ÁMÁ€ÈÈ€Á&{ Ð

Õ¦`}åà^¸^@`}*K Áæ *ÊĀ /VÁ ÈEHÁ&{ EQ								
Punkt	X	У	Sr,Ed	Ss,Ed	Srs,Ed	n Ed	a s,r	Lkn
		[m]			Ž⊃Đ({á	[kN/m]	Ž&{ Ð()á	
R01	10.01	0.00	-0.57	-2.45	-2.61	245.17	0.34	1
R02	8 76	3 16	2 65	-0.65	0.00	318.07	1 94	1


2023 300 WT-2.2-2

ÙVPËÜPĀÄÛc4&\@ã ÁÛ>å

Seite: 2-199


as,s

Šê}*•à^¸^@`}*Á§ÁEÜæ&@`}*

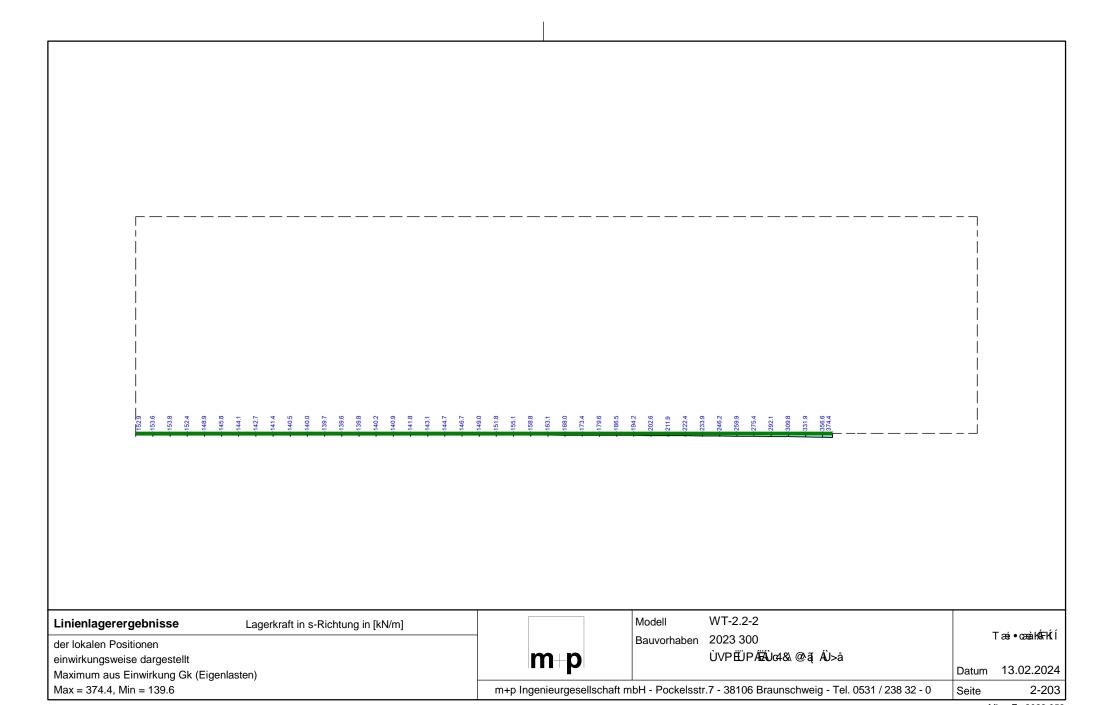
Q[|ã,ã^}•č.^}ÁMÁ€ÌÈ€Á&{ Ð;

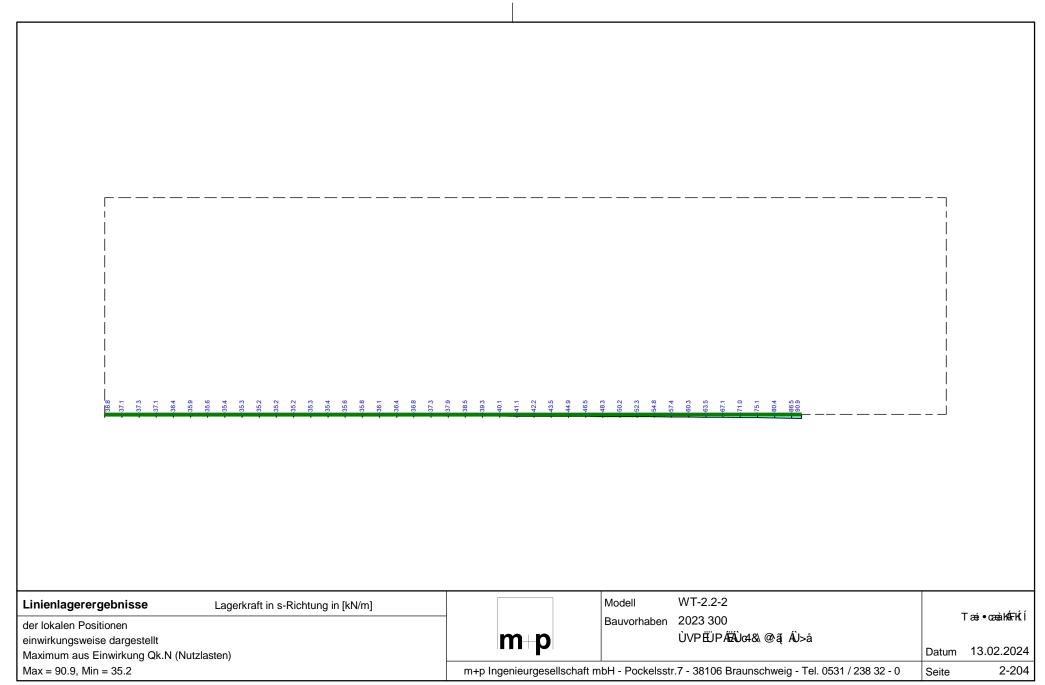
Ő¦`}åà^¸^@`}*kÁæe*Ê≘Án/ÁÁ,È≣HÁ&{ EQ								
Punkt	Х	y [m]	S r,Ed	S s,Ed	Srs,Ed ŽÞÐ[{ á	n _{Ed} [kN/m]	a _{s,s} Ž&{EQá	Lkn
F01	11.76	0.49	-0.35	1.91	-0.38	274.77	0.99	2
F02	11.51	0.24	-0.55	1.84	-0.54	284.31	1.20	2
R01	12.26	0.00	0.07	2.46	0.05	301.09	1.57	1
R02	12 26	0.49	0.00	2 68	0.01	322 32	2 03	1

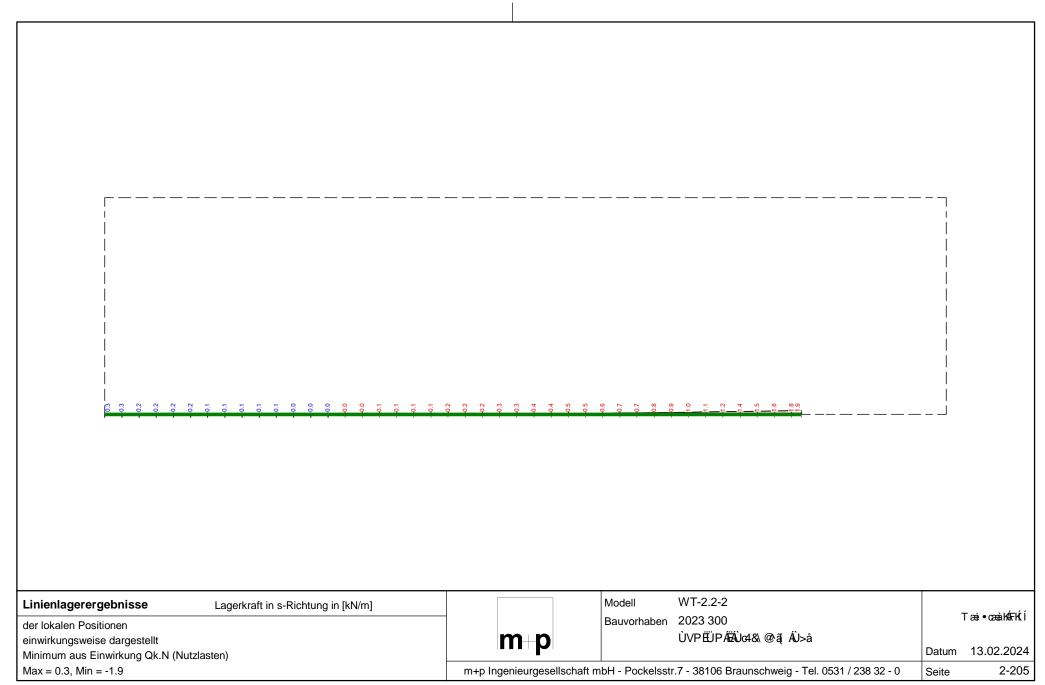
: `} WY YbVYa Yggi b[Erforderliche Bewehrung as,erf (Differenzbew.)		Modell	WT-2.2-2		
Max = 1.94 (Kn. 687), Min = 0 (Kn. 1)			Bauvorhaben			Tæi•oæàkÁFKÍÍ
Grundbewehrung asg = 5.03		m-p		ÙVPËÜPÆÄÜ04&\@`aį́AÛ>å		
Beton C 25/30	aus allen Nachweisen				Datum	13.02.2024
Bauteildicke h = 24.00 cm	¦EÜa&@c°}*ÁÇ≫¦Án?a}^ÁÛ&@c°ãa^}•^ãc^DÁa,Ãã&(EQ á	m+p Ingenieurgesellschaft m	nbH - Pockelssti	r.7 - 38106 Braunschweig - Tel. 0531 / 238 32 - 0	Seite	2-200

: `} W YbVYa Yggi b[Erforderliche Bewehrung as,erf (Differenzbew.)		Modell	WT-2.2-2		Tæi•cæàkÁFKÍÍ
Max = 2.03 (Kn. 152), Min = 0 (Kn. 1)			Bauvorhaben			I æ • Œæinern. I
Grundbewehrung asg = 5.03		m-p		ÙVPËÜPÆÄÛ¢4&\@Aį ÁÛ>å		
Beton C 25/30	aus allen Nachweisen				Datum	13.02.2024
Bauteildicke h = 24.00 cm	•EÜa&@č}*Áç>⊹Áqò,AÛ&@ãa^}•^ão^DÁgAÃ&(Đạá	m+p Ingenieurgesellschaft m	nbH - Pockelsst	r.7 - 38106 Braunschweig - Tel. 0531 / 238 32 - 0	Seite	2-201

Auftrags-Nr. Position




Seite: 2-202


2023 300

WT-2.2-2

5 i ZU[Yf_f} ZhY

Position

Seite: 2-206

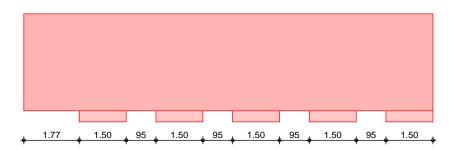
2023 300

WT-2.3

ÙVPËÜPÄÄÜ¢4&\@@ã ÁÛ>å

Pos. WT-2.3

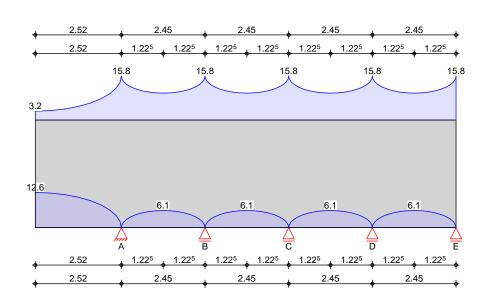
K UbXUffj[Yf 'Hf} [Yf


System

Ya) åækæt ^¦Á/¦ê*^¦Á,æ&@ÁÖQÞÁÖÞÁFJJGËËËÉÉP^-AÂHF

M 1:120

M 1:120

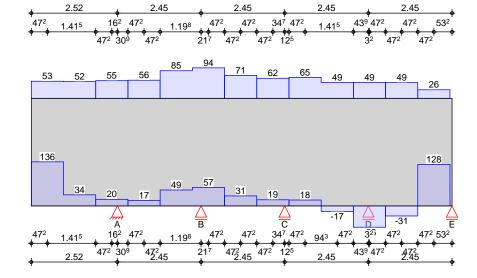

Abmessungen Mat./Querschnitt

Feld	b	h	Į	Material	h/l
	[cm]	[m]	[m]		[-]
Krag.l.	20.0	3.16	2.52	C 25/30	1.25
Feld 1	20.0	3.16	2.45	C 25/30	1.29
Feld 2	20.0	3.16	2.45	C 25/30	1.29
Feld 3	20.0	3.16	2.45	C 25/30	1.29
Feld 4	20.0	3.16	2.45	C 25/30	1.29

Auflager

Auli.	AIL	a	ι
		[cm]	[cm]
Aufl.A	direkt	150.0	20.0
Aufl.B	direkt	150.0	20.0
Aufl.C	direkt	150.0	20.0
Aufl.D	direkt	150.0	20.0
Aufl.E	direkt	150.0	20.0

Belastungen Gk (Eigenl.)



ÙVPËÜPÄÄÜ¢4&\@aį ÁÜ>å Seite: 2-207

Eigenlast

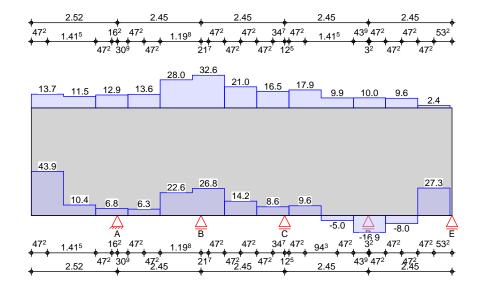
Aufteilung gemêi	DAfSb Heft 631		
Feld	Kommentar	gesamt	unten, max
		[kN/m]	[kN/m]
Krag.l.	Eigengewicht	15.80	12.60
Feld 1	Eigengewicht	15.80	6.13
Feld 2	Eigengewicht	15.80	6.13
Feld 3	Eigengewicht	15.80	6.13
Feld 4	Eigengewicht	15.80	6.13

Gk

Trapezlasten

Nr.	Feld	Angriff	а	S	qı	qr
		_	[m]	[m]	[kN/m]	[kN/m]
(a) 1	Krag.l.	unten	0.00	0.94	136.32	136.32
(a) 2	Krag.l.	unten	0.94	0.94	34.12	34.12
(a) 3	Krag.l.	unten	1.89	0.94	20.33	20.33
(a) 4	Feld 1	unten	0.31	0.94	17.09	17.09
(a) 5	Feld 1	unten	1.25	0.94	49.11	49.11
(a) 6	Feld 1	unten	2.20	0.94	56.80	56.80
(a) 7	Feld 2	unten	0.69	0.94	30.81	30.81
(a) 8	Feld 2	unten	1.63	0.94	18.77	18.77
(a) 9	Feld 3	unten	0.12	0.94	18.06	18.06
(a) 10	Feld 3	unten	1.07	0.94	-17.09	-17.09
(a) 11	Feld 3	unten	2.01	0.94	-66.16	-66.16
(a) 12	Feld 4	unten	0.50	0.94	-31.34	-31.34
(a) 13	Feld 4	unten	1.45	0.94	128.07	128.07
(a) 14	Krag.l.	oben	0.00	0.94	52.91	52.91
_(a) 15	Krag.l.	oben	0.94	0.94	51.66	51.66
(a) 16	Krag.l.	oben	1.89	0.94	54.63	54.63
(a) 17	Feld 1	oben	0.31	0.94	56.16	56.16
(a) 18	Feld 1	oben	1.25	0.94	85.45	85.45
(a) 19	Feld 1	oben	2.20	0.94	94.38	94.38
(a) 20	Feld 2	oben	0.69	0.94	71.05	71.05
_(a) 21	Feld 2	oben	1.63	0.94	62.16	62.16
(a) 22	Feld 3	oben	0.12	0.94	64.88	64.88
(a) 23	Feld 3	oben	1.07	0.94	49.08	49.08
(a) 24	Feld 3	oben	2.01	0.94	49.33	49.33
(a) 25	Feld 4	oben	0.50	0.94	48.56	48.56
(a) 26	Feld 4	oben	1.45	0.94	26.47	26.47

2023 300 WT-2.3


ÙVPËÜPÆÄÛ¢4&\@^ãį ÁÛ>å

Seite: 2-208

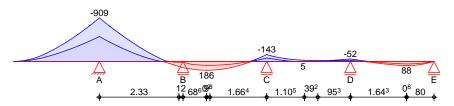
(a)

aus Pos. 'D-3.1 - WT-5'

Qk.N

	lasten

Nr.	Feld	Angriff	а	S	qı	q r
		· ·	[m]	[m]	[kN/m]	[kN/m]
(a) 1	Krag.l.	unten	0.00	0.94	43.88	43.88
(a) 2	Krag.l.	unten	0.94	0.94	10.37	10.37
(a) 3	Krag.l.	unten	1.89	0.94	6.82	6.82
(a) 4	Feld 1	unten	0.31	0.94	6.28	6.28
(a) 5	Feld 1	unten	1.25	0.94	22.60	22.60
(a) 6	Feld 1	unten	2.20	0.94	26.79	26.79
(a) 7	Feld 2	unten	0.69	0.94	14.23	14.23
(a) 8	Feld 2	unten	1.63	0.94	8.60	8.60
(a) 9	Feld 3	unten	0.12	0.94	9.62	9.62
(a) 10	Feld 3	unten	1.07	0.94	-4.99	-4.99
(a) 11	Feld 3	unten	2.01	0.94	-16.86	-16.86
(a) 12	Feld 4	unten	0.50	0.94	-8.03	-8.03
(a) 13	Feld 4	unten	1.45	0.94	27.28	27.28
(a) 14	Krag.l.	oben	0.00	0.94	13.68	13.68
(a) 15	Krag.l.	oben	0.94	0.94	11.48	11.48
(a) 16	Krag.l.	oben	1.89	0.94	12.87	12.87
(a) 17	Feld 1	oben	0.31	0.94	13.55	13.55
(a) 18	Feld 1	oben	1.25	0.94	27.99	27.99
(a) 19	Feld 1	oben	2.20	0.94	32.55	32.55
(a) 20	Feld 2	oben	0.69	0.94	21.02	21.02
(a) 21	Feld 2	oben	1.63	0.94	16.52	16.52
(a) 22	Feld 3	oben	0.12	0.94	17.91	17.91
(a) 23	Feld 3	oben	1.07	0.94	9.93	9.93
(a) 24	Feld 3	oben	2.01	0.94	10.00	10.00
(a) 25	Feld 4	oben	0.50	0.94	9.60	9.60
(a) 26	Feld 4	oben	1.45	0.94	2.38	2.38


(a)

aus Pos. 'D-3.1 - WT-5'

Kombinationen

Kombinationsbildung nach DIN EN 1990 Darstellung der mai gebenden Kombinationen Auftrags-Nr. Position 2023 300 WT-2 3 INPERDATIONS ON A AILA Seite: 2-200

2023 300	WT-2.3	T-2.3 UVPEJPAAJ04&\@`a{AJ>a		Seite: 2-209
	Ek	(* *EW)		
•œ̂}åã̂Ðɣ[¦>à^¦*È	1	1.35*Gk		
	2	1.35*Gk	+1.50*Qk.N	
			(KI,1,3)	
	4	1.35*Gk	+1.50*Qk.N	
			(KI,2,3)	
	5	1.35*Gk	+1.50*Qk.N	
			(KI,2,4)	
	6	1.35*Gk	+1.50*Qk.N	
			(KI,3)	
	8	1.35*Gk	+1.50*Qk.N	
			(1,3,4)	
	12	1.00*Gk	+1.50*Qk.N	
			(KI,2)	
	13	1.00*Gk	+1.50*Qk.N	
			(KI,3)	
	14	1.00*Gk	+1.50*Qk.N	
			(1,2,4)	
	16	1.00*Gk	+1.50*Qk.N	
			(2,4)	
	18	1.00*Gk	+1.50*Qk.N	
			(1,3)	
	19	1.00*Gk	+1.50*Qk.N	
			(1,4)	
Ou un allea malain ation an	Mana	ont Mad		
Grundkombinationen	IVIOITIE	ent Med		

Cru	ndkor	nhina	itionen
Caltu	HUKOL	HOHE	monen

Feld	Position	Mmax	EK	Mmin	EK
	[m]	[kNm]		[kNm]	
Krag.l.	0.00	-0.00	1	-0.00	1
-	1.26	-157.56	10	-278.55	2
	2.52	-520.20	10	-909.16	2
Feld 1	0.00	-520.20	10	-909.16	2
	1.23	-114.05	18	-277.66	5
	2.45	133.22	6	15.98	14
Feld 2	-0.00	133.22	6	15.98	14
	0.69	185.70	5	81.48	18
	1.22	153.28	5	69.18	18
	2.45	-69.38	19	-142.78	4
Feld 3	-0.00	-69.38	19	-142.78	4
	1.10	5.45	18	-23.85	5
	1.22	5.21	18	-20.97	5
	2.45	-21.87	12	-51.62	8
Feld 4	-0.00	-21.87	12	-51.62	8
	1.22	69.59	5	39.10	18
	1.64	88.32	5	52.19	18
	2.45	0.00	5	0.00	18

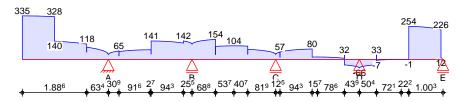
Auftrags-Nr.	Position			nartens+pulle genieurgesellschaft mbl	r ⊣			
2023 300	WT-2.3	Ù	VPËÜPÆÄÙ¢4&\	@aį̃ ÁÛ>å			Seite:	2-210
{ [åÈÁCE æt^ \ ¦ê-e^	Тур		Aufl.	F _{z,max} [kN]	EK		F _{z,min} [kN]	EK
	Grundkor	nbin.	Α	1423.62	2		807.71	16
			B C	188.18			-162.02	
			C D	558.11			288.91	19
			E	140.83 236.38			67.88 143.13	
Nachweise (GZT)	*^{ ÉÖOD•	ÁÒÞÁFJJŒÏ	FËFÉKÖCEÙcàÁP^	~ AÎ HFÊĞÇÙ &@æ	38.09 0)8.026~	۸¦D		
Material	Beton C 2	25/30				Re	tonstahl B	50054
Material	Ò æ•cããec						n = 31000 l	
Betondeckung	Feld	Ort	Exposit	tionskl.		Cmin nm]	c [mm]	Cnom [mm]
	Krag.l.	oben	XC1		•	10	10	20
		unten	XC1			10	10	20
		seitl.	XC1			10	10	20
	Feld 1	Stirnfl.	XC1			10	10	20
	reid	oben unten	XC1 XC1			10 10	10 10	20 20
		seitl.	XC1			10	10	20
	Feld 2	oben	XC1			10	10	20
		unten	XC1			10	10	20
		seitl.	XC1			10	10	20
	Feld 3	oben	XC1			10	10	20
		unten	XC1			10	10	20
	Feld 4	seitl. oben	XC1 XC1			10 10	10 10	20 20
	i eiu 4	unten	XC1			10	10	20
		seitl.	XC1			10	10	20
		Stirnfl.	XC1			10	10	20
Netzbewehrung je Seite	b [cm]		As,erf. Ž&{ ₽) á					
je Gene	20		1.50					
Šê}*•:`*à^,^@^}*	Ort		Med	EK	Z		Z	As,erf.
	A (1 A		[kNm]		[m]		[kN]	_ Ž& { á
	Aufl.A		-909.2	5	0.98		27.7	21.3
	Feld 1 Feld 2		133.2 185.7	6 5	0.98 0.98		35.9 89.5	3.1 4.4
	Aufl.C		-142.8	4	0.98		45.7	3.4
	Feld 3		5.5	18	0.98	•	5.6	0.1
	Aufl.D		-51.6	8	0.98		52.7	1.2
	Feld 4		88.3	5	1.10		80.1	1.8
OE -@} * ^ à^, ^ @* } * Streckenlasten	Feld		von x [m]	bis x [m]	Aed [kN/m]	ا	EK Ž	As,erf. %{ Ð á
	Krag.l.		0.00	2.52	334.90			7.70
	Feld 1		0.00	2.45	141.90		2 2 3	3.26
	Feld 2		0.00	2.45	153.86			3.54
	Feld 3		0.00 0.00	2.45	79.69		2 5	1.83 5.85
	Feld 4		0.00	2.45	254.45		J	5.05

2023 300

WT-2.3

ÙVPËÜPÄÄÛ¢4&\@`ã ÁÛ>å

Seite: 2-211


gerader Stab

1.00

gut

Grundkombinationen

{ an¢a(anþÁně ∻ `@a) * ^ } å ^ ÁŠænoÁně • ÁÕ¦ ` } å \ [{ àā) anca[} } ^ }

Knotennachweise Auflager A Beton C 25/30

Innenauflager nach Heft 600, Kap. 9.7

⊨K	⊢Ed	Ac	gew.	A_S	FRd	
	[kN]	Ž&{ á		Ž&{ á	[kN]	[-]
2	1423.62	3000.00	l<€	0.00	3825.00	0.37

Verankerungsart
Beiwert a
Verbundbedingung

ÖðàÁx^¦æ)\^¦*}*ÁѦ-{|*oÁ>¦ÁF€€ÃÁ&^¦ÁZ`*\¦æc

İ	<	lb	As,erf/As,vorh	lb,erf	lb,vorh
	[mm]	[cm]	[-]	[cm]	[cm]
td1	12	0.0	0.00	0.0	_
td2	12	48.4	0.66	32.1	-

Auflager B

Innenauflager nach Heft 600, Kap. 9.7

Ek	F_{Ed}	Ac	gew.	As	F_Rd	
	[kN]	Ž&{á		Ž&{ á	[kN]	[-]
14	188.18	3000.00	l<€	0.00	3825.00	0.05

 Verankerungsart
 gerader Stab

 Beiwert a
 1.00

 Verbundbedingung
 gut

 Öã Áx (¹a) \^!`} * Á¹ - [¹ oÁ> | ÁF∈€Ã Á&^ | ÁZ * \ | æc

i	<	lь	As,erf/As,vorh	lb,erf	lb,vorh
	[mm]	[cm]	[-]	[cm]	[cm]
td1	12	0.0	1.50	0.0	-
td2	12	0.0	2.09	0.0	-

Auflager C

Innenauflager nach Heft 600, Kap. 9.7

Ek	F_{Ed}	Ac	gew.	As	F_Rd	
	[kN]	Ž&{ á		Ž&{ á	[kN]	[-]
4	558 11	3000.00	∠€	0.00	3825.00	0.15

 Verankerungsart
 gerader Stab

 Beiwert a
 1.00

 Verbundbedingung
 gut

 Öâ/ÁX^\a) \^\` } *Á\- |* A\- |*

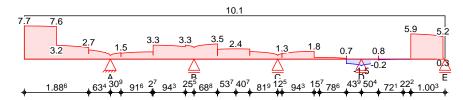
lb,vorh	lb,erf	As,erf/As,vorh	lb	<	Ī
[cm]	[cm]	[-]	[cm]	[mm]	
-	44.8	0.92	48.4	12	td1
-	14.5	0.03	48.4	12	td2

Auftrags-Nr.	Position	n		nartens+puller genieurgesellschaft mbH			
2023 300	WT-2.3	ÙVI	PËÜPÆÄJ04&	∖@`ą̃AÛ>å		Seite	e: 2-212
Auflager D	Innenaufl Ek	ager nach Ho F _{Ed} [kN] 140.83	eft 600, Kap. A _c <u>Ž&</u> (<i>á</i> 3000.00	gew.	A _s <u>Ž</u> Ž{ <u>á</u> 0.00	F _{Rd} [kN] 3825.00	[-] 0.04
	Veranker Beiwert Verbundb	ungsart ^a pedingung		. 4€ §^¦ÁZ`*\¦æ€	0.00		ler Stab 1.00 gut
	i td1 td2	< [mm] 12 12	lb [cm] 48.4 48.4	As,erf/As,vorh [-] 0.03 0.39	[(b,erf cm] 4.5 8.9	lb,vorh [cm] -
Auflager E	Ek 5 Veranker		t 600, Kap. 9 A _c <u>Ž</u> &(<i>á</i> 3000.00	gew.	A _s <u>Ž&{ á</u> 0.00	F _{Rd} [kN] 3400.00	[-] 0.07 ler Stab
	Öðl ÁK^¦æ)	oedingung :\^¦`}*Æ\'{		\$a^¦Æ~*\¦æ€			1.00 gut
	i td1	< [mm] 12	Ib [cm] 48.4	As,erf/As,vorh [-] 0.39	[0	b,erf cm] 2.6	lb,vorh [cm] 148.0
Bewehrungswahl	B 500SA						
Netzbewehrung je Seite	Feld alle	ž&	As,erf. { - 	*^¸ê@c [mm/cm] <Ì⊞F€È€	As,vo Ž&{ E\ 5.0	á	[-] 0.30
Šê}*•:`*à^,^@`}*	Ort	von h [m]	bis h [m]	As,erf. [cm²]	Zulage	As,vorh.* [cm²]	[-]
	Aufl.A Aufl.A Feld 1 Aufl.B Aufl.B	0.76 1.96 0.00 0.00 0.00	1.96 3.16 0.25 0.00 0.00	8.92 12.42 3.13 0.00 0.00	- FEG≺ FI FEG≺ FG -	12.08 15.16 4.72 0.00 0.00	0.74 0.82 0.66
	Feld 2 Aufl.C Aufl.C Feld 3 Aufl.D Aufl.D Feld 4 * inkl. Netzbe	0.00 0.25 0.98 0.00 0.25 0.98 0.00	0.00 0.25 0.98 1.72 0.25 0.98 1.72 0.25	0.00 4.36 1.68 1.68 0.13 0.61 0.61 1.84	FEG× FG FEG× FG - FEG× FG FEG× FG	4.72 7.39 10.47 4.72 7.39 10.47 4.72	0.92 0.23 0.16 0.03 0.08 0.06 0.39
OE ~@e} * ^ à^¸ ^ @* } * Streckenlasten	Feld Krag.l. Feld 1 Feld 2 Feld 3 Feld 4	von x [m] 0.00 0.00 0.00 0.00 0.00 wehrung, durch St	bis x [m] 2.52 2.45 2.45 2.45 2.45 eckb>gel zu schli	As,erf. [cm²/m] 7.70 3.26 3.54 1.83 5.85 ei en	Zulage Ó>* ^ -/- -/- -/- -/-	As,vorh.* [cm²/m] 10.05 10.05 10.05 10.05 10.05	[-] 0.77 0.32 0.35 0.18 0.58

Auftrags-Nr.

Position

WT-2.3

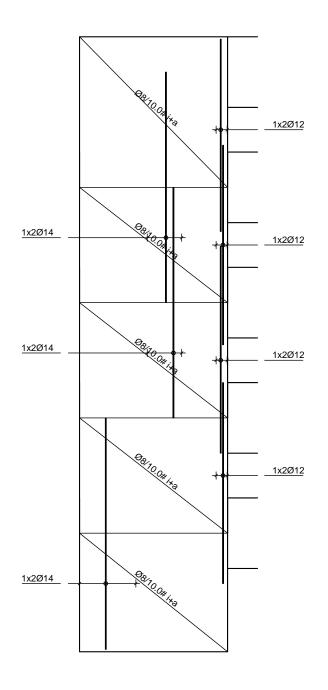


Seite: 2-213

OE~@}*^à^, ^@^}*

2023 300

Streckenlasten


martens+puller
Ingenieurgesellschaft mbH

ÙVPËÜPĀÄÛc4&\@ã ÁÛ>å

2023 300 WT-2.3

Seite: 2-214

Bewehrungsskizze M 1:80

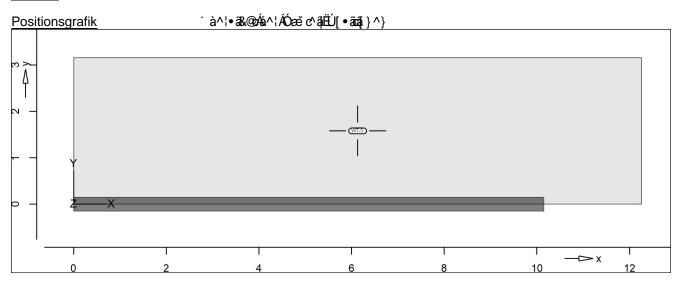
Randeinfassung umlaufend 2Ø12 + Bügel Ø8/15

Œ |æŧ^!\¦ê-e^

charakteristische Lasten nach Heft 631

EW	Auflager	$F_{z,max}$	$F_{z,min}$
	-	[kN]	[kN]
Gk	Auflager A	816.1	816.1
	Auflager B	-3.7	-3.7
	Auflager C	307.0	307.0

Auftrags-Nr.	Position	Ingenieurgesellschaft mbH		
2023 300	WT-2.3	ÙVPËÜPÄÄĴŒW@ĄŔĴ>å	Seit	te: 2-215
	EW	Auflager	F _{z,max} [kN]	F _{z,min} [kN]
	Qk.N	Auflager D Auflager E Auflager A	87.4 146.0 214.6	87.4 146.0 -5.6
		Auflager B Auflager C Auflager D Auflager E	127.9 95.8 15.2 26.2	-105.5 -12.1 -13.0 -1.9
Zusammenfassung	Zusammen	nfassung der Nachweise		
Nachweise (GZT)		e im Grenzzustand der Tragfêhigkeit		
	Nachweis			[-]
Auflager A Auflager B	Auflagerpre	essung a a \ ``} * A 4* & @	OK n.OK	0.37
Auflager C Auflager D Auflager E	Auflagerpre Auflagerpre Auflagerpre	essung essung	OK OK OK	0.15 0.04 0.07
Adiago L	X^¦æ)\^¦`} Bewehrung	} *• ê} *^	OK OK	


Pos. WT-2.3-2

K UbXUffj[Yf'Hf} [Yf'!'GWl Y]VYbbUWl k Y]gY

System

Positionsplan Positionsplan

Bauteile Bauteil-Positionen

Scheiben Scheiben-Positionen

<u>Stahlbeton</u>	Position		\rt	Material	Dicke
		Ž∕á	Šê} * •	Quer	[cm]
	WT-5	0.0 is	30	C 25/30 Q	20.0
			B 500SA	B 500SA	

 Winkel:
 Bewehrungsrichtung r

 iso:
 isotropes Material

 Q:
 Õ^• ৫¾• \4|³ ³ * ÁÛ æ: ã:

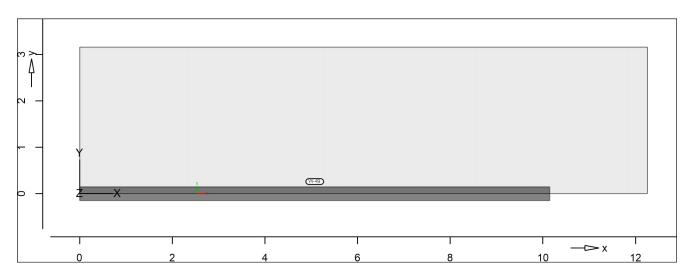
Expositionsklasse *^{ êi ÁÖΦÁÒÞÁFJJŒËËÆVæàÆÆ

Position	Seite	KI	Kommentar
WT-5	umlaufend	XC1	d[&\^}Á(å^¦Áncê}åãfÁ)æ∙∙

 Koordinaten
 Position
 x
 y

 Image: Emily state of the control of

0.00 0.00 12.26 0.00 12.26 3.16 0.00 3.16

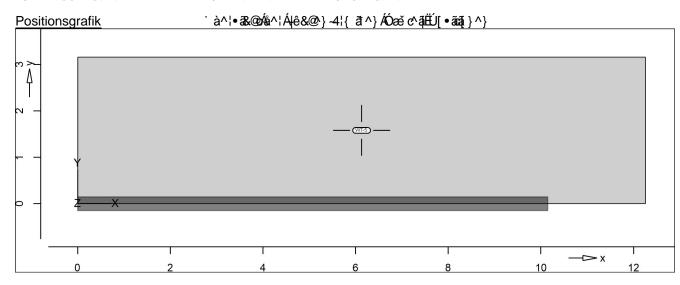

<u>Auflager</u> Auflager-Positionen

Positionsgrafik à^!• 3&@4\\(^!\)ACE \at ^!\\(\)E\([\)!\)[• \(\)ati}\\^\)

ÜPÄÄÜ04& @ ą̃ ÁÜ>å Seite: 2-217

Linienlager	Linienlager-Position	nen					
lokal			K _{T,r} [kN/m/m]		ł [kN/m	< _{T,s} /m]	K _{R,t} [kNm/rad/m]
	W-49	+/-	fest	+/-	6653		frei
Koordinaten	Position					x [m]	у [m]
	W-49					0.00 10.15	0.00 0.00
<u>Material</u>	Materialkennwerte						
Stahlbeton DIN EN 1992-1-1	Position		Materia	l	Wichte	E _{cm}	
DIN EN 1332 1 1					ŽÞÐ()á	ŽÞÐ(;	
	WT-5		C 25/30 C)	25.00	31000	
	Q: Õ^•¢^ã•\4 } `}*ÂÛ*æ	ãc				12900	2.60
Betonstahl	Position		Materia	l	Wichte	Es	
DIN EN 1992-1-1					ŽÞÐ() á	G ŽÞÐ(;	
	WT-5		B 500SA		78.50	200000	
						77000	525.00
Auswertung	Geometrische Ausv	vertung (der Positionen				
Ø ê&@}	Ø ê&@}~4¦{ ðt^ÁÓæ	é c^ą́ËÚ[•	ãtā[} ^}				
<u>Stahlbeton</u>	Position			Dick [cm		Ø ê&@ Ž(á	Volumen Žٍ á
	WT-5			20.		38.74	7.75

Belastungen

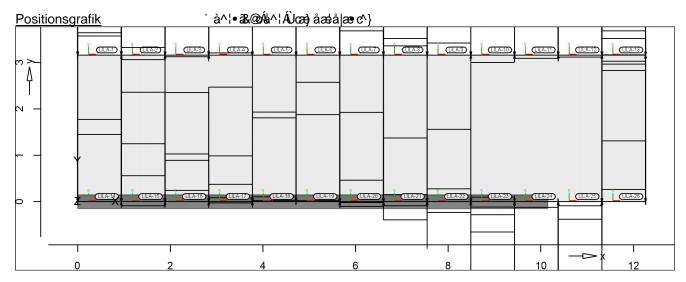

Auftrags-Nr. Position

2023 300 WT-2.3-2 ÙVPËÜPĀĀŪc4&\@ā ÂÛ>å Seite: 2-218

Lastplan Lasten des FE-Modells

<u>Bauteillasten</u> Bauteilbezogene Lasten

 \emptyset [ê&@} -4|{ at ^\(\delta\)e c^\(\delta\)e (\(\delta\)e (\delta\)e (\(\delta\)e (\(\delta\)e (\delta\)e (\(\delta\)e (\delta\)e (\(\delta\)e (\(\delta\)e (\delta\)e (\(\delta\)e (\delta\)e (\(\delta\)e (\delta\)e (\delta\)e (\(\delta\)e (\delta\)e (\(\delta\)e (\delta\)e (\delta\)e (\(\delta\)e (\delta\)e (



Eigengewicht Position EW Lastfall Art [kN/m²]

WT-5 Gk LF-1 PGr 5.00

PGr: Gravitationslast; positive Lasten wirken senkrecht nach unten

<u>Standardlasten</u> Standardlasten im FE-Modell

<u>Linienlasten</u>	Position	EW	Lastfall	Art	p_A, m_A	p_E, m_E
					[kN/m]	,[kNm/m]
	LILA-1	aus D-2	.1 - WT-5_Abs_1			
		Gk	#WT1 #1 LF-1	pGr	43.68	43.68
		Gk	#WT1 LF-1	pGr	9.24	9.24
		Qk.N	#WT1 #1 (PL-1)-1	pGr	8.31	8.31
		Qk.N	#WT1 LF-2	pGr	2.48	2.48
		Qk.N	#WT1 (PL-1)-1	pGr	2.89	2.89

Position

Seite: 2-219

2023 300 WT-2.3-2

ÙVPËÜPÄÄÜd4&\@4 ÁÛ>å

Position	EW	Lastfall	Art	p _A ,m _A [kN/m],[k	p _E ,m _E «Nm/m]
LILA-2	aus D-2.	1 - WT-5_Abs_2			
	Gk	#WT1 #1 LF-1	pGr	40.63	40.63
	Gk	#WT1 LF-1	pGr	11.03	11.03
	Qk.N	#WT1 #1 (PL-1)-1		7.49	7.49
	Qk.N	#WT1 LF-2	pGr	-0.60	-0.60
	Qk.N	#WT1 (PL-1)-1	pGr	4.59	4.59
LILA-3		1 - WT-5_Abs_3	ро.	1.00	1.00
	Gk	#WT1 #1 LF-1	pGr	40.28	40.28
	Gk	#WT1 LF-1	pGr	14.35	14.35
	Qk.N	#WT1 #1 (PL-1)-1	pGr	7.26	7.26
	Qk.N	#WT1 LF-2	pGr	-0.21	-0.21
	Qk.N	#WT1 (PL-1)-1	pGr	5.82	5.82
LILA-4		1 - WT-5_Abs_4	рог	3.02	0.02
	Gk	#WT1 #1 LF-1	pGr	39.81	39.81
	Gk	#WT1 LF-1	pGr	16.36	16.36
	Qk.N	#WT1 #1 (PL-1)-1	pGr	6.99	6.99
	Qk.N	#WT1 LF-2	pGr	0.33	0.33
	Qk.N	•	•	6.28	
LILA-5		#WT1 (PL-1)-1 1 - WT-5_Abs_5	pGr	0.20	6.28
LILA-3	Gk		nCr	20.24	39.34
		#WT1 #1 LF-1	pGr	39.34	
	Gk	#WT1 LF-1	pGr	46.11	46.11
	Qk.N	#WT1 #1 (PL-1)-1	pGr	6.73	6.73
	Qk.N	#WT1 LF-2	pGr	9.68	9.68
- I II A C	Qk.N	#WT1 (PL-1)-1	pGr	11.57	11.57
LILA-6		1 - WT-5_Abs_6	0	00.00	20.00
	Gk	#WT1 #1 LF-1	pGr	39.06	39.06
	Gk	#WT1 LF-1	pGr	55.32	55.32
	Qk.N	#WT1 #1 (PL-1)-1	pGr	6.52	6.52
	Qk.N	#WT1 LF-2	pGr	10.73	10.73
	Qk.N	#WT1 (PL-1)-1	pGr	15.31	15.31
LILA-7		1 - WT-5_Abs_7		00.00	00.00
	Gk	#WT1 #1 LF-1	pGr	38.60	38.60
	Gk	#WT1 LF-1	pGr	32.45	32.45
	Qk.N	#WT1 #1 (PL-1)-1	•	6.26	6.26
	Qk.N	#WT1 LF-2	pGr	3.15	3.15
	Qk.N	#WT1 (PL-1)-1	pGr	11.61	11.61
LILA-8		1 - WT-5_Abs_8	•	00.00	00.00
	Gk	#WT1 #1 LF-1	pGr	38.09	38.09
	Gk	#WT1 LF-1	pGr	24.06	24.06
	Qk.N	#WT1 #1 (PL-1)-1	pGr	6.00	6.00
	Qk.N	#WT1 LF-2	pGr	1.21	1.21
	Qk.N	#WT1 (PL-1)-1	pGr	9.32	9.32
LILA-9		1 - WT-5_Abs_9	0	07.50	07.50
	Gk	#WT1 #1 LF-1	pGr	37.58	37.58
	Gk	#WT1 LF-1	pGr	27.30	27.30
	Qk.N	#WT1 #1 (PL-1)-1	pGr	5.72	5.72
	Qk.N	#WT1 LF-2	pGr	1.56	1.56
	Qk.N	#WT1 (PL-1)-1	pGr	10.63	10.63
LILA-10		1 - WT-5_Abs_10	_		
	Gk	#WT1 #1 LF-1	pGr	36.67	36.67
	Gk	#WT1 LF-1	pGr	12.40	12.40
	Qk.N	#WT1 #1 (PL-1)-1	pGr	5.36	5.36
	Qk.N	#WT1 LF-2	pGr	-0.94	-0.94
	Qk.N	#WT1 (PL-1)-1	pGr	5.51	5.51
LILA-11		1 - WT-5_Abs_11	_		
	Gk	#WT1 #1 LF-1	pGr	36.51	36.51
	Gk	#WT1 LF-1	pGr	12.82	12.82

Position

2023 300 WT-2.3-2

ÙVPËÜPÄÄÜ¢4&\@4 ÁÜ>å Seite: 2-220

Position	EW	Lastfall	Art	p _A ,m _A	p _E ,m _E
					,[kNm/m]
	Qk.N	#WT1 #1 (PL-1)-1	•	5.16	5.16
	Qk.N	#WT1 LF-2	pGr	-0.41	-0.41
	Qk.N	#WT1 (PL-1)-1	pGr	5.26	5.26
LILA-12		1 - WT-5_Abs_12	_		
	Gk	#WT1 #1 LF-1	pGr	36.54	36.54
	Gk	#WT1 LF-1	pGr	12.02	12.02
	Qk.N	#WT1 #1 (PL-1)-1		5.00	5.00
	Qk.N	#WT1 LF-2	pGr	-0.25	-0.25
	Qk.N	#WT1 (PL-1)-1	pGr	4.84	4.84
LILA-13		1 - WT-5_Abs_13			
	Gk	#WT1 #1 LF-1	pGr	28.45	28.45
	Gk	#WT1 LF-1	pGr	-1.97	-1.97
	Qk.N	#WT1 #1 (PL-1)-1	pGr	3.15	3.15
	Qk.N	#WT1 LF-2	pGr	0.02	0.02
	Qk.N	#WT1 (PL-1)-1	pGr	-0.79	-0.79
LILA-14	aus D-3.	1 - WT-5_Abs_1			
	Gk	LF-1	pGr	46.10	46.10
	Gk	#1 gk	pGr	90.22	90.22
	Qk.N	LF-2	pGr	8.70	8.70
	Qk.N	(PL-1)-1	pGr	10.64	10.64
	Qk.N	#1 qk.n	pGr	24.54	24.54
LILA-15	aus D-3.	1 - WT-5_Abs_2			
	Gk	LF-1	pGr	19.94	19.94
	Gk	#1 gk	pGr	14.18	14.18
	Qk.N	LF-2	pGr	-0.50	-0.50
	Qk.N	(PL-1)-1	pGr	7.50	7.50
	Qk.N	₩1 qk.n	pGr	3.38	3.38
LILA-16		1 - WT-5_Abs_3			
	Gk	LF-1	pGr	14.13	14.13
	Gk	#1 gk	pGr	6.20	6.20
	Qk.N	(PL-1)-1	pGr	5.35	5.35
	Qk.N	₩1 qk.n	pGr	1.46	1.46
LILA-17		1 - WT-5_Abs_4		-	
	Gk	LF-1	pGr	14.84	14.84
	Gk	#1 gk	pGr	2.25	2.25
	Qk.N	LF-2	pGr	-0.17	-0.17
	Qk.N	(PL-1)-1	pGr	5.92	5.92
	Qk.N	*1 qk.n	pGr	0.52	0.52
LILA-18		1 - WT-5_Abs_5			
	Gk	LF-1	pGr	48.47	48.47
	Gk	#1 gk	pGr	0.64	0.64
	Qk.N	LF-2	pGr	10.87	10.87
	Qk.N	(PL-1)-1	pGr	11.59	11.59
	Qk.N	#1 qk.n	pGr	0.14	0.14
LILA-19		1 - WT-5_Abs_6	F		• • • • • • • • • • • • • • • • • • • •
	Gk	LF-1	pGr	56.65	56.65
	Gk	#1 gk	pGr	0.15	0.15
	Qk.N	LF-2	pGr	11.26	11.26
	Qk.N	(PL-1)-1	pGr	15.45	15.45
	Qk.N	#1 qk.n	pGr	0.08	0.08
LILA-20		1 - WT-5_Abs_7	٠٠.	0.00	0.00
	Gk	LF-1	pGr	31.41	31.41
	Gk	#1 gk	pGr	-0.60	-0.60
	Qk.N	LF-2	pGr	2.78	2.78
	Qk.N	(PL-1)-1	pGr	11.53	11.53
	Qk.N	#1 qk.n	pGr	-0.09	-0.09
	Q 1	· M	٠	0.00	0.00

martens+puller
Ingenieurgesellschaft mbH Auftrags-Nr. Position 2023 300 WT-2.3-2 ÙVPËÜPÄÄÛc4&\@4 ÁÛ>å

Position EW Lastfall Art $p_A, m_A = p_A$ $[kN/m], [kNi]$	E,ME
IkN/m1 kNi	ന/നി
	11/111]
LILA-21 aus D-3.1 - WT-5_Abs_8	4 40
	1.13
	2.36
	0.91
` '	8.23
	0.54
LILA-22 aus D-3.1 - WT-5_Abs_9	
· · · · · · · · · · · · · · · · · · ·	4.15
10	6.09
Qk.N LF-2 pGr 1.67	1.67
` '	9.36
Qk.N #1 qk.n pGr -1.40 -	1.40
LILA-23 aus D-3.1 - WT-5_Abs_10	
Gk LF-1 pGr -0.68 -	0.68
Gk #1 gk pGr -16.41 -1	6.41
Qk.N LF-2 pGr -1.67 -	1.67
Qk.N (PL-1)-1 pGr 0.61	0.61
Qk.N #1 qk.n pGr -3.93 -	3.93
LILA-24 aus D-3.1 - WT-5_Abs_11	
Gk LF-1 pGr -14.97 -1	4.97
	1.19
Qk.N LF-2 pGr -0.74 -	0.74
	5.84
` ,	0.27
LILA-25 aus D-3.1 - WT-5 Abs 12	
	6.03
	5.31
19	0.54
• • • • • • • • • • • • • • • • • • •	2.28
	5.21
LILA-26 aus D-3.1 - WT-5 Abs 13	<u> </u>
	1.09
The state of the s	6.98
Qk.N LF-2 pGr 1.59	1.59
Qk.N (PL-1)-1 pGr 7.88	7.88
	7.81
pGr: Gravitationslast; positive Lasten wirken senkrecht nach unten	0 1

Einwirkungen

DIN EN 1990 Einwirkungen nach DIN EN 1990

S>:: ^	Beschreibung		
	Typisierung		
Gk	Eigenlasten Ùœ} åæ ^AÒa, a\`}*^}		
	Oce}aa^Aoa;a\ } ~^}		
Qk.N	Nutzlasten		

Sæe^*[¦æîÁOÆÆÝ[@9ÆÁ)åÁOE-^}c@æde•¦ê°{^

Šærcê||^Á\}åÁs^\^}ÁZ`[¦å}`}*Á`Ás^}ÁÒā¸ā\`}*^} Šær cê∥^

Gk LF-1, #1|gk, #WT1|#1|LF-1, #WT1|LF-1

Qk.N LF-2, (PL-1)-1, #1|qk.n, #WT1|#1|(PL-1)-1, #WT1|LF-2, #WT1|(PL-1)-1

Bemessung (GZT+GZG)

Biegung S-As-erf-Iso Scheibenbemessung nach DIN EN 1992-1-1

 $\underline{\text{WT-5}} \qquad \qquad \acute{\text{O}}^{\ } ^{\ } \hat{\text{A}} \hat{\text{A}} \hat{\text{A}} \hat{\text{A}} \hat{\text{A}} \hat{\text{C}} \hat{\text{D}} \hat{\text{C}} \hat{$

Scheibenbemessung nach DIN EN 1992-1-1

(je Scheibenseite)

Mat./Querschnitt

Beton C 25/30, Betonstahl B 500SA

 $\tilde{O} \cdot c^{\dagger} \cdot 4!$ *

Expositionsklasse *^{ êi ÁÖΦÁÒÞÁFJJŒËËÆVæàÆÆÆ

Position Seite KI Kommentar

Bewehrung Vorgaben zur Bewehrungsdefinition

Ó^{~••`}*•¸ã,\^|ÁÁ, ÊÐÁMÁ€ÆÁÁ)€Á

Betondeckung $c_{min}D \&_{def} = 10 / 10$ mm

C_{nom} =

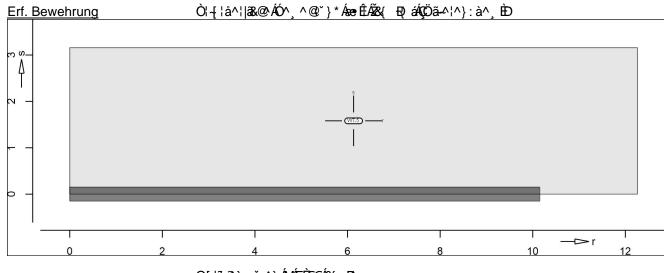
20 mm

Grundbewehrung Bewehrung je Scheibenseite

TæncvÉÁÚdêà^ a_{sg,r} a_{sg,s} <Ž({áĐŽX(á ŽX(Đ)á ŽX(Đ)á

5.03 5.03

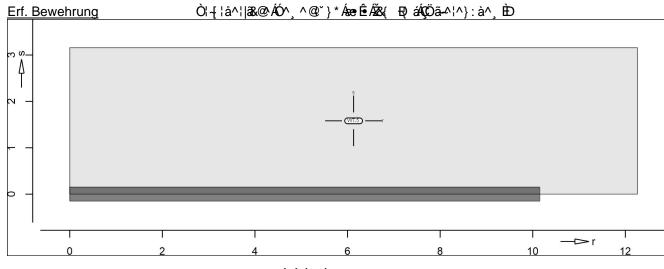
Nachweisparameter nach DIN EN 1992-1-1


T ā, å^•cà^, ^@*} * ÁÇIĒ ÈĐÁ, *¦å^Áà^¦>&\•a&@ā dÈ

ÜPÄÄÜd& @ ã ÁÜ>å Seite: 2-223

<u>as,r</u>

Šê}*•à^¸^@^`}*ÁŞÁËÜæ&@`}*


Q[|ã,ã^}•č~^}ÁNÁFÈE€Á&{ Ð

Õ!`}åà^,^@'`}*K\$æ•*ÊÁMÁ,ÈEHÁ&{ Ð

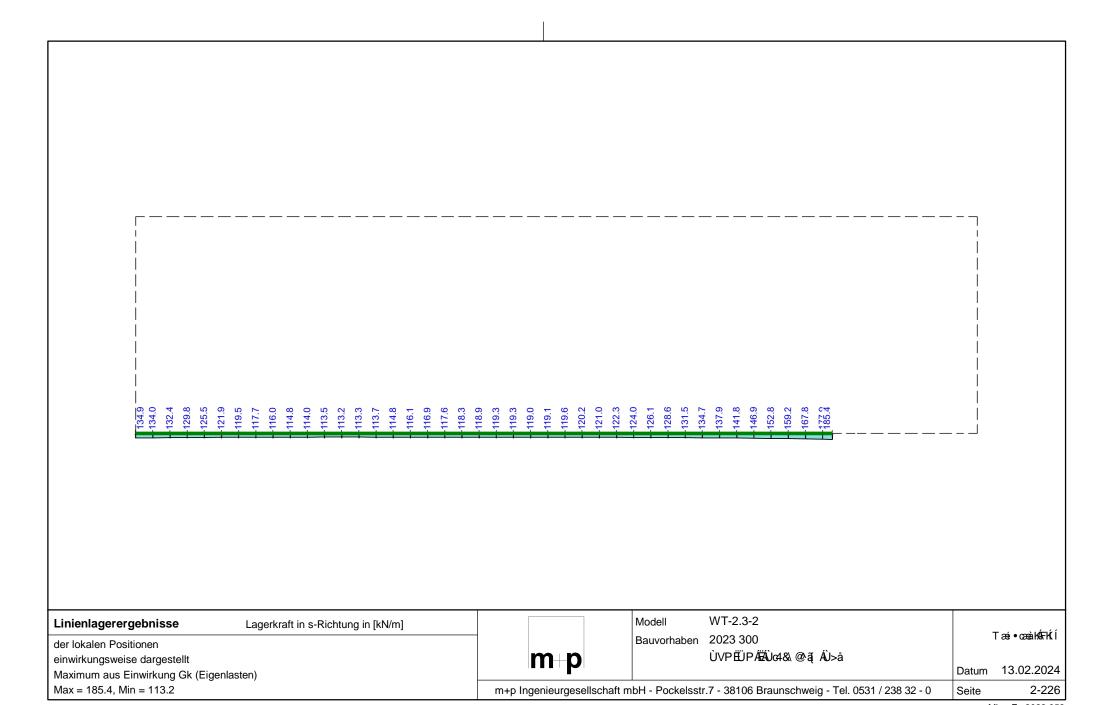
as,s

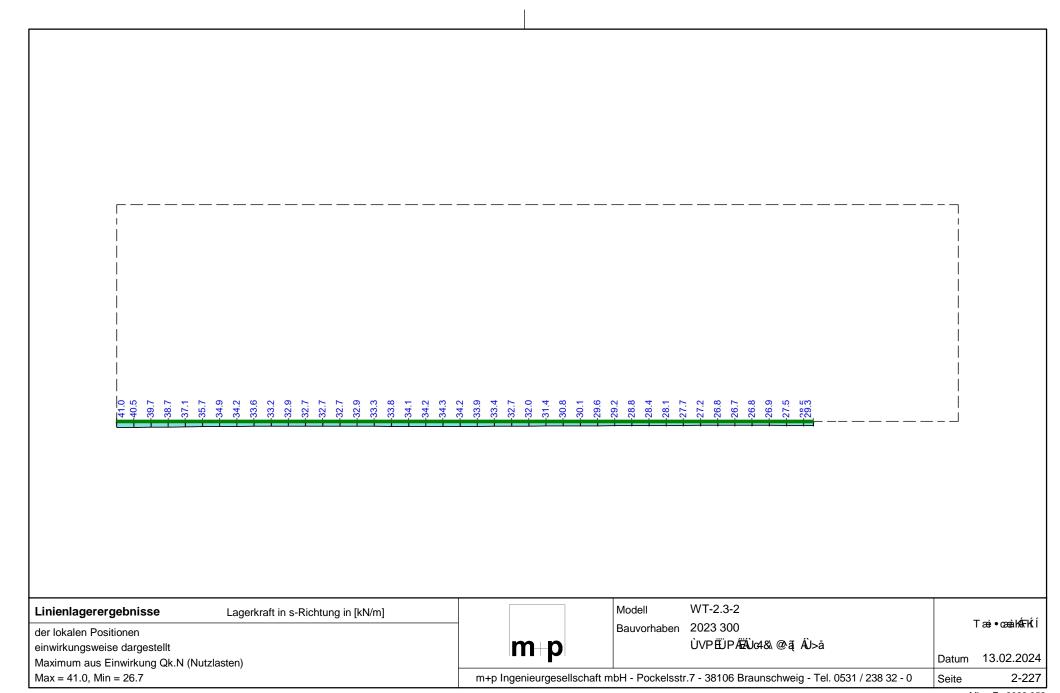
Šê}*•à^¸^@`}*Á§ÁEÜæ&@`}*

@[|ajan}•č~\}ÁMÁFÈE€Á&{ EQ

 $\tilde{O}|^*$ } $\mathring{a}a^, ^@^*$ } * $\mathring{A}ee$ * \hat{E} $\mathring{A}M$

Auftrags-Nr. Position martens+puller
Ingenieurgesellschaft mbH


Seite: 2-225


2023 300

WT-2.3-2

ÙVPËÜPÄÄÜd4&\@4 ÁÛ>å

5 i ZU[Yf_f} ZhY

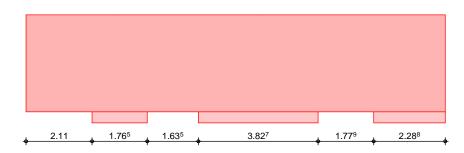
2023 300

WT-2.4-1

ÙVPËÜPĀÄÛc4&\@ã ÁÛ>å

Pos. WT-2.4-1

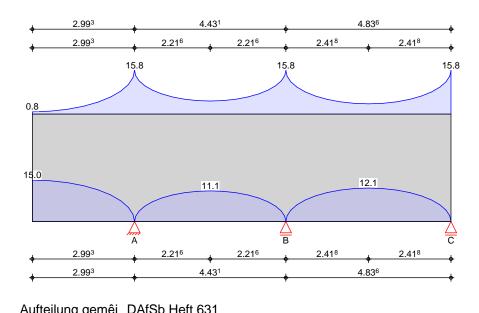
K UbXUffj[Yf'Hf} [Yf


System

Ya) åækæt ^¦Á/¦ê*^¦Á,æ&@ÁÖQÞÁÖÞÁFJJŒËËËÉRP^~Á,HF

M 1:120

M 1:120


Abmessungen Mat./Querschnitt

Feld	b	h	1	Material	h/l
	[cm]	[m]	[m]		[-]
Krag.l.	20.0	3.16	2.99	C 25/30	1.06
Feld 1	20.0	3.16	4.43	C 25/30	0.71
Feld 2	20.0	3.16	4.84	C 25/30	0.65

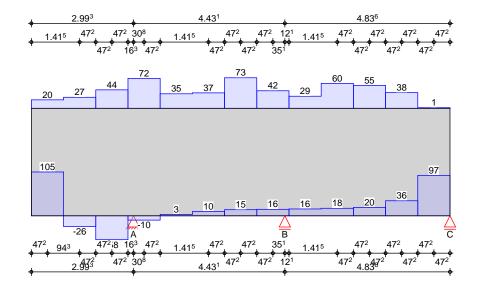
Auflager

Aufl.	Art	a	t
		[cm]	[cm]
Aufl.A	direkt	176.5	20.0
Aufl.B	direkt	382.7	20.0
Aufl.C	direkt	228.8	20.0

Belastungen Gk (Eigenl.)

Eigenlast

Aurtellurig gel	mer DAISD Hell 63 i		
Feld	Kommentar	gesamt	unten, max
		[kN/m]	[kN/m]
Krag.l.	Eigengewicht	15.80	14.96
Feld 1	Eigengewicht	15.80	11.08
Feld 2	Eigengewicht	15.80	12.09


2023 300

WT-2.4-1

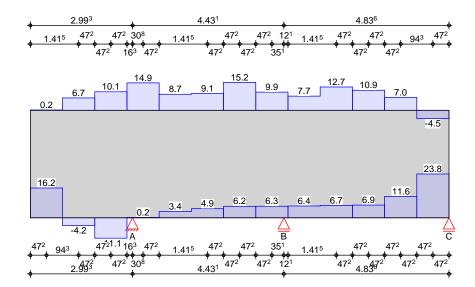
ÙVPËÜPÄÄÜd& @ ą̃ ÁÛ>å

Seite: 2-229

Gk

Nr.	Feld	Angriff	а	S	qı	qr
			[m]	[m]	[kN/m]	[kN/m]
(a) 1	Krag.l.	unten	0.00	0.94	105.32	105.32
(a) 2	Krag.l.	unten	0.94	0.94	-25.84	-25.84
(a) 3	Krag.l.	unten	1.89	0.94	-57.62	-57.62
(a) 4	Krag.l.	unten	2.83	0.94	-10.43	-10.43
(a) 5	Feld 1	unten	0.78	0.94	3.13	3.13
(a) 6	Feld 1	unten	1.72	0.94	10.09	10.09
(a) 7	Feld 1	unten	2.67	0.94	14.59	14.59
(a) 8	Feld 1	unten	3.61	0.94	15.56	15.56
(a) 9	Feld 2	unten	0.12	0.94	16.35	16.35
(a) 10	Feld 2	unten	1.06	0.94	18.05	18.05
(a) 11	Feld 2	unten	2.01	0.94	20.09	20.09
(a) 12	Feld 2	unten	2.95	0.94	36.06	36.06
_(a) 13	Feld 2	unten	3.89	0.94	97.27	97.27
(a) 14	Krag.l.	oben	0.00	0.94	20.34	20.34
_(a) 15	Krag.l.	oben	0.94	0.94	26.53	26.53
(a) 16	Krag.l.	oben	1.89	0.94	44.36	44.36
(a) 17	Krag.l.	oben	2.83	0.94	72.06	72.06
(a) 18	Feld 1	oben	0.78	0.94	34.91	34.91
(a) 19	Feld 1	oben	1.72	0.94	37.08	37.08
(a) 20	Feld 1	oben	2.67	0.94	73.43	73.43
(a) 21	Feld 1	oben	3.61	0.94	42.16	42.16
(a) 22	Feld 2	oben	0.12	0.94	29.06	29.06
(a) 23	Feld 2	oben	1.06	0.94	59.88	59.88
(a) 24	Feld 2	oben	2.01	0.94	54.86	54.86
(a) 25	Feld 2	oben	2.95	0.94	37.64	37.64
(a) 26	Feld 2	oben	3.89	0.94	1.39	1.39

(a)


aus Pos. 'D-3.1 - WT-6'

2023 300

WT-2.4-1

ÙVPËÜPÄÄÛ¢4&\@@ã ÁÛ>å

Qk.N

Т	ra	pez	last	en

Nr.	Feld	Angriff	а	S	qı	qr
			[m]	[m]	[kN/m]	[kN/m]
(a) 1	Krag.l.	unten	0.00	0.94	16.19	16.19
(a) 2	Krag.l.	unten	0.94	0.94	-4.17	-4.17
(a) 3	Krag.l.	unten	1.89	0.94	-11.11	-11.11
(a) 4	Krag.l.	unten	2.83	0.94	0.16	0.16
(a) 5	Feld 1	unten	0.78	0.94	3.37	3.37
(a) 6	Feld 1	unten	1.72	0.94	4.94	4.94
(a) 7	Feld 1	unten	2.67	0.94	6.23	6.23
(a) 8	Feld 1	unten	3.61	0.94	6.28	6.28
(a) 9	Feld 2	unten	0.12	0.94	6.39	6.39
(a) 10	Feld 2	unten	1.06	0.94	6.73	6.73
(a) 11	Feld 2	unten	2.01	0.94	6.90	6.90
(a) 12	Feld 2	unten	2.95	0.94	11.62	11.62
_(a) 13	Feld 2	unten	3.89	0.94	23.81	23.81
(a) 14	Krag.l.	oben	0.00	0.94	0.16	0.16
_(a) 15	Krag.l.	oben	0.94	0.94	6.72	6.72
(a) 16	Krag.l.	oben	1.89	0.94	10.08	10.08
(a) 17	Krag.l.	oben	2.83	0.94	14.90	14.90
(a) 18	Feld 1	oben	0.78	0.94	8.72	8.72
(a) 19	Feld 1	oben	1.72	0.94	9.10	9.10
(a) 20	Feld 1	oben	2.67	0.94	15.20	15.20
(a) 21	Feld 1	oben	3.61	0.94	9.89	9.89
(a) 22	Feld 2	oben	0.12	0.94	7.71	7.71
(a) 23	Feld 2	oben	1.06	0.94	12.67	12.67
(a) 24	Feld 2	oben	2.01	0.94	10.91	10.91
(a) 25	Feld 2	oben	2.95	0.94	6.96	6.96
(a) 26	Feld 2	oben	3.89	0.94	-4.51	-4.51

(a)

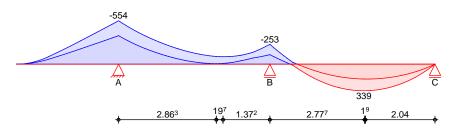
aus Pos. 'D-3.1 - WT-6'

Kombinationen

Kombinationsbildung nach DIN EN 1990 Darstellung der mai gebenden Kombinationen

•œ̂} åð Ð;[¦>à^¦* È

ΕK	(* *EW)	
1	1.35*Gk	
2	1.35*Gk	+1.50*Qk.N



Auftrags-Nr.	Position	martens+puller
2023 300	WT-2.4-1	ÙVPËÜPÄÄÜ¢4&\@`ãį ÁÛ>å

(* *EW) Ek (KI) +1.50*Qk.N 3 1.35*Gk (KI, 1)5 +1.50*Qk.N 1.35*Gk (KI,2)7 1.35*Gk +1.50*Qk.N (1,2)10 1.00*Gk +1.50*Qk.N (KI) 12 1.00*Gk +1.50*Qk.N (1) 1.00*Gk +1.50*Qk.N 15

Grundkombinationen

Moment Med

(2)

Grundkombinationen	Feld	Position [m]	M _{max} [kNm]	EK	M _{min} [kNm]	EK
	Krag.l.	0.00	0.00	1	0.00	1
	3	1.50	-139.18	9	-212.17	2
		2.99	-363.25	12	-553.78	5
	Feld 1	0.00	-363.25	12	-553.78	<u>5</u> 5
		2.22	-28.57	12	-141.70	5
		2.86	-6.75	12	-98.46	5
		4.43	-121.16	10	-253.42	7
	Feld 2	0.00	-121.16	10	-253.42	7
		2.42	330.25	5	181.19	12
		2.78	338.60	5	189.19	12
		4.84	0.00	5	0.00	12
{ [å BÁCE - æt^ \ ê-e^	Тур	Aufl.	F _{z,max} [kN]	EK	F _{z,min} [kN]	EK
	Grundkombin.	Α	667.27	3	408.94	15
		В	560.46	7	285.79	10
		С	384.70	5	226.89	12

Nachweise (GZT)

*^{ EXO (0x ÁO) ÞÁFJ J CEFFE ÉXO CE-Ù cà ÁP ^-4Â HFÉXÇÙ & @cast&@siù & @e -4 ¦ D

Material

Beton C 25/30 Ò|æ•cããêe•{[åˇ|

Betonstahl B 500SA $Ecm = 31000 \text{ N/mm}^2$

Seite: 2-231

Auftrags-Nr.	Position			nartens+pulle genieurgesellschaft mb	er _b H		
2023 300	WT-2.4-1	Ù	VPËÜPÆÄÛ¢4&\	@aţÂÛ>å		Seit	te: 2-232
Betondeckung	Feld	Ort	Exposi	tionskl.	Cmir [mm] [mm]	Cnom [mm]
	Krag.l.	oben unten seitl. Stirnfl.	XC1 XC1 XC1 XC1		10 10 10 10) 10) 10	20 20 20 20
	Feld 1	oben unten seitl.	XC1 XC1 XC1 XC1		10 10 10) 10) 10	20 20 20 20
	Feld 2	oben unten seitl. Stirnfl.	XC1 XC1 XC1 XC1		10 10 10 10) 10) 10	20 20 20 20
Netzbewehrung je Seite	b [cm] 20		A _{s,erf.} <u>Ž&{ t</u> Q á 1.50				
Šê}*•: `*à^, ^@`}*	Ort Aufl.A Aufl.B Feld 2		Med [kNm] -553.9 -253.5 338.6	2 7 5	z [m] 1.72 1.72 1.97	Z [kN] 322.6 147.6 171.9	As,erf. <u>Ž</u> &{ <u>á</u> 7.4 3.4 4.0
OE ~@} * ^ à^¸ ^ @ ` } * Streckenlasten	Feld Krag.l. Feld 1 Feld 2		von x [m] 0.00 0.00 0.00	bis x [m] 2.99 4.43 4.84	Aed [kN/m] 227.06 0.00 205.66	2 0 4	As,erf. Ž&{ EQ á 5.22 1.68 4.73
Grundkombinationen	{ æ¢ã, æ¼s	ĕ ∻ œ} * ^ 47 19 -23 43 163 + 943 163	å^Ææ oÆĕ • Æ 43 65 2.216 45	73 65 47	75 86 1.886 41 ¹ 5		-167 C
Knotennachweise Auflager A	Ek 3	nger nach H F _{Ed} [kN] 667.27] Ž&{á	gew.	A _s <u>Ž&(</u> á 0.00	F _{Rc} [kN] 4500.75] [-]
Auflager B	Innenaufla Ek 7	nger nach F F _{Ec} [kN] 560.46] Ž&{á	gew.	A _s Ž&(á 0.00	F _{Ro} [kN] 9760.12] [-]
	Verankeru Beiwert a Verbundbe	1				gera	der Stab 1.00 gut

2023 300 WT-2.4-1 ÙVPËÜPÄÄÜ¢4&\ @ ą̃ ÁÙ>å

i	<	lь	As,erf/As,vorh	lb,erf	lb,vorh
	[mm]	[cm]	[-]	[cm]	[cm]
td1	16	0.0	0.00	0.0	-
td2	16	64.6	0.45	29.1	_

Seite: 2-233

Auflager C Endauflager nach Heft 600, Kap. 9.7

Ek	F _{Ed}	A _c	gew.	A _s	F_{Rd}	
	[kN]	∡ox{ a		∡ok{ a	[kN]	[-]
5	384.70	4575.00	l<€	0.00	5185.00	0.07

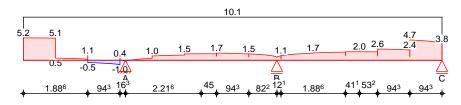
i	<	lь	As,erf/As,vorh	lb,erf	lb,vorh
	[mm]	[cm]	[-]	[cm]	[cm]
td1	16	64.6	0.45	19.4	226.8

Bewehrungswahl

B 500SA

Netzl	bewe	hrung
je Se	ite	

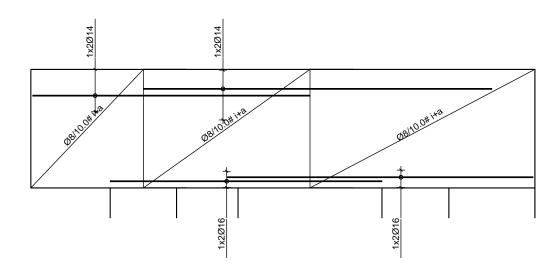
Feld	As,erf.	*^、ê@c	As,vorh.	
	Ž&{ Ð()á	[mm/cm]	Ž&{ Ð(á	[-]
alle	1.50	<Ì₩€È€	5.03	0.30


Ort	von h	bis h	As,erf.	∠ulage	As,vorh.*	
	[m]	[m]	[cm ²]		[cm ²]	[-]
Aufl.A	0.90	2.03	2.61	-	11.37	0.23
Aufl.A	2.03	3.16	4.81	FEG< FI	14.45	0.33
Feld 1	0.00	0.44	0.00	FEG≼FÎ	8.48	0.00
Aufl.B	0.48	1.81	1.65	-	13.35	0.12
Aufl.B	1.81	3.14	1.74	FEG< FI	16.43	0.11
Feld 2	0.00	0.47	3.95	FEG≼FÎ	8.79	0.45
* inkl Netzbey	vehrung					

OE ~@e} * ·	^à^ (^@`	} *
Strecker			

Feld	von x	bis x	As,erf.	Zulage	As,vorh.*	
	[m]	[m]	[cm ² /m]	Ó>* [*] ^	[cm ² /m]	[-]
Krag.l.	0.00	2.99	5.22	-/-	10.05	0.52
Feld 1	0.00	4.43	1.68	-/-	10.05	0.17
Feld 2	0.00	4.84	4.73	-/-	10.05	0.47

* inkl. Netzbewehrung, durch Steckb>gel zu schliei en


Streckenlasten

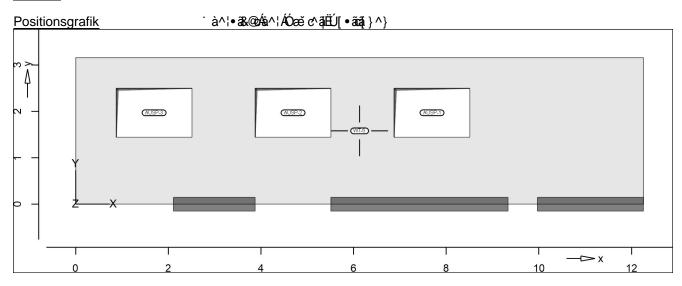
2023 300 WT-2.4-1

Bewehrungsskizze M 1:100

Randeinfassung umlaufend 2Ø12 + Bügel Ø8/15

Œ æ*^¦\¦ê-e^	charakteristische Lasten nach Heft 631					
	EW	Auflager	$F_{z,max}$	$F_{z,min}$		
			[kN]	[kN]		
	Gk	Auflager A	419.4	419.4		
		Auflager B	309.9	309.9		
		Auflager C	233.5	233.5		
	Qk.N	Auflager A	67.4	-7.0		
		Auflager B	94.7	-16.1		
		Auflager C	46.4	-4.4		
Zusammenfassung	Zusammenfassung der Nac	chweise				
Nachweise (GZT)	Nachweise im Grenzzustand der Tragfêhigkeit					
	Nachweis					
				[-]		
Auflager A	Auflagerpressung		OK	0.15		
Auflager B	Auflagerpressung		OK	0.06		
Auflager C	Auflagerpressung		OK	0.07		
	X^¦æ}\^¦`}*• ê}*^		OK			
	Bewehrungswahl		OK			

Auftrags-Nr. Position


2023 300 WT-2.4-2 ÙVPËÜPÆÜQ4&\@a[AÛ>å Seite: 2-235

Pos. WT-2.4-2 K UbXUffj[Yf 'Hf} [Yf '! 'GW Y]VYbbUW k Y]gY

<u>System</u>

Positionsplan Positionsplan

Bauteile Bauteil-Positionen

Scheiben Scheiben-Positionen

Stahlbeton	Position	Winkel	Art		Material	Dicke
		Ž∕á		Šê} * •	Quer	[cm]
	WT-6	0.0	iso		C 25/30 Q	20.0
				B 500SA	B 500SA	

Expositionsklasse *^{ êi ÁÖQÞÁÖÞÁFJJQËËËÉVæàLÁ È

AUSP-2

AUSP-3

<u> </u>	(0.70 470.700 000 10 10 000 10 10 000 10 10 10 10 1					
	Position	Seite	KI	Kommentar		
	WT-6	umlaufend	XC1	d[&\^} A[å^¦Acê}åã	Á,æ•	
Koordinaten	Position			X	у	
				[m]	[m]	
	WT-6			0.00	0.00	
				12.26	0.00	
				12.26	3.16	
				0.00	3.16	
Aussparungen	Position			Х	у	
				[m]	[m]	
	AUSP-1			8.51	1.44	
				6.88	1.44	
				6.88	2.50	

8.51

5.51 3.88

3.88

5.51

2.51

0.88

0.88

2.50

1.44

1.44

2.50

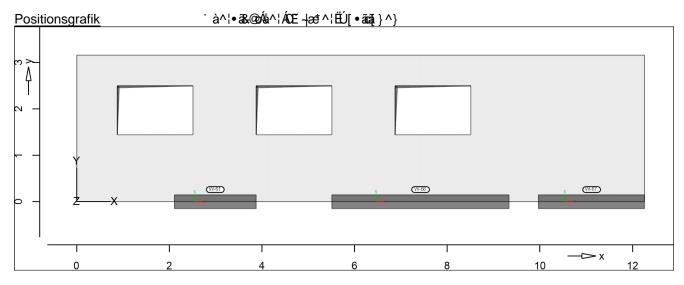
2.50

1.44

1.44

2.50

viewei versiai zuzz - copyligii zuzi - iiib AEC sottware Giibr


Auftrags-Nr. Position 2023 300 WT-2.4-2

ÙVPËÜPĀÄÛc4&\@ã ÁÛ>å

Seite: 2-236

Position	x	у
	[m]	[m]
	2 51	2 50

<u>Auflager</u> Auflager-Positionen

<u>Linienlager</u>	Linienlager-Positionen				
lokal		$K_{T,r}$ [kN/m/m]	K⊤ [kN/m/n		K _{R,t} [kNm/rad/m]
	W-61, W-66, W- +/-	fest +,	_	-	frei
<u>Koordinaten</u>	Position			x [m]	y [m]
	W-61			2.11	0.00
				3.88	0.00
	W-66			5.51	0.00
				9.34	0.00
	W-67			9.97	0.00
				12.26	0.00
<u>Material</u>	Materialkennwerte				
Stahlbeton DIN EN 1992-1-1	Position	Material	Wichte	E _{cm} G	
DIN EN 1992-1-1			ŽÞÐ á	ŽDĐ}{á	
	WT-6	C 25/30 Q	25.00	31000	25.00
	Q: Õ^• ơ ỡ • \ 4!}			12900	2.60
<u>Betonstahl</u>	Position	Material	Wichte	Es	
DIN EN 1992-1-1			* <i>'</i>	Ğ. G.	
	14/7-0	5	ŽÞÐ á	Ž>Đ(á	
	WT-6	B 500SA	78.50	200000 77000	
					0=0.00

Auftrags-Nr. Position

ÙVPËÜPÄÄÛ¢4&\@@ã ÁÛ>å

Seite: 2-237

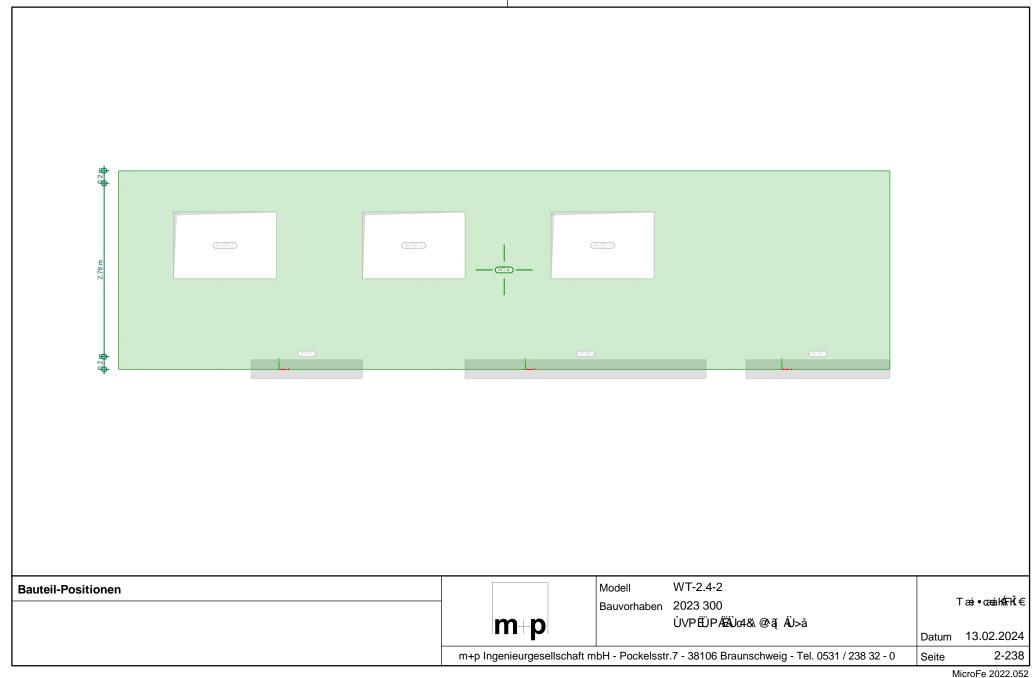
Auswertung

2023 300

Geometrische Auswertung der Positionen

Ø|ê&@\}

Ø|ê&@^} -4|{ ã^ÁÓæĕ c^ãŒÚ[•ãæ]}^}

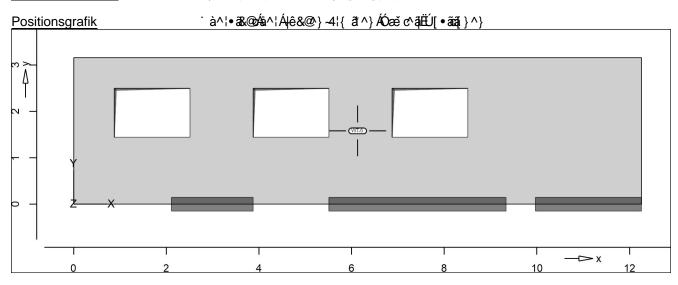

Stahlbeton

Position Ø|ê&@ Dicke Volumen Ž á [cm]

WT-6

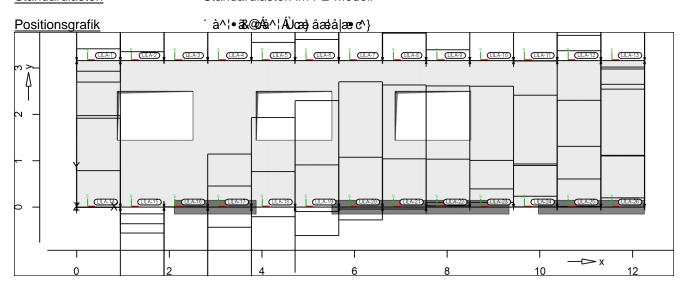
WT-2.4-2

Ž á 6.71 20.0 33.54



2023 300 WT-2.4-2 ÙVPËÜPĀĀŪd& @ ą̃ ÂŪ>å Seite: 2-239

Belastungen


Lastplan Lasten des FE-Modells

<u>Bauteillasten</u> Bauteilbezogene Lasten

Eigengewicht	Position	EW	Lastfall	Art	g
					[kN/m ²]
	WT-6	Gk	LF-1	PGr	5.00
	PGr: Gravitations	last; positive Laste	en wirken senkrecht na	ach unten	

<u>Standardlasten</u> Standardlasten im FE-Modell

<u>Linienlasten</u>	Position	EW	Lastfall	Art	p_A,m_A	p_E, m_E
					[kN/m]	[kNm/m]
	LILA-1	aus D-2	.1 - WT-6_Abs_1			
		Gk	#WT1 #1 LF-1	pGr	23.13	23.13
		Gk	#WT1 LF-1	pGr	-2.79	-2.79
		Qk.N	#WT1 #1 (PL-1)-1	pGr	1.52	1.52
		Qk.N	#WT1 (PL-1)-1	pGr	-1.36	-1.36

Position

2023 300 WT-2.4-2

ÙVPËÜPĀĀÚc4& @ ą̃ ÁÚ>å

Seite: 2-240

Position	EW	Lastfall	Art	p _A ,m _A [kN/m]	p _E ,m _E [kNm/m],
LILA-2	aus D-2	.1 - WT-6_Abs_2			
	Gk	#WT1 #1 LF-1	pGr	8.05	8.05
	Gk	#WT1 LF-1	pGr	18.48	18.48
	Qk.N	#WT1 #1 (PL-1)-1	pGr	1.14	1.14
	Qk.N	#WT1 (PL-1)-1	pGr	5.58	5.58
LILA-3		.1 - WT-6_Abs_3	po.	0.00	0.00
LILITO	Gk	#WT1 #1 LF-1	pGr	26.20	26.20
	Gk	#WT1 LF-1	pGr	18.16	18.16
	Qk.N	#WT1 #1 (PL-1)-1	pGr	4.09	4.09
	Qk.N Qk.N	#WT1 (PL-1)-1	pGr	5.99	5.99
LILA-4		.1 - WT-6_Abs_4	рОі	3.33	5.55
LILA-4	Gk		nCr	EE 12	EE 12
		#WT1 #1 LF-1	pGr	55.43	55.43
	Gk	#WT1 LF-1	pGr	16.63	16.63
	Qk.N	#WT1 #1 (PL-1)-1	pGr	8.64	8.64
	Qk.N	#WT1 (PL-1)-1	pGr	6.27	6.27
LILA-5		.1 - WT-6_Abs_5	_	4= 00	4= 00
	Gk	#WT1 #1 LF-1	pGr	15.02	15.02
	Gk	#WT1 LF-1	pGr	19.89	19.89
	Qk.N	#WT1 #1 (PL-1)-1	pGr	2.35	2.35
	Qk.N	#WT1 (PL-1)-1	pGr	6.36	6.36
LILA-6	aus D-2.	.1 - WT-6_Abs_6			
	Gk	#WT1 #1 LF-1	pGr	17.31	17.31
	Gk	#WT1 LF-1	pGr	19.78	19.78
	Qk.N	#WT1 #1 (PL-1)-1	pGr	2.73	2.73
	Qk.N	#WT1 (PL-1)-1	pGr	6.37	6.37
LILA-7		.1 - WT-6_Abs_7	<u> </u>		
	Gk	#WT1 #1 LF-1	pGr	56.67	56.67
	Gk	#WT1 LF-1	pGr	16.76	16.76
	Qk.N	#WT1 #1 (PL-1)-1	pGr	8.86	8.86
	Qk.N	#WT1 (PL-1)-1	pGr	6.34	6.34
LILA-8		.1 - WT-6_Abs_8	рОі	0.54	0.54
LILA-0	Gk		nCr	22.00	22.00
		#WT1 #1 LF-1	pGr	22.98	22.98
	Gk	#WT1 LF-1	pGr	19.18	19.18
	Qk.N	#WT1 #1 (PL-1)-1	pGr	3.57	3.57
	Qk.N	#WT1 (PL-1)-1	pGr	6.32	6.32
LILA-9		.1 - WT-6_Abs_9	_		
	Gk	#WT1 #1 LF-1	pGr	9.00	9.00
	Gk	#WT1 LF-1	pGr	20.07	20.07
	Qk.N	#WT1 #1 (PL-1)-1	•	1.42	1.42
-	Qk.N	#WT1 (PL-1)-1	pGr	6.29	6.29
LILA-10		.1 - WT-6_Abs_10			
	Gk	#WT1 #1 LF-1	pGr	43.45	43.45
	Gk	#WT1 LF-1	pGr	16.44	16.44
	Qk.N	#WT1 #1 (PL-1)-1	pGr	6.48	6.48
	Qk.N	#WT1 LF-2	pGr	-0.02	-0.02
	Qk.N	#WT1 (PL-1)-1	pGr	6.19	6.19
LILA-11	aus D-2	.1 - WT-6_Abs_11			
	Gk	#WT1 #1 LF-1	pGr	40.05	40.05
	Gk	#WT1 LF-1	pGr	14.81	14.81
	Qk.N	#WT1 #1 (PL-1)-1	pGr	4.99	4.99
	Qk.N	#WT1 LF-2	pGr	-0.03	-0.03
	Qk.N	#WT1 (PL-1)-1	pGr	5.92	5.92
LILA-12		.1 - WT-6_Abs_12	احم	0.02	0.02
LILA IZ	Gk	#WT1 #1 LF-1	pGr	23.27	23.27
	Gk	#WT1 LF-1	pGr	14.37	14.37
	Qk.N	#WT1 #1 (PL-1)-1	•	1.29	1.29
	Qk.N	#WT1 LF-2	pGr	0.01	0.01

Position

2023 300 WT-2.4-2

ÙVPËÜPÄÄÜ¢4&\@4 ÁÜ>å Seite: 2-241

Qk.N #WT1 (PL-1)-1 pGr 5.67 5.67 5.67	Position	EW	Lastfall	Art	p _A ,m _A [kN/m].	p _E ,m _E [kNm/m]
Lila-13		Qk.N	#WT1l(PL-1)-1	pGr		
GK	LILA-13					
GK				pGr	13.73	13.73
Qk,N #WT1 #F PL-1)-1 pGr						
Qk.N #WT1 E-2 pGr -1.08 -1.08 Qk.N #WT1 (PL-1)-1 pGr -3.67 -3.67 -3.67						
Qk.N #WT1 (PL-1)-1 pGr -3.67 -3.67						
Lila-14						
Gk	I II A-14			POI	0.01	0.01
Gk #1 gk pGr 93.48 93.48 Qk.N LF-2 pGr -0.04 -0.04 Qk.N LF-2 pGr -0.04 -0.04 Qk.N W -1-1-1 pGr 4.72 4.72 Qk.N #1 qk.n pGr 11.51 11.51				nGr	11 84	11 84
Qk.N LF-2 pGr -0.04 -0.04 Qk.N (PL-1)-1 pGr 4.72 4.72 Qk.N #1 qk.n pGr 11.51 11.51 11.51						
Qk.N						
Qk.N						
LILA-15						
Gk	LILA-15			<u>ро.</u>		
Gk #1 gk pGr -23.72 -23.72 Qk.N LF-2 pGr 0.01 0.01 Qk.N (PL-1)-1 pGr -0.86 -0.86 Qk.N #1 qk.n pGr -3.32 -3.32 -3.32				pGr	-2.12	-2.12
Qk.N LF-2 pGr 0.01 0.01 Qk.N (PL-1)-1 pGr -0.86 -0.86 Qk.N #1 qk.n pGr -3.32 -3.32 -3.32						
Qk.N						
Qk.N				•		
LILA-16			` '	•		
Gk LF-1 pGr -12.40 -12.40 Gk #1 gk pGr -45.22 -45.22 Qk.N LF-2 pGr 0.04 0.04 Qk.N (PL-1)-1 pGr -4.99 -4.99 Qk.N #1 qk.n pGr -6.16 -6.16 LILA-17	LILA-16			ρο.	0.02	
Gk				pGr	-12.40	-12.40
Qk.N LF-2 pGr 0.04 0.04 Qk.N (PL-1)-1 pGr -4.99 -4.99 Qk.N #1 qk.n pGr -6.16 -6.16 Ch.						
Qk.N (PL-1)-1 pGr -4.99 -4.99 Qk.N #1 qk.n pGr -6.16 -6.16 ClILA-17 aus D-3.1 - WT-6_Abs_4 Gk						
Qk.N						
LILA-17						
Gk	LILA-17	aus D-3.				
Gk		Gk	LF-1	pGr	6.86	6.86
Qk.N		Gk	#1 gk		-17.29	-17.29
LILA-18 aus D-3.1 - WT-6_Abs_5		Qk.N			2.73	2.73
Gk LF-1 pGr 11.59 11.59 Gk #1 gk pGr -8.46 -8.46 Qk.N (PL-1)-1 pGr 4.61 4.61 Qk.N #1 qk.n pGr -1.24 -1.24 LILA-19 aus D-3.1 - WT-6_Abs_6 Gk LF-1 pGr 13.77 13.77 Gk #1 gk pGr -3.68 -3.68 Qk.N (PL-1)-1 pGr 5.48 5.48 Qk.N #1 qk.n pGr -0.55 -0.55 LILA-20 aus D-3.1 - WT-6_Abs_7 Gk LF-1 pGr 16.22 16.22 Gk #1 gk pGr -1.64 -1.64 Qk.N (PL-1)-1 pGr 6.45 Qk.N (PL-1)-1 pGr 6.45 Qk.N #1 qk.n pGr -0.22 -0.22 LILA-21 aus D-3.1 - WT-6_Abs_8 Gk LF-1 pGr 15.80 15.80 Gk #1 gk pGr -0.24 -0.24 Qk.N (PL-1)-1 pGr 6.27 6.27 LILA-22 aus D-3.1 - WT-6_Abs_9 Gk LF-1 pGr 15.71 15.71 Gk #1 gk pGr 0.64 0.64 Qk.N (PL-1)-1 pGr 6.20 6.20 Qk.N (PL-1)-1 pGr 6.20 6.20 Qk.N #1 qk.n pGr 0.18 0.18 LILA-23 aus D-3.1 - WT-6_Abs_10 Gk LF-1 pGr 15.67 15.67		Qk.N	#1 qk.n	pGr	-2.58	-2.58
Gk #1 gk pGr 4.61 4.61 Qk.N (PL-1)-1 pGr 4.61 4.61 Qk.N #1 qk.n pGr -1.24 -1.24	LILA-18					
Qk.N (PL-1)-1 pGr 4.61 4.61 Qk.N #1 qk.n pGr -1.24 -1.24					11.59	
Qk.N			#1 gk		-8.46	-8.46
LILA-19 aus D-3.1 - WT-6_Abs_6						
Gk LF-1 pGr 13.77 13.77 Gk #1 gk pGr -3.68 -3.68 Qk.N (PL-1)-1 pGr 5.48 5.48 Qk.N #1 qk.n pGr -0.55 -0.55 LILA-20				pGr	-1.24	-1.24
Gk #1 gk pGr -3.68 -3.68 Qk.N (PL-1)-1 pGr 5.48 5.48 Qk.N #1 qk.n pGr -0.55 -0.55 LILA-20 aus D-3.1 - WT-6_Abs_7 Gk LF-1 pGr 16.22 16.22 Gk #1 gk pGr -1.64 -1.64 Qk.N (PL-1)-1 pGr 6.45 6.45 Qk.N #1 qk.n pGr -0.22 -0.22 LILA-21 aus D-3.1 - WT-6_Abs_8 Gk LF-1 pGr 15.80 15.80 Gk #1 gk pGr -0.24 -0.24 Qk.N (PL-1)-1 pGr 6.27 6.27 LILA-22 aus D-3.1 - WT-6_Abs_9 Gk LF-1 pGr 15.71 15.71 Gk #1 gk pGr 0.64 0.64 Qk.N (PL-1)-1 pGr 6.20 6.20 Qk.N #1 qk.n pGr 0.18 0.18 LILA-23 aus D-3.1 - WT-6_Abs_10 Gk LF-1 pGr 15.67 15.67	LILA-19					
Qk.N (PL-1)-1 pGr 5.48 5.48 Qk.N #1 qk.n pGr -0.55 -0.55 LILA-20						_
Qk.N #1 qk.n pGr -0.55 -0.55 LILA-20 aus D-3.1 - WT-6_Abs_7 GK LF-1 pGr 16.22 16.22 Gk LF-1 pGr -1.64 -1.64 Qk.N (PL-1)-1 pGr 6.45 6.45 Qk.N #1 qk.n pGr -0.22 -0.22 LILA-21 aus D-3.1 - WT-6_Abs_8 GK LF-1 pGr 15.80 15.80 Gk #1 gk pGr -0.24 -0.24 Qk.N (PL-1)-1 pGr 6.27 6.27 LILA-22 aus D-3.1 - WT-6_Abs_9 GK LF-1 pGr 15.71 15.71 Gk #1 gk pGr 0.64 0.64 Qk.N (PL-1)-1 pGr 6.20 6.20 Qk.N #1 qk.n pGr 0.18 0.18 LILA-23 aus D-3.1 - WT-6_Abs_10 GK LF-1 pGr 15.67 15.67						
LILA-20 aus D-3.1 - WT-6_Abs_7						
Gk LF-1 pGr 16.22 16.22 Gk #1 gk pGr -1.64 -1.64 Qk.N (PL-1)-1 pGr 6.45 6.45 Qk.N #1 qk.n pGr -0.22 -0.22 LILA-21				pGr	-0.55	-0.55
Gk #1 gk pGr -1.64 -1.64 Qk.N (PL-1)-1 pGr 6.45 6.45 Qk.N #1 qk.n pGr -0.22 -0.22 LILA-21	LILA-20			_		
Qk.N (PL-1)-1 pGr 6.45 6.45 Qk.N #1 qk.n pGr -0.22 -0.22 LILA-21						
Qk.N #1 qk.n pGr -0.22 -0.22 LILA-21						
LILA-21 aus D-3.1 - WT-6_Abs_8 Gk			` ,			
Gk LF-1 pGr 15.80 15.80 Gk #1 gk pGr -0.24 -0.24 Qk.N (PL-1)-1 pGr 6.27 6.27 LILA-22 aus D-3.1 - WT-6_Abs_9 Gk LF-1 pGr 15.71 15.71 Gk #1 gk pGr 0.64 0.64 Qk.N (PL-1)-1 pGr 6.20 6.20 Qk.N #1 qk.n pGr 0.18 0.18 LILA-23 aus D-3.1 - WT-6_Abs_10 Gk LF-1 pGr 15.67 15.67	I II A 04			pGr	-0.22	-0.22
Gk #1 gk pGr -0.24 -0.24 Qk.N (PL-1)-1 pGr 6.27 6.27 LILA-22 aus D-3.1 - WT-6_Abs_9 Gk LF-1 pGr 15.71 15.71 Gk #1 gk pGr 0.64 0.64 Qk.N (PL-1)-1 pGr 6.20 6.20 Qk.N #1 qk.n pGr 0.18 0.18 LILA-23 aus D-3.1 - WT-6_Abs_10 Gk LF-1 pGr 15.67 15.67	LILA-21			0	45.00	45.00
Qk.N (PL-1)-1 pGr 6.27 6.27 Aus D-3.1 - WT-6_Abs_9 Gk LF-1 pGr 15.71 15.71 Gk #1 gk pGr 0.64 0.64 Qk.N (PL-1)-1 pGr 6.20 6.20 Qk.N #1 qk.n pGr 0.18 0.18 LILA-23 Qk LF-1 pGr 15.67 15.67				•		
LILA-22						
Gk LF-1 pGr 15.71 15.71 Gk #1 gk pGr 0.64 0.64 Qk.N (PL-1)-1 pGr 6.20 6.20 Qk.N #1 qk.n pGr 0.18 0.18 LILA-23 aus D-3.1 - WT-6_Abs_10 Gk LF-1 pGr 15.67 15.67	I II A 22			pGr	0.27	0.27
Gk #1 gk pGr 0.64 0.64 Qk.N (PL-1)-1 pGr 6.20 6.20 Qk.N #1 qk.n pGr 0.18 0.18 LILA-23 aus D-3.1 - WT-6_Abs_10 Gk LF-1 pGr 15.67 15.67	LILM-ZZ			nGr	15 71	1 <i>E</i> 71
Qk.N (PL-1)-1 pGr 6.20 6.20 Qk.N #1 qk.n pGr 0.18 0.18 LILA-23 aus D-3.1 - WT-6_Abs_10 Gk LF-1 pGr 15.67 15.67						
Qk.N #1 qk.n pGr 0.18 0.18 LILA-23 aus D-3.1 - WT-6_Abs_10 Gk LF-1 pGr 15.67 15.67						
LILA-23 aus D-3.1 - WT-6_Abs_10 Gk LF-1 pGr 15.67 15.67						
Gk LF-1 pGr 15.67 15.67	I II A 22			pGf	0.18	0.18
·	LILM-23			n(=r	15 67	15 67
Gr #1 gr pg1 2.30 2.30						
		OK.	" I I giv	ρΟι	2.50	۷.50

Auftrags-Nr.	Position	martens+puller
2023 300	WT-2.4-2	 ÙVPËÜPÆÄÜ¢4&\@Aį ÁÛ>å

Position	EW	Lastfall	Art	p_A, m_A	p _E ,m _E
				. [kN/m]	,[kNm/m]
	Qk.N	LF-2	pGr	0.03	0.03
	Qk.N	(PL-1)-1	pGr	6.07	6.07
	Qk.N	#1 qk.n	pGr	0.63	0.63
LILA-24	aus D-3	3.1 - WT-6_Abs_1:	1		
	Gk	LF-1	pGr	14.48	14.48
	Gk	#1 gk	pGr	5.61	5.61
	Qk.N	LF-2	pGr	0.08	0.08
	Qk.N	(PL-1)-1	pGr	5.38	5.38
	Qk.N	#1 qk.n	pGr	1.44	1.44
LILA-25	aus D-3	3.1 - WT-6_Abs_12	2		
	Gk	LF-1	pGr	22.22	22.22
	Gk	#1 gk	pGr	13.84	13.84
	Qk.N	LF-2	pGr	0.11	0.11
	Qk.N	(PL-1)-1	pGr	7.86	7.86
	Qk.N	#1 qk.n	pGr	3.65	3.65
LILA-26	aus D-3	3.1 - WT-6_Abs_13	3		
	Gk	LF-1	pGr	27.05	27.05
	Gk	#1 gk	pGr	70.22	70.22
	Qk.N	LF-2	pGr	1.21	1.21
	Qk.N	(PL-1)-1	pGr	6.70	6.70
	Qk.N	#1 qk.n	pGr	15.89	15.89
pGr: Gravitationslast; p	ositive Laster	wirken senkrecht nach ur	nten		

Seite: 2-242

Einwirkungen

Qk.N

Einwirkungen nach DIN EN 1990 **DIN EN 1990**

> S>: ^| Beschreibung **Typisierung** Gk Eigenlasten ٜ; åð * ^ ÁÒð; ð (\`) * ^ } Qk.N Nutzlasten

Sæe^*[¦ā^ÁOEÁÉÝ[@;EÁ}åÁOE-^}c@edo•¦ê`{^

Šæge@||^Á} åÁå^\^} ÁZ~[¦å}~}*Á~Áå^} ÁÖā, ã\~}*^} Šæe Gê∥^

Gk LF-1, #1|gk, #WT1|#1|LF-1, #WT1|LF-1

LF-2, (PL-1)-1, #1|qk.n, #WT1|#1|(PL-1)-1, #WT1|LF-2, #WT1|(PL-1)-1

Bemessung (GZT+GZG)

Biegung S-As-erf-Iso Scheibenbemessung nach DIN EN 1992-1-1

Ó^{ ^••`} * Á>¦ÁÛ&@àā^ÁQÙcæ@à^d;} DÁY VË WT-6

Scheibenbemessung nach DIN EN 1992-1-1

(je Scheibenseite)

Mat./Querschnitt Beton C 25/30, Betonstahl B 500SA

> Õ^• c^ā,•\4¦} `} * ÁÛ`æ: ãc Dicke konstant h = 20.00 cm

*^{ êi ÁÖ OÞÁÖÞÁFJJ GËFËFÉVæà ÉÁ ÈF Expositionsklasse

> Seite Position Kommentar

WT-6 umlaufend XC1 d[&\^} A\ a^\A\ ce\} aa A\ æ•

Bewehrung Vorgaben zur Bewehrungsdefinition

Ó^{ ^••`}*• ¸ã, \^|ÁÁ, ÊÐ ÁMÁ€ÁÐÁJ€Á;

Auftrags-Nr. Position Ingenieurgesellschaft mbH

2023 300 WT-2.4-2 ÜVPËÜPÄÄUd& @ į ÂU>å Seite: 2-243

Betondeckung $c_{min}D \&_{def} = 10 / 10$ mm $c_{nom} = 20$ mm

Grundbewehrung Bewehrung je Scheibenseite

Tæncc^ÉÁÚdêà^ asg,r asg,s <Ž({æ19-Ž&(á Ž&(E)á Ž&(E)á 5.03 5.03

Nachweisparameter nach DIN EN 1992-1-1

T \$\darkar{\phi} \angle \cap \cap \cap \darkar{\phi} \dark

<u>Kombinationen</u> Tæi *^à^} å^ÆS[{ àã; ææã; }^} Á; æ&@ÓOÞÁFJJ€

Ew Einwirkungsname

Lkn Lastkombinationsnummer

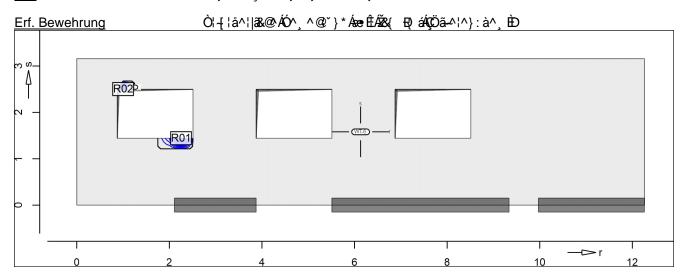
Öð ÁÓ 🌣 ð 🏅 } * Á ð : ^|} ^ ¦ Á Šæ cê || ^ Á þ } ^ ¦ @ þ Á heiner Einwirkung wird mit diesem

Ausgabeformat nicht dokumentiert.

 Ew
 Gk
 Qk.N

 Lkn
 Grundkombination

 1
 1.35
 1.50 !


WT-2.4-2 2023 300

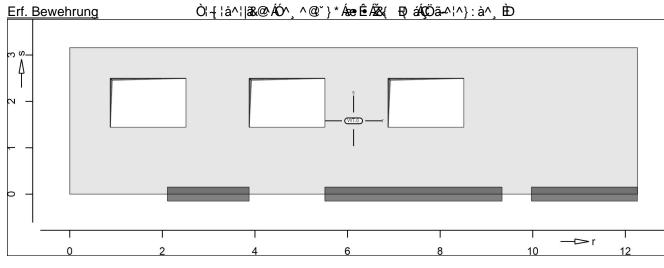
ÙVPËÜPĀÄÛc4&\@ã ÁÛ>å

Seite: 2-244

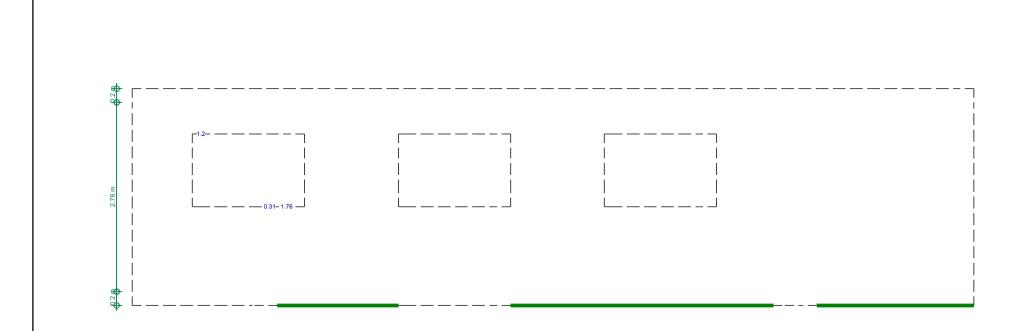
as,r

Šê}*•à^¸^@^`}*Á§ÁËÜæ&@č}*

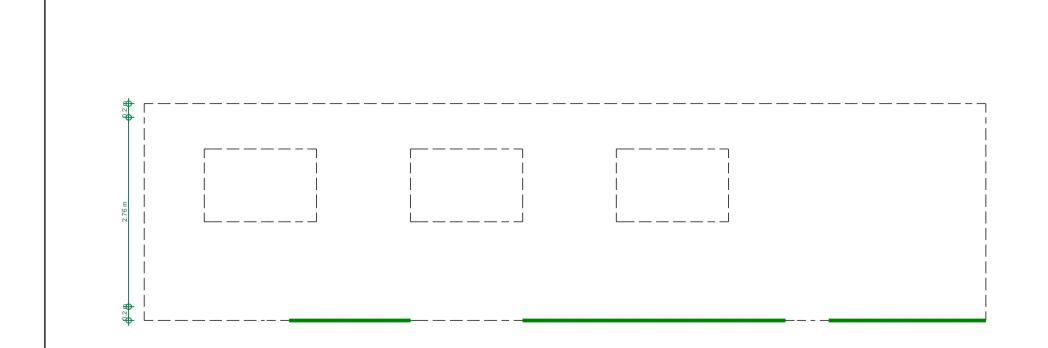
Q[|ã,ã^}•č.^}ÁMÆÈÈ€Á&{ Ð


Õ¦ˇ} åà^¸	^@~} <i>*</i>	'KÁSee*	ÉÁMÁ	È€HÁ&{	Ð)	
_		_			_		

Punkt	Х	y [m]	Sr,Ed	Ss,Ed	Srs,Ed Ž⊃Ð[{á	n _{Ed} [kN/m]	as,r Ž&{Ð)á	Lkn
R01	2.25	1.44	2.87	0.19	0.23	309.76	1.76	1
R02	1.00	2.50	2.80	0.37	-0.04	284.28	1.20	1


as,s

Šê}*•à^¸^@`}*Á§ÁEÜæ&@`}*



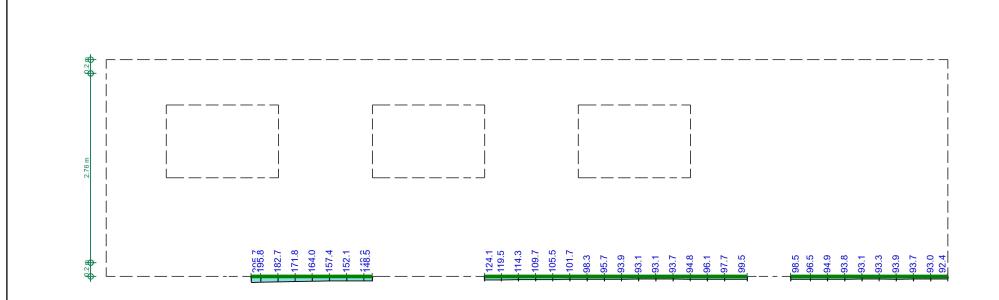
Q[|ãjã^}•č~^}ÁMÁFÈE€Á&{ Ð

 $\tilde{O}|^*$ } $\mathring{a}a^, ^@^*$ } * $\mathring{A}ee$ * \hat{E} $\mathring{A}M$

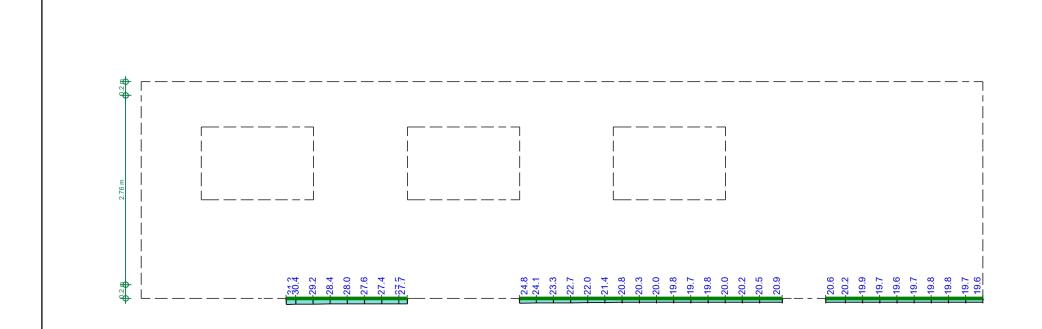
: `} WY YbVYa Yggi b[Erforderliche Bewehrung as,erf (Differenzbew.)		Modell	WT-2.4-2		/- ./-/
Max = 1.76 (Kn. 325), Min = 0 (Kn. 1)			Bauvorhaben			Tæi∙oæàkÁFKÍÍ
Grundbewehrung asg = 5.03		m-p		ÙVPËÜPÆÄÜ04&\@^aįAÛ>å		
Beton C 25/30	aus allen Nachweisen				Datum	13.02.2024
Bauteildicke h = 20.00 cm	¦ÉÜa&@c°}*Áq>¦Án?a}∧ÁÙ&@cãa^}•^ãc^DÁn,Áã&(Ð)á	m+p Ingenieurgesellschaft m	nbH - Pockelsst	7.7 - 38106 Braunschweig - Tel. 0531 / 238 32 - 0	Seite	2-246

: `} W YbVYa Yggi b[Erforderliche Bewehrung as,erf (Differenzbew.)		Modell	WT-2.4-2		
Max = 0 (Kn. 1), Min = 0 (Kn. 1)			Bauvorhaben			Tæi•oæàkÁFKÍÍ
Grundbewehrung asg = 5.03		m-p		ÙVPËÜPÆÄÜ04&\@`aįAÛ>å		
Beton C 25/30	aus allen Nachweisen				Datum	13.02.2024
Bauteildicke h = 20.00 cm	• ÉÜ a&@c°} * ÁÇ⇒¦Án a], ^ ÁÙ &@ aãa^} • ^ aa^ DÁnj ÁZ&{ EQ á	m+p Ingenieurgesellschaft m	bH - Pockelsst	r.7 - 38106 Braunschweig - Tel. 0531 / 238 32 - 0	Seite	2-247

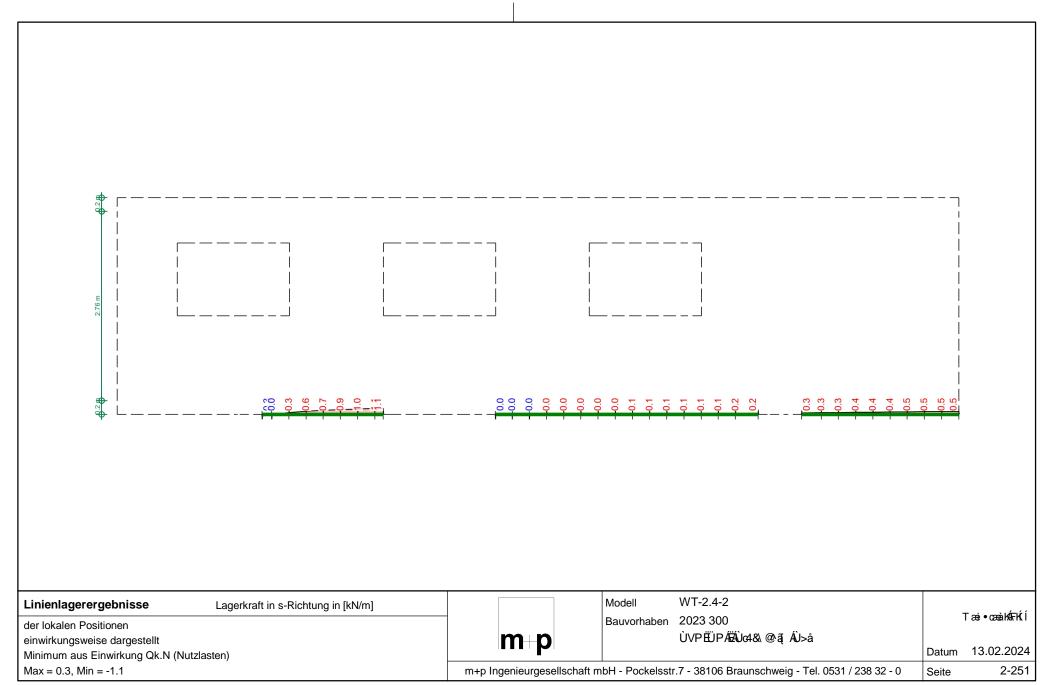
Auftrags-Nr. Position



Seite: 2-248


2023 300

WT-2.4-2


5 i ZU[Yf_f} ZhY

Linienlagerergebnisse Lagerkraft in s-Richtung in [kN/m]		Modell	WT-2.4-2		T : Népítí
der lokalen Positionen		Bauvorhaben			Tæi•cæàkÁFKÍÍ
einwirkungsweise dargestellt	m-p		ÙVPËÜPÆÄÛ¢I&I@Aį ÁÛ>å		
Maximum aus Einwirkung Gk (Eigenlasten)				Datum	13.02.2024
Max = 205.7, Min = 92.4	m+p Ingenieurgesellschaft n	nbH - Pockelssti	r.7 - 38106 Braunschweig - Tel. 0531 / 238 32 - 0	Seite	2-249

Linienlagerergebnisse Lagerkraft in s-Richtung in [kN/m]		Modell	WT-2.4-2		Tæi•oæàkÁFKÍÍ
der lokalen Positionen		Bauvorhaben			iæ • Cæankarnki
einwirkungsweise dargestellt	m⊣p		ÙVPËÜPÄÄÜ¢4&\@ã, ÁÜ>å		
Maximum aus Einwirkung Qk.N (Nutzlasten)				Datum	13.02.2024
Max = 31.3, Min = 19.6	m+p Ingenieurgesellschaft mb	oH - Pockelsstr	.7 - 38106 Braunschweig - Tel. 0531 / 238 32 - 0	Seite	2-250

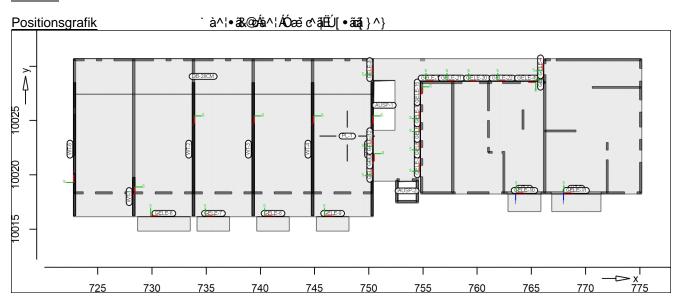
Auftrags-Nr. Position

2023 300 ÜVP EÜP ÆÄÜ¢4&\ @ ą̃ AÛ>å Seite: 3-1

3 - 1. Obergeschoss

VIEWEL VEISION ZOZZ - COPYTIGNI ZOZI - TILD AEC SOLIWATE GITIDA

Auftrags-Nr. Position 2023 300 D-3.1


Seite: 3-2

Pos. D-3.1

System

Positionsplan Positionsplan

Bauteile Bauteil-Positionen

Platten	Platten-Positionen
---------	--------------------

<u>Stahlbeton</u>	Position	Winkel Ar Ž⁄a	t Šê} * •	Material Quer	Dicke [cm]
	PL-1	0.0 isc)	C 30/37 Q	20.0
			B 500MA	B 500SA	

 $\begin{array}{lll} \mbox{Winkel:} & \mbox{Bewehrungsrichtung r} \\ \mbox{iso:} & \mbox{isotropes Material} \\ \mbox{Q:} & \mbox{\tilde{O}^{\bullet} $ \mbox{$\langle \hat{A}^{\circ} \rangle $} $ $ \mbox{$\langle \hat{A}^{\circ} \rangle $} $ $ \mbox{$\langle \hat{A}^{\circ} \rangle $} $ \mbox{$\langle \hat{A}^{\circ} \rangle $} $ \mbox{$\langle \hat{A}^{\circ} \rangle $} \\ \mbox{$\langle \hat{A}^{\circ} \rangle $} & \mbox{$\langle \hat{A}^{\circ} \rangle $} & \mbox{$\langle \hat{A}^{\circ} \rangle $} $ \mbox{$\langle \hat{A$

8 YW YbgmghYa "VYf'%"C;

Expositionsklasse *^{ êi ÁÖΦÁÒÞÁFJJŒËËÉVæàÈÁÈ

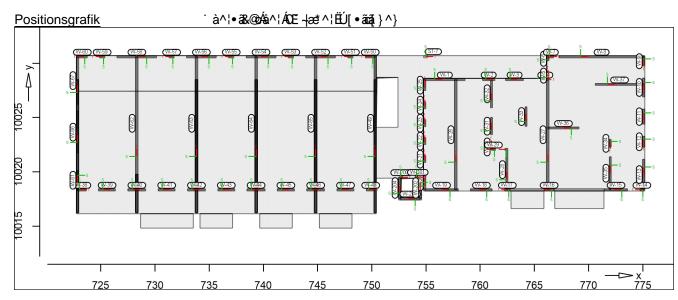
Position	Seite	KI	Kommentar
PL-1	oben		{ êi ãt ^Á22^`&@2^
		WF	Pê`~ātÁjå^¦Ájê}*^¦^Áz^ãoÁ
			feuchter Beton
	unten	XC1	d[&\^}Á(å^¦Áncê}åãfÁ,æ∙
		WO	Weitgehend trockener Beton

<u>Dickenbereiche</u>	Position		Dicke
			[cm]
	DB-28CM Dickenbereich		28.0
<u>Aussparungen</u>	Position	Х	у
· -		[m]	[m]
	AUSP-1	752.42	10024.11
		752.42	10028.70
		750.40	10028.70
		750.40	10024.11
	AUSP-2	754.38	10017.62
		754.38	10019.42
		752.68	10019.42
		752 68	10017 62

Seite: 3-3

Auftrags-Nr.	Position	martens+puller Ingenieurgesellschaft mbH
2023 300	D-3.1	ÙVPËÜPÆÄÛ¢4&\@`ãį ÁÛ>å

			•				
Ø ê&@} æ} •&@>••^	Position	[k]	K _{R,r} Vm/rad/m]		K _{R,s} (Nm/rad/m]		K _{T,} ; [kN/m/m]
	GELE-1GELE-4	+/-	frei		frei	+/-	250000
	GELE-5	+/-	frei	+/-	frei	+/-	frei
	GELE-6GELE- 11	+/-	10000		fest	+/-	250000
	GELE-12	+/-	frei	+/-	frei	+/-	250000
	GELE-13, GELE- 14	+/-	frei	+/-	frei	+/-	frei
	GELE-15	+/-	frei	+/-	frei	+/-	250000
	GELE-16	+/-	frei		frei	+/-	frei
	GELE-17	+/-	frei		frei	+/-	250000
	GELE-18GELE- 20	+/-	10000		frei	+/-	250000
	GELE-21, GELE- 22	+/-	frei	+/-	frei	+/-	fre
<u>\\\} c^\\:>*^</u>	Unterzug-Positionen						
Stahlbeton	Position		Šê} * ^ [m]	Šê}*•	Betonstah Ó>* ^		Beton
	UZ-1		3.13	B 500SA	B 500SA		C 25/30 Q
	UZ-2 Q: Õ^• & ã•\4 }	ic	4.64	B 500SA			C 25/30 Q
	, , ,		_	_	_	_	_
<u>Abminderung</u>	Position		F 0.0	F_D $F_{S,s}$ 0.00		FT	$F_{B,s}$ $F_{B,t}$
	UZ-1, UZ-2 Fp: CBa{ al a^\'\'\'*aa\ Fs.s: CBa{ al a^\'\'*aa\ Fs.t: CBa{ al a^\'\'*aa\ Fr: CBa{ al a^\'*aa\ Fr: CBa{ al a^\'*aa\ FB.s: CBa{ al a^\'*aa\ CBa{ al a^\'*aa\ CBa{ al a^\'*aa\ CBa{ al a^\'*aa\ CBa{ al a^\'\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	<pre>q Á> Á\$a? ÁU q Á> Á\$a? ÁU q Á> Á\$a? ÁU q Á> Á\$a? ÁV q Á> Á\$a? ÁV</pre>	^@ • ઌ૾ૺ ૽ૼૼૼૼૼૺ૾ૺ \^acc &@ à• ઌ૾ૺ ૽ૼૼૼૼૼૼૺ૾ૺ \^acc &@ à• ઌ૾૾૽ૼૼૼૼૼૼૼૺ૾ૺ \^acc ¦• ૾૽ૼ[}•• ઌ૾૾૽ૼૼૺ૽ૼૺ\^acc ૹૺ*^• ઌ૾૾૾૽ૼૺૼૺ૾ૺ\^acc	ÁSIÁA ÉÜ 38.@°}* ÁSIÁEÜ 38.@°}* ^ãc ({Á,ÉÜ 188.@•^	0.00	1.00	0.00 0.00
Querschnitt	Position				b _{Pl} h		b _w h [cm] [cm]
	UZ-1, UZ-2 UZ: Unterzug				0.0 20.0		20.0 53.0
<u>Expositionsklasse</u>	*^{ êi ÁÖΦ ÁÒÞÁFJJ(171			
	Position	Se	ite Ilaufend	KI VC1	Kommenta d[&\^} /i\å		åæ Á æ
	UZ-1, UZ-2	un	liaulellu	٨٥١	G[Ox(``) A[a	'i A (e)	aa A æ•
Y æ) åækæt ^Á/¦ê*^¦	Yæ)åælæt^ÁV¦ê*^¦Ë	Ú[•ããã}}^	}				
Stahlbeton	Position	Art			↓@ Λ [m]	1ateria	ıl Dicke [cm]
	WT-1WT-4		unten	3	.16 (25/30	0 Q 24.0
	WT-5, WT-6 Q: Õ^•♂ã•\4¦}ઁ}*ÁÛઁæ:ã		unten	3	.16 (25/30	0 Q 20.0
<u>Ø</u> ^ å ê} * ^ }_	Position		Feld				Šê} * ^ [m]
	WT-1		Feld1				1.42 2.11
	WT-2		KragR Feld1				10.15
	=		KragR				2.11
	WT-3		Feld1				10.15
			KragR				2.11
	WT-4		Feld1				10.15
	WT-5		KragR Feld1				2.11 10.15
	V V I 🔾		KragR				2.11
	-						



2023 300 D-3.1 ÙVPËJPÆÄJv4&\@-ã(ÂJ)>å Seite: 3-4

Position Feld Šê}_*^

Position	Feld	Sê} * ^
		[m]
WT-6	KragL	2.99
	Feld1	4.43
	Feld2	4.84

<u>Auflager</u> Auflager-Positionen

<u>Ù⇔c ^} æ*^¦</u>	Ùc>c^} æ*^¦ËÚ[•ããá;}^}						
Stahlbeton	Position	Šê} * ^ [m]		Ма	terial	b _(r) [cm]	h _(s) [cm]
	ST-7	3.00			/30 Q	38.0	20.0
	Q: Õ^•ơđ̞•\4¦}ˇ}*ÁÛˇæb:ãc			В5	00SA		
<u>Federsteifigkeiten</u>	Position	K _{R,r} [kNm/rad]		[kNm/	K _{R,s} radl		K _{T,t} [kN/m]
	ST-7	frei			frei	+/-	785333
Koordinaten	Position			Ž⁄á		x [m]	y [m]
	ST-7			0.00	75	4.97	10030.60
<u>Wandlager</u>	Wandlager-Positionen						
Stahlbeton	Position	P4@	Šê} * ^			Material	
	W-200	[m] 3.00	[m] 0.24			25/30 Q	[cm] 24.0
	VV-200	3.00	0.24			, 23,30 Q B 500MA	24.0
	W-201	3.00	0.48		C	25/30 Q	24.0
	W-202	3.00	2.00			B 500MA C 25/30 Q	24.0
	-					B 500MA	-
	W-203	3.00	1.90			25/30 Q	
	W-204	3.00	2.00		C	B 500MA C 25/30 Q B 500MA	

Q: $\tilde{O}^{\bullet} c^{\bullet} \tilde{a} \bullet A_{l}^{*}$ $* A\hat{U}^{*} ad: \tilde{a}c$

Position

D-3.1

2023 300

ÙVPËÜPÄÄÛd& @ã ÁÛ>å

Seite: 3-5

Position	P4@	Šê}*^	Material	Dicke
W-1	[m] 3.00	[m] 3.71	KS-P 20 DM	[cm] 20.0
W-2	3.00	1.11	KS-P 20 DM	20.0
W-3	3.00	1.65	KS-P 20 DM	20.0
W-4	3.00	0.50	KS-P 20 DM	20.0
W-5	3.00	0.73	KS-P 20 DM	20.0
W-6	3.00	0.36	KS-P 20 DM	20.0
W-7	3.00	0.52	KS-P 20 DM	20.0
W-8	3.00	7.78	KS-P 20 DM	20.0
W-9	3.00	0.82	KS-P 20 DM	20.0
W-10	3.00	1.74	KS-P 20 DM	20.0
W-11	3.00	1.36	KS-P 20 DM	20.0
W-12	3.00	0.99	KS-P 20 DM	20.0
W-13	3.00	2.80	KS-P 20 DM	20.0
W-14	3.00	0.35	KS-P 20 DM	20.0
W-15	3.00	2.15	KS-P 20 DM	20.0
W-16	3.00	0.93	KS-P 20 DM	20.0
W-17	3.00	0.52	KS-P 20 DM	20.0
W-18	3.00	1.99	KS-P 20 DM	20.0
W-19	3.00	3.10	KS-P 20 DM	20.0
W-20	3.00	1.49	KS-P 20 DM	20.0
W-21W-24	3.00	0.65	KS-P 20 DM	20.0
W-25	3.00	1.02	KS-P 20 DM	20.0
W-26, W-27	3.00	10.15	KS-P 20 DM	24.0
W-28	3.00	3.89	KS-P 20 DM	17.5
W-29	3.00	0.35	KS-P 20 DM	17.5
W-30	3.00	0.46	KS-P 20 DM	17.5
W-31	3.00	1.59	KS-P 20 DM	17.5
W-32	3.00	2.61	KS-P 20 DM	17.5
W-33	3.00	1.80	KS-P 20 DM	17.5
W-34	3.00	0.69	KS-P 20 DM	17.5
W-35	3.00	3.05	KS-P 20 DM	17.5
W-36	3.00	2.89	KS-P 20 DM	17.5
W-37	3.00	4.47	KS-P 20 DM	17.5
W-38	3.00	0.81	KS-P 20 DM	20.0
W-39	3.00	1.57	KS-P 20 DM	20.0
W-40	3.00	1.66	KS-P 20 DM	20.0
W-41	3.00	1.57	KS-P 20 DM	20.0
W-42	3.00	1.66	KS-P 20 DM	20.0
W-43	3.00	1.57	KS-P 20 DM	20.0
W-44	3.00	1.66	KS-P 20 DM	20.0
W-45	3.00	1.57	KS-P 20 DM	20.0
W-46	3.00	1.66	KS-P 20 DM	20.0
W-47	3.00	1.57	KS-P 20 DM	20.0
W-48	3.00	0.81	KS-P 20 DM	20.0
W-49	3.00	12.25	KS-P 20 DM	20.0
W-50	3.00	0.89	KS-P 20 DM	20.0
W-51	3.00	0.49	KS-P 20 DM	20.0
W-52	3.00	2.74	KS-P 20 DM	20.0
W-53	3.00	0.49	KS-P 20 DM	20.0
W-54	3.00	2.74	KS-P 20 DM	20.0
W-55	3.00	0.49	KS-P 20 DM	20.0
W-56	3.00	2.74	KS-P 20 DM	20.0
W-57	3.00	0.49	KS-P 20 DM	20.0
W-58	3.00	3.65	KS-P 20 DM	20.0
W-59	3.00	0.49	KS-P 20 DM	20.0
W-60	3.00	0.90	KS-P 20 DM	20.0
W-61	3.00	1.76	KS-P 20 DM	20.0

2023 300	D-3.1	UVPEDPAEAUCH&/@ea	AU>a		Seite: 3-6
	Position	P4@	Šê} * ^	Materia	l Dicke
		[m]	[m]		[cm]
	W-62W-65	3.00	12.25	KS-P 20 DN	
	W-66	3.00	3.83	KS-P 20 DN	
	W-67	3.00	4.39	KS-P 20 DN	
		0.00			
<u>Federsteifigkeiten</u>	Position	$K_{R,r}$		$K_{R,s}$	$K_{T,t}$
		[kNm/rad/m]	[kNm/r		[kN/m/m]
	W-1W-25	frei		frei +/-	665387
	W-26, W-27	frei		frei +/-	798464
	W-28W-37	frei		frei +/-	582214
	W-38W-61	frei		frei +/-	665387
	W-62W-65	frei		frei +/-	798464
	W-66, W-67	frei		frei +/-	665387
	W-200W-204	frei		frei +/-	2480000
<u>Koordinaten</u>	Position			X	У
	N/ 4			[m]	[m]
	W-1			754.88	10028.50
	W 0			758.59	10028.50
	W-2			760.23	10028.50
	W 0			761.34	10028.50
	W-3			762.35	10028.50
	W-4			764.00	10028.50
	VV-4			765.76	10028.50
	W-5			766.26 766.26	10028.50
	C-VV				10028.50
	W-6			766.26 766.26	10029.23
	VV-O			766.26	
	W-7			766.26	10030.60
	V V - 7			766.78	10030.60
	W-8			767.31	10030.60
	V V - O			775.09	10030.60
	W-9			775.09	10030.60
	*** 5			775.09	10029.78
	W-10			775.09	10028.65
	** 10			775.09	10026.91
	W-11			775.09	10025.77
				775.09	10024.41
	W-12			775.09	10023.27
				775.09	10022.28
	W-13			775.09	10021.15
				775.09	10018.35
	W-14			775.09	10018.35
				774.74	10018.35
	W-15			773.61	10018.35
				771.46	10018.35
	W-16			766.82	10018.35
	111.45			765.90	10018.35
	W-17			762.77	10018.35
	W 40			762.24	10018.35
	W-18			761.11	10018.35
	W-19			759.12 757.98	10018.35
	VV-19			757.98 754.88	10018.35 10018.35
	W-20			754.88	10018.35
	V V -∠U			754.88	10018.33
	W-21			754.88	10019.04
	V V _ 1			70-7.00	.0020.00

Auftrags-Nr.

Position

D-3.1

ÙVPËÜPĀĀÚd& @ā ÁÚ>å

Seite: 3-7

Im	Position	X	V
	1 Osition		y [m]
W-23			10021.50
W-23 754.88 10024.81 W-24 754.88 10025.82 754.88 10025.82 754.88 10026.87 W-25 754.88 10028.50 757.74 10018.35 V-26 757.74 10018.35 766.24 10018.35 V-27 766.24 10018.35 766.24 10018.35 V-28 762.46 10022.07 762.28 10022.07 W-29 761.99 10022.07 761.05 10022.07 W-30 761.05 10022.07 761.05 10022.07 W-31 761.05 10022.53 761.05 10022.53 W-31 761.05 10022.53 761.05 10022.53 W-32 761.05 10025.00 761.05 10025.00 W-33 764.22 10025.00 761.05 10025.00 W-34 772.01 10024.05 761.05 10025.00 W-35 772.01 10022.28 761.05 10028.06 772.01 10022.28 <td< td=""><td>W-22</td><td>754.88</td><td>10022.51</td></td<>	W-22	754.88	10022.51
W-24		754.88	10023.15
W-24 754.88 10026.47 754.88 10026.47 W-25 754.88 10028.50 T57.74 10018.35 757.74 10018.35 757.74 10028.50 W-27 766.24 10018.35 762.46 10022.07 762.28 10022.07 762.28 10022.07 761.05 10022.07 761.0	W-23	754.88	10024.16
W-25 754.88 10027.48 754.88 10027.48 10028.50 W-26 757.74 10018.35 W-27 766.24 10018.35 W-28 762.46 10018.35 W-28 762.46 10022.07 W-29 761.03 10022.07 W-30 761.05 10022.07 W-31 761.05 10022.53 W-32 761.05 10022.53 W-33 764.05 10028.00 W-33 764.22 10025.90 W-34 772.01 10022.28 W-35 764.22 10025.99 W-36 764.22 10025.99 W-37 772.01 10022.28 W-38 772.01 10022.28 W-36 769.12 10024.05 W-37 770.61 10024.05 W-38 722.01 10024.05 W-39 724.79 10018.35 W-39 724.79 10018.35 W-39			10024.81
W-25 754.88 10027.48 754.88 10028.50 W-26 757.74 10018.35 757.74 10028.50 W-27 766.24 10018.35 766.24 10018.35 762.46 10018.35 762.28 762.46 10018.35 762.28 10022.07 W-29 761.39 10022.07 W-30 761.05 10022.07 W-31 761.05 10022.53 W-32 761.05 10023.41 761.05 10022.53 W-32 761.05 10025.89 W-33 764.22 10024.19 W-34 772.01 10022.97 W-35 772.01 10022.97 W-36 769.12 10024.05 W-37 770.01 10021.40 W-38 722.84 10024.05 W-39 724.79 10018.35 W-39 724.79 10018.35 W-39 724.79 10018.35 W-39 724.79 10018.35 W-39 724.79 10018.35 W-39 724.79 10018.35 W-40 727.49 10018.35 W-41 730.99 10018.35 <td>W-24</td> <td></td> <td>10025.82</td>	W-24		10025.82
W-26 757.74 10018.35 757.74 10018.35 757.74 10018.35 W-27 766.24 10018.35 766.24 10018.35 762.46 10018.35 W-28 762.46 10022.07 762.28 10022.07 762.28 10022.07 W-29 761.05 10022.07 W-30 761.05 10022.07 W-31 761.05 10022.53 W-32 761.05 10025.00 W-32 761.05 10025.00 W-33 764.22 10024.19 W-34 772.01 10022.28 W-35 772.01 10022.28 W-36 769.12 10024.05 W-37 770.62 10028.06 W-38 722.01 10018.35 W-39 724.79 10028.06 W-39 724.79 10018.35 W-40 727.49 10018.35 W-41 730.29 10018.35 W-43 733.65			
W-26 757.74 10018.35 757.74 10028.50 757.74 10028.50 W-27 766.24 10018.35 766.24 10028.50 W-28 762.46 10018.35 762.28 10022.07 762.28 10022.07 761.05 10022.07 761.05 10022.07 761.05 10022.53 W-30 761.05 10022.53 W-31 761.05 10025.00 W-32 761.05 10025.80 W-33 764.22 10024.95 W-34 772.01 10022.97 W-35 772.01 10022.97 W-36 769.12 10024.95 W-37 770.01 10018.35 W-38 722.01 10024.05 W-39 724.79 10028.06 766.24 10024.05 W-38 722.84 10018.35 W-39 724.79 10018.35 W-39 724.79 10018.35 W-40 727.49 10018.35	W-25		
W-27 766.24 10018.35 766.24 10018.35 762.46 10018.35 762.46 10018.35 762.46 10022.07 762.28 10022.07 761.99 10022.07 W-29 761.05 10022.07 W-30 761.05 10022.07 W-31 761.05 10022.34 W-31 761.05 10025.80 W-32 761.05 10025.80 W-33 764.22 10024.19 W-33 764.22 10024.19 W-34 772.01 10022.97 W-35 772.01 10022.97 W-36 769.12 10024.90 W-37 772.01 10018.35 W-38 769.12 10024.05 W-39 775.09 10028.06 W-38 722.84 10018.35 W-39 724.79 10018.35 W-40 727.49 10018.35 W-41 730.29 10018.35 W-42 732.99			
W-27 766.24 10018.35 766.24 10028.50 W-28 762.46 10018.50 762.26 10022.07 762.28 10022.07 761.39 10022.07 761.05 10022.07 761.05 10022.07 761.05 10022.03 761.05 10022.53 W-31 761.05 10025.00 W-32 761.05 10025.00 W-33 764.22 10024.19 W-34 772.01 10028.50 W-34 772.01 10022.98 W-35 772.01 10022.98 W-36 772.01 10022.98 W-37 770.01 10022.98 W-38 769.12 10024.05 W-37 770.62 10024.05 W-38 722.84 10018.35 W-39 724.79 10018.35 W-39 724.79 10018.35 W-40 727.49 10018.35 W-41 730.29 10018.35 W-42 732.99 10018.35	W-26		
T66.24			
W-28 762.46 10018.35 762.28 10022.07 762.28 10022.07 761.09 10022.07 W-30 761.05 10022.07 W-31 761.05 10022.50 W-31 761.05 10025.00 W-32 761.05 10025.00 W-33 764.22 10024.19 W-34 772.01 10025.90 W-35 772.01 10025.90 W-36 772.01 10022.97 W-37 772.01 10022.98 W-37 770.62 10024.05 W-38 769.12 10024.05 W-39 775.09 10028.06 W-38 722.84 10018.35 W-39 724.79 10018.35 W-40 727.49 10018.35 W-41 730.29 10018.35 W-42 732.99 10018.35 W-43 737.36 10018.35 W-44 738.49 10018.35 W-45 734.65 10018.35 W-46 743.99	W-27		
W-29 762.28 10022.07 W-29 761.39 10022.07 W-30 761.05 10022.07 W-31 761.05 10022.53 W-31 761.05 10025.00 W-32 761.05 10025.00 W-33 764.22 10024.19 W-34 772.01 10025.99 W-34 772.01 10022.97 W-35 772.01 10022.97 W-36 769.12 10024.05 W-37 770.02 10024.05 W-38 722.84 10024.05 W-39 724.79 10028.06 W-39 724.79 10018.35 W-40 727.49 10018.35 W-40 727.49 10018.35 W-42 732.99 10018.35 W-43 731.86 10018.35 W-44 738.49 10018.35 W-44 738.49 10018.35 W-45 741.29 10018.35 W-46 743.99 10018.35 W-47 746.79 10018.35 W-48 749.49 10018.35 W-49 10018.35 W-49 10018.35 T45.65 10018.35			
W-29 761.39 10022.07 W-30 761.05 10022.07 W-30 761.05 10022.07 761.05 10022.53 W-31 761.05 10025.00 W-32 761.05 10025.00 W-33 764.22 10024.50 W-33 764.22 10025.99 W-34 772.01 10022.97 W-35 772.01 10022.28 W-35 772.01 10022.28 W-36 769.12 10024.05 W-37 770.62 10024.05 W-38 722.84 10018.35 W-39 724.79 10028.06 W-38 722.84 10018.35 W-39 724.79 10018.35 W-40 727.49 10018.35 W-40 727.49 10018.35 W-41 730.29 10018.35 W-42 732.99 10018.35 W-43 735.79 10018.35 W-44 738.49 <	W-28		
W-29 761.39 10022.07 761.05 10022.07 761.05 10022.07 761.05 10022.53 W-31 761.05 10025.89 W-32 761.05 10025.89 W-33 764.22 10024.19 W-34 772.01 10022.28 W-35 772.01 10022.28 W-36 769.12 10024.05 W-37 770.62 10028.06 W-38 722.84 10018.35 W-39 723.65 10018.35 W-40 727.49 10018.35 W-41 730.29 10018.35 W-42 732.99 10018.35 W-43 735.79 10018.35 W-44 738.49 10018.35 W-45 740.15 10018.35 W-46 743.99 10018.35 W-47 746.79 10018.35 W-48 749.49 10018.35 W-48 749.49 10018.35 W-49 10018.35 745.65 10018.35 W-49			
W-30 761.05 10022.07 W-30 761.05 10022.53 W-31 761.05 10025.00 W-32 761.05 10025.89 W-33 764.22 10024.19 W-33 764.22 10025.99 W-34 772.01 10022.28 W-35 772.01 10022.28 W-36 769.12 10024.05 W-37 770.62 10028.06 W-38 766.24 10024.05 W-38 722.84 10018.35 W-39 724.79 10018.35 W-40 727.49 10018.35 W-40 727.49 10018.35 W-41 730.29 10018.35 W-42 732.99 10018.35 W-43 735.79 10018.35 W-44 738.49 10018.35 W-45 741.29 10018.35 W-46 743.99 10018.35 W-46 743.99 10018.35 W-46 <td< td=""><td>W 00</td><td></td><td></td></td<>	W 00		
W-30 761.05 10022.07 761.05 10022.53 W-31 761.05 10023.41 761.05 10025.00 W-32 761.05 10025.89 W-33 764.22 10024.95 W-34 772.01 10022.97 W-35 772.01 10022.28 W-36 769.12 10024.05 W-37 770.62 10028.06 W-38 722.84 10018.35 W-39 724.79 10018.35 W-40 727.49 10018.35 W-41 730.29 10018.35 W-42 732.99 10018.35 W-43 735.79 10018.35 W-44 738.49 10018.35 W-45 741.29 10018.35 W-46 743.99 10018.35 W-46 743.99 10018.35 W-47 746.79 10018.35 W-48 749.49 10018.35 W-49 10018.35 10018.35 W-49 10018.35 10018.35 W-49	W-29		
W-31 761.05 10022.53 W-31 761.05 10023.41 761.05 10025.89 761.05 10025.89 761.05 10028.50 W-33 764.22 10024.19 764.22 10024.19 764.22 10022.28 W-34 772.01 10022.28 W-35 772.01 10021.40 772.01 10018.35 W-36 769.12 10024.05 766.24 10024.05 767.02 10028.06 W-37 770.62 10028.06 W-38 722.84 10018.35 W-39 724.79 10018.35 W-40 727.49 10018.35 W-41 730.29 10018.35 W-42 732.99 10018.35 W-43 735.79 10018.35 W-44 738.49 10018.35 W-45 741.29 10018.35 W-45 741.29 10018.35 W-46 743.99 10018.35 W-47 746.79 10018.35	W 00		
W-31 761.05 10023.41 761.05 10025.00 W-32 761.05 10025.50 761.05 10028.50 W-33 764.22 10024.19 764.22 10025.99 W-34 772.01 10022.28 W-35 772.01 10021.40 772.01 10021.40 772.01 10018.35 W-36 769.12 10024.05 W-37 770.62 10028.06 W-38 722.84 10018.35 W-38 722.84 10018.35 W-39 724.79 10018.35 W-40 727.49 10018.35 W-41 730.29 10018.35 W-42 732.99 10018.35 W-43 735.79 10018.35 W-44 738.49 10018.35 W-45 741.29 10018.35 W-45 741.29 10018.35 W-46 743.99 10018.35 W-46 743.99 10018.35 W-47 746.79 10018.35 W-48	VV-30		
W-32 761.05 10025.00 W-32 761.05 10028.50 W-33 764.22 10024.19 764.22 10025.99 W-34 772.01 10022.97 772.01 10022.28 W-35 772.01 10021.40 W-36 769.12 10024.05 W-37 770.62 10028.06 W-38 722.84 10018.35 W-39 724.79 10018.35 W-40 727.49 10018.35 W-40 727.49 10018.35 W-41 730.29 10018.35 W-42 732.99 10018.35 W-43 735.79 10018.35 W-44 738.49 10018.35 W-45 740.15 10018.35 W-46 743.99 10018.35 W-47 746.79 10018.35 W-48 749.49 10018.35 W-48 749.49 10018.35 W-48 749.49 10018.35 T50.30 10018.35 T50.30 10018.35 T50.30 10018.35 T50.30 10018.35 T50.30 10018.35 T50.30 10018.35 <t< td=""><td>NA OA</td><td></td><td></td></t<>	NA OA		
W-32 761.05 10025.89 W-33 764.22 10024.19 764.22 10025.99 W-34 772.01 10022.28 W-35 772.01 10021.40 772.01 10021.40 772.01 10024.05 W-36 769.12 10024.05 W-37 770.62 10028.06 W-38 722.84 10018.35 W-39 724.79 10018.35 W-40 727.49 10018.35 W-41 730.29 10018.35 W-42 732.99 10018.35 W-43 735.79 10018.35 W-44 738.49 10018.35 W-44 738.49 10018.35 W-45 741.29 10018.35 W-46 743.99 10018.35 W-47 746.79 10018.35 W-48 749.49 10018.35 W-48 749.49 10018.35 W-48 749.49 10018.35 T50.30 10018.35 T61.20 10018.35 T74.88 10018.35 T74.89 10018.35 T75.03 10018.35 T74.89 10018.35 T74.89 10018.35 <td>VV-31</td> <td></td> <td></td>	VV-31		
W-33 764.22 10024.19 W-34 772.01 10022.28 W-35 772.01 10022.28 W-35 772.01 10021.40 T72.01 10021.40 T72.01 10021.40 T72.01 10018.35 W-36 769.12 10024.05 W-37 770.62 10028.06 W-38 722.84 10018.35 W-39 724.79 10018.35 W-40 727.49 10018.35 W-41 730.29 10018.35 W-42 732.99 10018.35 W-42 732.99 10018.35 W-43 735.79 10018.35 W-44 738.49 10018.35 W-44 738.49 10018.35 W-45 741.29 10018.35 W-46 743.99 10018.35 W-47 746.79 10018.35 W-48 749.49 10018.35 W-48 749.49 10018.35 T50.30 10018.35 T50.30 10018.35 T50.30 10018.35 T50.30 10018.35 T50.30 10018.35 T50.30 10018.35 T50.30	W 22		
W-33 764.22 10024.19 764.22 10025.99 W-34 772.01 10022.97 772.01 10022.29 W-35 772.01 10021.40 772.01 10018.35 W-36 769.12 10024.05 W-37 770.62 10028.06 W-38 722.84 10018.35 W-39 724.79 10018.35 W-40 727.49 10018.35 W-41 730.29 10018.35 W-42 732.99 10018.35 W-43 735.79 10018.35 W-44 738.49 10018.35 W-44 738.49 10018.35 W-45 741.29 10018.35 W-46 743.99 10018.35 W-47 746.79 10018.35 W-48 749.49 10018.35 W-49 10018.35 W-49 10018.35 W-49 10018.35 W-49 10018.35 W-49 10018.35 W-49 10018.35 W-49 10018.35 W-49 10018.35 W-49 10018.35 W-49 10018.35 W-49 10018.35	VV-32		
W-34 764.22 10025.99 W-35 772.01 10022.28 W-35 772.01 10021.40 W-36 769.12 10024.05 W-37 770.62 10028.06 W-38 722.84 10018.35 W-39 724.79 10018.35 W-40 727.49 10018.35 W-41 730.29 10018.35 W-42 732.99 10018.35 W-44 738.49 10018.35 W-44 738.49 10018.35 W-45 741.29 10018.35 W-46 743.99 10018.35 W-47 746.79 10018.35 W-48 749.49 10018.35 W-49 749.49 10018.35 W-47 746.79 10018.35 W-48 749.49 10018.35 W-48 749.49 10018.35 W-48 749.49 10018.35 W-48 749.49 10018.35 T50.30 10018.35 T50.30 10018.35 T50.30 10018.35	W 22		
W-34 772.01 10022.97 772.01 10022.28 W-35 772.01 10021.40 772.01 10021.40 772.01 10018.35 W-36 769.12 10024.05 766.24 10024.05 W-37 770.62 10028.06 W-38 722.84 10018.35 W-39 724.79 10018.35 W-40 727.49 10018.35 W-41 730.29 10018.35 W-42 732.99 10018.35 W-43 735.79 10018.35 W-44 738.49 10018.35 W-44 738.49 10018.35 W-45 741.29 10018.35 W-46 743.99 10018.35 W-47 746.79 10018.35 W-48 749.49 10018.35 W-48 749.49 10018.35 W-48 749.49 10018.35 W-48 749.49 10018.35 750.30 10018.35	VV-33		
W-35 772.01 10022.28 W-36 772.01 10018.35 W-36 769.12 10024.05 W-37 776.62 10028.06 W-38 722.84 10018.35 W-39 724.79 10018.35 W-40 727.49 10018.35 W-41 730.29 10018.35 W-42 732.99 10018.35 W-43 735.79 10018.35 W-44 738.49 10018.35 W-44 738.49 10018.35 W-45 740.15 10018.35 W-46 743.99 10018.35 W-47 746.79 10018.35 W-48 749.49 10018.35 W-49.49 10018.35 W-49.49 10018.35 W-49.49 10018.35 T48.36 10018.35 T49.49 10018.35 T49.49 10018.35 T50.30 10018.35	W 24		
W-35 772.01 10021.40 772.01 10018.35 W-36 769.12 10024.05 766.24 10024.05 W-37 770.62 10028.06 775.09 10028.06 W-38 722.84 10018.35 W-39 724.79 10018.35 W-40 727.49 10018.35 W-41 730.29 10018.35 W-42 732.99 10018.35 W-43 735.79 10018.35 W-43 735.79 10018.35 W-44 738.49 10018.35 W-45 741.29 10018.35 W-46 743.99 10018.35 W-47 746.79 10018.35 W-48 749.49 10018.35 W-48 749.49 10018.35 W-48 749.49 10018.35 T74.80 10018.35 T74.83 10018.35 T74.84 10018.35 T74.85 10018.35 T74.86 10018.35 T74.83 10018.35 T74.67 10018.35 T74.67 10018.35 T74.67 10018.35 T74.67 10018.35 T74.67	VV-34		
W-36 769.12 10024.05 W-37 766.24 10024.05 W-38 722.84 10018.35 W-39 724.79 10018.35 W-40 727.49 10018.35 W-41 730.29 10018.35 W-42 732.99 10018.35 W-43 735.79 10018.35 W-44 738.49 10018.35 W-45 741.29 10018.35 W-46 743.99 10018.35 W-47 746.79 10018.35 W-48 749.49 10018.35 W-48 749.49 10018.35 W-48 749.49 10018.35 W-49 10018.35 W-49 10018.35 W-49 10018.35 W-49 10018.35 W-49 10018.35 W-49 10018.35 W-49 10018.35 W-49 10018.35 W-49 10018.35 W-49 10018.35 W-49 10018.35 W-49 10018.35 W-49 10018.35 W-49 10018.35 W-49 10018.35 W-49 10018.35 W-48 749.49	W 25		
W-36 769.12 10024.05 766.24 10024.05 W-37 770.62 10028.06 775.09 10028.06 W-38 722.84 10018.35 W-39 724.79 10018.35 W-40 727.49 10018.35 W-41 730.29 10018.35 W-42 732.99 10018.35 W-43 735.79 10018.35 W-44 738.49 10018.35 W-45 740.15 10018.35 W-45 741.29 10018.35 W-46 743.99 10018.35 W-47 746.79 10018.35 W-48 749.49 10018.35 W-48 749.49 10018.35 T50.30 10018.35	VV-33		
W-37 776.24 10024.05 W-37 770.62 10028.06 775.09 10028.06 W-38 722.84 10018.35 723.65 10018.35 W-39 724.79 10018.35 W-40 727.49 10018.35 W-41 730.29 10018.35 W-42 732.99 10018.35 W-43 735.79 10018.35 W-44 738.49 10018.35 W-44 738.49 10018.35 W-45 741.29 10018.35 W-46 743.99 10018.35 W-47 746.79 10018.35 W-48 749.49 10018.35 W-48 749.49 10018.35 T50.30 10018.35	W-36		
W-37 770.62 10028.06 W-38 722.84 10018.35 723.65 10018.35 W-39 724.79 10018.35 W-40 727.49 10018.35 W-41 730.29 10018.35 W-42 732.99 10018.35 W-43 735.79 10018.35 W-44 738.49 10018.35 W-45 741.29 10018.35 W-46 743.99 10018.35 W-47 746.79 10018.35 W-48 749.49 10018.35 W-48 749.49 10018.35 750.30 10018.35	VV-30		
W-38 775.09 10028.06 W-38 722.84 10018.35 723.65 10018.35 W-39 724.79 10018.35 726.36 10018.35 W-40 727.49 10018.35 W-41 730.29 10018.35 W-42 732.99 10018.35 W-43 735.79 10018.35 W-44 738.49 10018.35 W-45 741.29 10018.35 W-46 743.99 10018.35 W-47 746.79 10018.35 W-48 749.49 10018.35 W-48 749.49 10018.35 750.30 10018.35	W-37		
W-38 722.84 10018.35 723.65 10018.35 W-39 724.79 10018.35 726.36 10018.35 727.49 10018.35 729.15 10018.35 W-41 730.29 10018.35 W-42 732.99 10018.35 W-43 735.79 10018.35 W-44 738.49 10018.35 W-44 738.49 10018.35 W-45 741.29 10018.35 W-46 743.99 10018.35 W-47 746.79 10018.35 W-48 749.49 10018.35 W-48 749.49 10018.35 750.30 10018.35	VV 01		
W-39 723.65 10018.35 W-39 724.79 10018.35 726.36 10018.35 W-40 727.49 10018.35 W-41 730.29 10018.35 W-42 732.99 10018.35 W-43 735.79 10018.35 W-44 738.49 10018.35 W-44 738.49 10018.35 W-45 741.29 10018.35 W-46 743.99 10018.35 W-47 746.79 10018.35 W-48 749.49 10018.35 W-48 749.49 10018.35 750.30 10018.35	W-38		
W-39 724.79 10018.35 726.36 10018.35 W-40 727.49 10018.35 729.15 10018.35 W-41 730.29 10018.35 W-42 732.99 10018.35 W-43 735.79 10018.35 W-44 738.49 10018.35 W-44 738.49 10018.35 W-45 741.29 10018.35 W-46 743.99 10018.35 W-47 746.79 10018.35 W-48 749.49 10018.35 W-48 749.49 10018.35	VV 00		
W-40 726.36 10018.35 W-40 727.49 10018.35 729.15 10018.35 W-41 730.29 10018.35 W-42 732.99 10018.35 W-43 735.79 10018.35 W-44 738.49 10018.35 W-45 740.15 10018.35 W-45 741.29 10018.35 W-46 743.99 10018.35 W-47 746.79 10018.35 W-48 749.49 10018.35 W-48 749.49 10018.35 750.30 10018.35	W-39		
W-40 727.49 10018.35 729.15 10018.35 W-41 730.29 10018.35 731.86 10018.35 W-42 732.99 10018.35 W-43 735.79 10018.35 W-44 738.49 10018.35 W-45 741.29 10018.35 W-46 743.99 10018.35 W-47 746.79 10018.35 W-48 749.49 10018.35 W-48 749.49 10018.35 750.30 10018.35	••		
W-41 730.29 10018.35 W-42 731.86 10018.35 W-43 735.79 10018.35 W-44 738.49 10018.35 W-45 740.15 10018.35 W-46 743.99 10018.35 W-47 746.79 10018.35 W-48 749.49 10018.35 W-48 749.49 10018.35 750.30 10018.35	W-40		
W-41 730.29 10018.35 731.86 10018.35 W-42 732.99 10018.35 734.65 10018.35 W-43 735.79 10018.35 W-44 738.49 10018.35 W-45 741.29 10018.35 W-46 743.99 10018.35 W-47 746.79 10018.35 W-48 749.49 10018.35 W-48 749.49 10018.35 750.30 10018.35			
W-42 731.86 10018.35 W-43 735.79 10018.35 W-44 738.49 10018.35 W-45 741.29 10018.35 W-46 743.99 10018.35 W-47 746.79 10018.35 W-48 749.49 10018.35 W-48 749.49 10018.35 750.30 10018.35	W-41		
W-42 732.99 10018.35 734.65 10018.35 W-43 735.79 10018.35 W-44 738.49 10018.35 W-45 741.29 10018.35 W-46 743.99 10018.35 W-47 746.79 10018.35 W-48 749.49 10018.35 T0018.35 750.30 10018.35			
W-43 735.79 10018.35 737.36 10018.35 W-44 738.49 10018.35 W-45 741.29 10018.35 W-46 743.99 10018.35 W-47 746.79 10018.35 W-48 749.49 10018.35 T48.36 10018.35 750.30 10018.35	W-42		10018.35
W-44 737.36 10018.35 W-44 738.49 10018.35 W-45 740.15 10018.35 W-46 743.99 10018.35 W-47 746.79 10018.35 W-48 749.49 10018.35 T48 749.49 10018.35 T50.30 10018.35		734.65	10018.35
W-44 738.49 10018.35 740.15 10018.35 W-45 741.29 10018.35 742.86 10018.35 W-46 743.99 10018.35 W-47 746.79 10018.35 W-48 749.49 10018.35 W-48 749.49 10018.35 750.30 10018.35	W-43	735.79	10018.35
W-45 740.15 10018.35 W-45 741.29 10018.35 742.86 10018.35 W-46 743.99 10018.35 W-47 746.79 10018.35 W-48 749.49 10018.35 W-48 749.49 10018.35 750.30 10018.35		737.36	10018.35
W-45 741.29 10018.35 742.86 10018.35 W-46 743.99 10018.35 745.65 10018.35 W-47 746.79 10018.35 748.36 10018.35 W-48 749.49 10018.35 750.30 10018.35	W-44	738.49	10018.35
W-46742.8610018.35W-47745.6510018.35W-47746.7910018.35W-48749.4910018.35T50.3010018.35		740.15	10018.35
W-46 743.99 10018.35 745.65 10018.35 W-47 746.79 10018.35 748.36 10018.35 W-48 749.49 10018.35 750.30 10018.35	W-45	741.29	10018.35
W-47745.6510018.35W-48748.3610018.35T48.3610018.35T50.3010018.35		742.86	10018.35
W-47 746.79 10018.35 748.36 10018.35 W-48 749.49 10018.35 750.30 10018.35	W-46	743.99	10018.35
W-48 748.36 10018.35 749.49 10018.35 750.30 10018.35		745.65	10018.35
W-48 749.49 10018.35 750.30 10018.35	W-47	746.79	10018.35
750.30 10018.35			10018.35
	W-48		10018.35
W-49 750.30 10018.35			10018.35
	W-49	750.30	10018.35

Auftrags-Nr.	Position	martens+p	uller aft mbH		
2023 300	D-3.1	ÙVPËÜPÄÄÜ¢4&\@^ã(AÛ>å			Seite: 3-8
	Position			X [m]	y []
				[m]	[m]
	W-50			750.30	10030.60
	VV-50			750.30	10030.60
	W-51			749.41 748.27	10030.60
	VV-51			740.27 747.78	10030.60
	W-52			746.65	10030.60
	VV-32			740.03	10030.60
	W-53			742.77	10030.60
	** 55			742.28	10030.60
	W-54			741.15	10030.60
	*****			738.41	10030.60
	W-55			737.27	10030.60
	55			736.78	10030.60
	W-56			735.65	10030.60
				732.91	10030.60
	W-57			731.77	10030.60
	-			731.28	10030.60
	W-58			730.15	10030.60
				726.50	10030.60
	W-59			725.36	10030.60
				724.87	10030.60
	W-60			723.74	10030.60
				722.84	10030.60
	W-61			722.84	10020.11
				722.84	10018.35
	W-62			728.32	10018.35
				728.32	10030.60
	W-63			733.82	10018.35
				733.82	10030.60
	W-64			739.32	10018.35
				739.32	10030.60
	W-65			744.82	10018.35
				744.82	10030.60
	W-66			722.84	10021.75
	144.0=			722.84	10025.58
	W-67			722.84	10026.21
	W 000			722.84	10030.60
	W-200			752.58	10019.52
	W 204			752.82	10019.52
	W-201			754.00	10019.52 10019.52
	W 202			754.48 754.48	
	W-202			754.48 754.48	10019.52 10017.52
	W-203			754.48	10017.52
	VV-203			754.46 752.58	10017.52
	W-204			752.58	10017.52
	VV-204			752.58 752.58	10017.52
				732.36	10019.52
<u>Material</u>	Materialkennwo	erte			
Stahlbeton DIN EN 1992-1-1	Position	Material	Wichte	Ecm	f_{ck}
				G	f_{ctm}
			ŽİÞÐ() á	ŽÞ-E(){ á	ŽÞ-₽(á
	ST-7, UZ-1, UZ 200W-204, W 1WT-6		25.00	31000	25.00
				12900	2.60

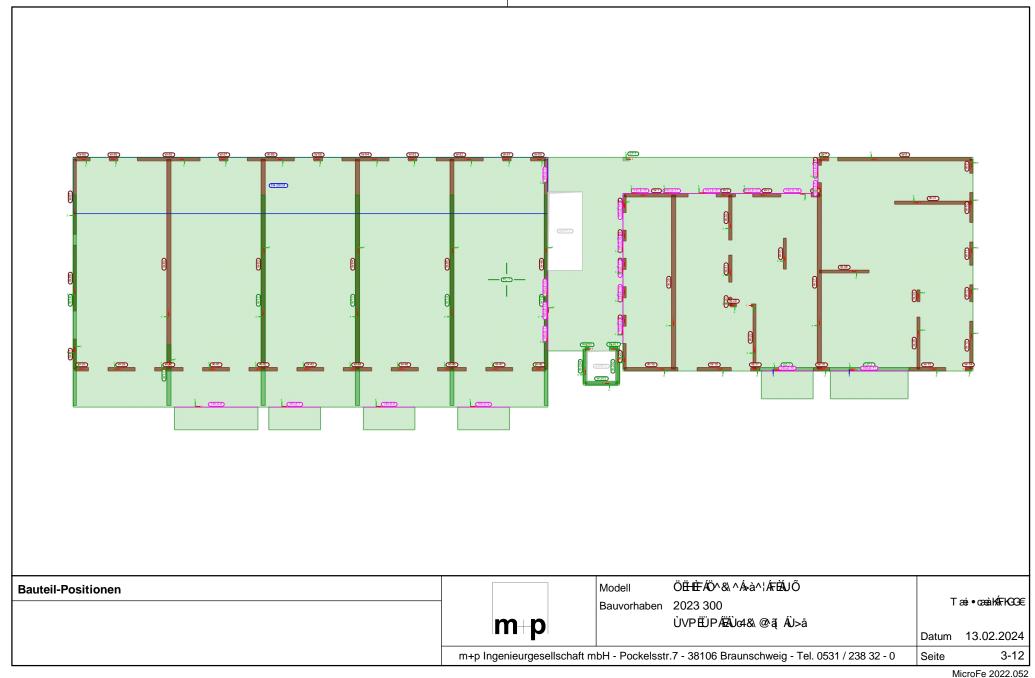
Auftrags-Nr.	Position	marte Ingenieur	ens+puller gesellschaft mbH	•		
2023 300	D-3.1	ÙVPËÜPÆÄÛ¢4& @ @	ÁÙ>å			Seite: 3-9
	Position	Mate	erial V	Vichte	E _{cm} G	$\begin{matrix} f_{ck} \\ f_{ctm} \end{matrix}$
	PL-1	C 30/3		Þ₽(á 25.00	ŽÞ₽(á 33000	ž⊳t () { á 30.00
			<i>1</i> Q	23.00	13750	2.90
	Q: Õ^•¢^ą̄•\4¦}					
Betonstahl DIN EN 1992-1-1	Position	Mate		Vichte Þ₽) á	E₅ G Ž⊅Đ}{á	f _{yk} f _{tk,cal}
	PL-1, W-200W-2	04 B 500		78.50	200000	Z Þ₽(á 500.00
	PL-1, ST-7, UZ-1, 2	UZ- B 500)SA	78.50	77000 200000	525.00 500.00
	2				77000	525.00
Mauerwerk DIN EN 1996-1-1	Position	Mate] Ž	Vichte Dichte Þ₽) á	E G ŽÞÐ[{á	f _k ŽD-E0,{ á
	W-1W-67	KS-P 20		°£ã{ á 20.00 2.00	9981 3992	10.51
Auswertung	Geometrische Aus	swertung der Positior	nen			
<u>Ø</u> [ê&@\]_	Ø ê&@}~4¦{	æĕ ơ^ą́HËÚ[•ããa[}^}				
Stahlbeton	Position		Dicke	Q	∕¶ê&@	Volumen
	PL-1		[cm] 20.028.0	7	_ Ž (á 28.58	<u>Ž</u> á 152.96
W} c^!: >* ^	Unterzug-Position	en				
Stahlbeton	Position	b _(t) [cm]		Ма	ıntelfl. [m²]	Volumen [m ³]
	UZ-1	20.00			3.32	0.21
,	UZ-2	20.00			4.91	0.31
Y æ) åælæð ^Á/lê*^l	Ú[•ãaã[}^}Åç[{Å/~	`]Á, æ)åæ)dã^¦ÁV¦ê*^	1			
<u>Stahlbeton</u>	Position	Dicke		Ø	7)ê&@	Volumen
	WT-1	[cm] 24.00			[m ²] 11.15	[m ³] 2.68
	WT-2WT-4	24.00			38.74	9.30
	WT-5, WT-6	20.00			38.74	7.75
<u>Ù⇔c ^} æ* ^¦</u>	Ùo-c^}Ás^¦ÁÙo-c/	\} æt^¦ËÚ[•ããa[}^}				
<u>Stahlbeton</u>	Position	b(r)		Ма	ntelfl.	Volumen
	ST-7	[cm] 38.0			[m ²] 3.48	[m ³] 0.23
<u>Wandlager</u>	Υ ê} å^Áå^¦Áγ æ) å	æt^¦ËÚ[•ããa[}^}				
<u>Stahlbeton</u>	Position	Dicke [cm]		Ø	∕¶ê&@ [m²]	Volumen
	W-200	24.0			0.71	[m ³] 0.17
	W-201	24.0			1.45	0.35
	W-202	24.0			6.00	1.44
	W-203	24.0			5.70	1.37
	W-204	24.0	300.0		6.00	1.44

Seite: 3-10

Auftrags-Nr. Position

2023 300 D-3.1 ÙVPËJPĀĀŪc4&\@āĮ ÂJ>å

<u>Mauerwerk</u>	Position	Dicke [cm]	P4@ [cm]	Ø ê&@ [m²]	Volumen [m³]
	W-1	20.0	300.0	11.12	2.22
	W-2	20.0	300.0	3.34	0.67
	W-3	20.0	300.0	4.95	0.99
	W-4	20.0	300.0	1.50	0.30
	W-5	20.0	300.0	2.19	0.44
	W-6	20.0	300.0	1.08	0.22
	W-7	20.0	300.0	1.55	0.31
	W-8	20.0	300.0	23.35	4.67
	W-9	20.0	300.0	2.45	0.49
	W-10 W-11	20.0 20.0	300.0	5.22 4.09	1.04
	W-12	20.0	300.0 300.0	4.09 2.97	0.82 0.59
	W-12 W-13	20.0	300.0	8.39	1.68
	W-14	20.0	300.0	1.05	0.21
	W-15	20.0	300.0	6.45	1.29
	W-16	20.0	300.0	2.78	0.56
	W-17	20.0	300.0	1.57	0.31
	W-18	20.0	300.0	5.97	1.19
	W-19	20.0	300.0	9.30	1.86
	W-20	20.0	300.0	4.47	0.89
	W-21W-24	20.0	300.0	1.94	0.39
	W-25	20.0	300.0	3.07	0.61
	W-26, W-27	24.0	300.0	30.45	7.31
	W-28	17.5	300.0	11.68	2.04
	W-29	17.5	300.0	1.04	0.18
	W-30	17.5	300.0	1.39	0.24
	W-31	17.5	300.0	4.77	0.83
	W-32 W-33	17.5 17.5	300.0 300.0	7.83 5.40	1.37 0.95
	W-34	17.5	300.0	2.07	0.36
	W-35	17.5	300.0	9.15	1.60
	W-36	17.5	300.0	8.65	1.51
	W-37	17.5	300.0	13.41	2.35
	W-38	20.0	300.0	2.43	0.49
	W-39	20.0	300.0	4.71	0.94
	W-40	20.0	300.0	4.98	1.00
	W-41	20.0	300.0	4.71	0.94
	W-42	20.0	300.0	4.98	1.00
	W-43	20.0	300.0	4.71	0.94
	W-44	20.0	300.0	4.98	1.00
	W-45	20.0	300.0	4.71	0.94
	W-46	20.0	300.0	4.98	1.00
	W-47	20.0	300.0	4.71	0.94
	W-48	20.0	300.0	2.43	0.49
	W-49 W-50	20.0 20.0	300.0 300.0	36.75 2.68	7.35 0.54
	W-51	20.0	300.0	2.00 1.47	0.34
	W-52	20.0	300.0	8.22	1.64
	W-53	20.0	300.0	1.47	0.29
	W-54	20.0	300.0	8.22	1.64
	W-55	20.0	300.0	1.47	0.29
	W-56	20.0	300.0	8.22	1.64
	W-57	20.0	300.0	1.47	0.29
	W-58	20.0	300.0	10.95	2.19
	W-59	20.0	300.0	1.47	0.29
	W-60	20.0	300.0	2.69	0.54
	W-61	20.0	300.0	5.29	1.06

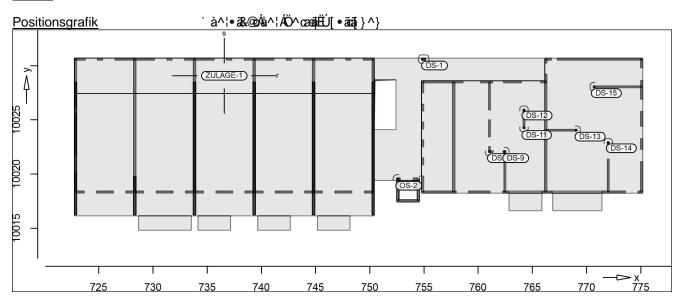


Auftrags-Nr. Position

2023 300 D-3.1 ÙVPËÜPĀĀŪc4& @ ą ÁŪ>å

Position	Dicke [cm]	P4@ [cm]	Ø ê&@ [m²]	Volumen [m³]
W-62W-65	24.0	300.0	36.75	8.82
W-66	20.0	300.0	11.48	2.30
W-67	20.0	300.0	13.16	2.63

Seite: 3-11



Auftrags-Nr. Position ÙVPËÜPÄÄÜ¢4&\@@ã ÁÛ>å 2023 300 D-3.1 Seite: 3-13

Detailplan Detailplan

Details Detail-Positionen

Zulagebewehrung	manuelle Defini Position	ition der Achsabstênde	d' _r [mm]	a _{sz,r} Ž&{ Ð}á	d's [mm]	a _{sz,s} Ž&{ Ð}á
	ZULAGE-1	u	30	7.99	30	7.99
		0	30	6.91	30	6.91
	o: Bezugskante von u: Bezugskante von					
	Bewehrungsrich	htung				
	Position	-	W _{ro} Žvá	W _{so} Ž∕á	W _{ru} Žvá	W _{su} Žiá

Position	w _{ro} Ž∕á	w _{so} Ž∕á	w _{ru} Ž∕á	w _{su} Ž∕á
ZULAGE-1	0.0	90.0	0.0	90.0
D. W.				

722.74

10027.42

Koordinaten Position [m] [m] ZULAGE-1 750.40 10027.42 750.40 10030.70 722.74 10030.70

<u>Durchstanzstellen</u>	Position		Lel von	MinBew	Rundsch	beta
	DS-1		unten	ja	nein	1.50
	DS-2		unten	ja	nein	1.20
	DS-9		unten	ja	nein	1.20
	DS-10		unten	ja	nein	1.20
	DS-11		unten	ja	nein	1.35
	DS-12		unten	ja	nein	1.35
	DS-13		unten	ja	nein	1.35
	DS-14		unten	ja	nein	1.35
	DS-15		unten	ja	nein	1.35
	unton:	Lastoinloitung orfolgt von unten		,		

unten: MinBew: Lasteinleitung erfolgt von unten Mindestbewehrung nach NCI Zu 9.4.3(2)? Rundschnitt am Rand erweitern? Rundsch:

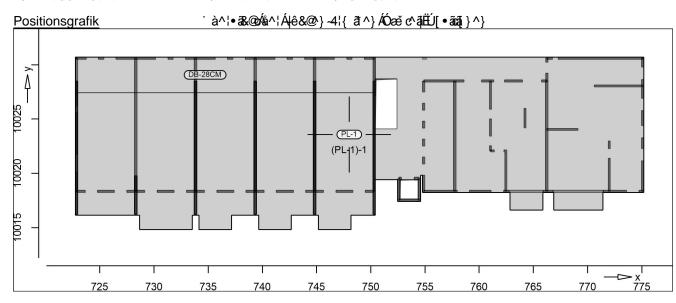
Õ^[{ ^dã^Áå^¦ÁSæ•c^ā,|^ãč}*•⊣ê&@ Geometrie

Auftrags-Nr.	Position	Ingenieurgesellschaft mbH	
2023 300	D-3 1	ĽN/PÄÏPÄÄMαλ @A Âl⊳å	Seite: 3-14

		- (
Position	Тур		Winkel Ž⁄á	b(r)/D [cm]	h(s) [cm]
DS-1 Re: Rechteck	Re		0.00	38.0	20.0
Position	Тур	Winkel2 <i>Ž</i> ∕á	Winkel Ž⁄á	Breite [cm]	Šê} * ^ [cm]
DS-2	Wk	270.00	0.00	24.0	24.0
DS-9	Wk	180.00	270.00	17.5	17.5
DS-10	Wk	0.00	90.00	17.5	17.5
DS-11	We		90.00	17.5	17.5
DS-12	We		270.00	17.5	17.5
DS-13	We		180.00	17.5	17.5
DS-14	We		270.00	17.5	17.5
DS-15 We: Wandende Wk: Wandecke	We		0.00	17.5	17.5
Position				Χ	Υ
. collien				[m]	[m]
DS-1			7	754.97	10030.60
DS-2			7	752.58	10019.52
DS-9			7	762.46	10022.07
DS-10			7	761.05	10022.07
DS-11			7	764.22	10024.19
DS-12			7	764.22	10025.99
DS-13				769.12	10024.05
DS-14				772.01	10022.97
DS-15			7	770.62	10028.06

Belastungen

Koordinaten


Seite: 3-15

Auftrags-Nr. Position

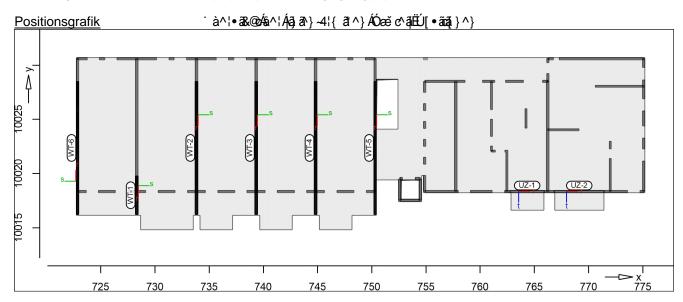
2023 300 D-3.1 ÙVPËÜPĀĀÚc4&\ @ ą ÁÚ>å

Lastplan Lasten des FE-Modells

<u>Bauteillasten</u> Bauteilbezogene Lasten

Eigengewicht	Position	EW	Lastfall	Art		g
<u> </u>						[kN/m ²]
	PL-1	Gk	LF-1	PGr	von	5.00
					bis	7.00
	PGr: Gravitations	slast; positive Laster	n wirken senkrecht nach unter	1		
Dickenbereiche	Bereiche mit a	bweichender	Regeldicke			
	Position	Dicken	bereiche			g
						[kN/m ²]
	PL-1	DB-280	CM			7.00
Ù[}∙cãt^Áncê}åãt^ÁŠæ∙c	Position	EW	Lastfall	Art		g
<u>of j aa 71aa aa 70aa a</u>	1 00111011		Laotian	,		[kN/m²]
	PL-1	Gk	LF-1	PGr		1.80
			n wirken senkrecht nach unter	_		
Nutzlast	Position	EW	Lastfall je Lastfeld	Art		р
			,			[kN/m ²]
	PL-1	Qk.N	(PL-1)-1	PGr		2.70
	PGr: Gravitations	slast; positive Laster	n wirken seńkrecht nach unter	1		

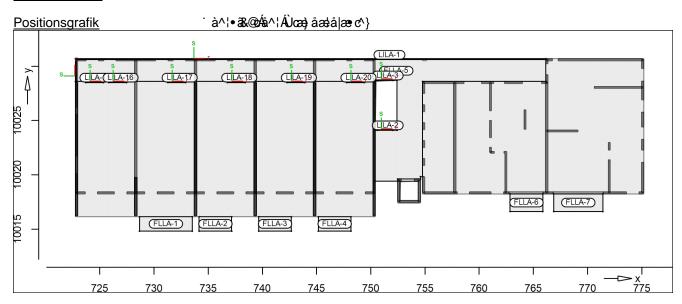
Seite: 3-16


2023 300

D-3.1

ÙVPËJPÄÄÛc4& @ã ÁÛ>å

Streckenpositionen


Šājā $^{+}$ 4¦{āt^ÁÓæč c^ājËÚ[•ãaāj}^}

Eigengewicht	Position	EW	Lastfall	Art	g
					[kN/m]
	UZ-1, UZ-2	Gk	LF-1	PGr	1.65
	WT-1WT-4	Gk	#WT LF-1	PGr	18.96
	WT-5, WT-6	Gk	#WT LF-1	PGr	15.80
	DCr. Cravitationala	ati maaitii (a I aat		untan	

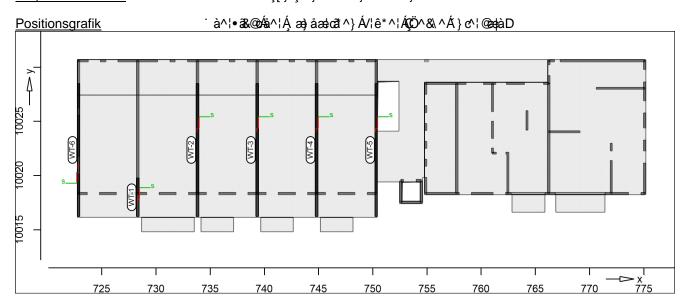
Standardlasten

Standardlasten im FE-Modell

<u>Linienlasten</u>	Position	EW	Lastfall	Art	p _A ,m _A [kN/m	p _E ,m _E [kNm/m],
	LILA-1	ÙœìEÓ/>•c`}*ÊàE®MÆÊŒÆÆÆ				
		Gk	LF-1	pĠr	6.00	6.00
	LILA-2	Treppe)			
		Gk	LF-1	pGr	25.00	25.00
		Qk.N	LF-2	pGr	12.00	12.00

2023 300	D-3.1	UVPEJP/	&AUG4&\@^ā[AU>	• ă	S	eite: 3-17
	Position	EW	Lastfall	Art	p _A ,m _A [kN/m	p _E ,m _E],[kNm/m]
	LILA-3	Treppe	;		-	
		Gk	LF-1	pGr	25.00	25.00
		Qk.N	LF-2	pGr	12.00	12.00
	LILA-15		′>• <i>c</i> č}* <i>É</i> Éà£OÉMÆ€			
		Gk	LF-1	pGr	6.00	6.00
	LILA-16	_			0.00	
		Gk	LF-1	pGr	6.00	6.00
	LILA-17				0.00	
		Gk	LF-1	pGr	6.00	6.00
	LILA-18				0.00	0.00
	2.2, (10	Gk	LF-1	pGr	6.00	6.00
	LILA-19	_			0.00	
	LIL/ (TO	Gk	LF-1	pGr	6.00	6.00
	LILA-20		<u>'>•č}*É</u> Á∂£©ÁMÆ		0.00	0.00
	LILA 20	Gk	LF-1	pGr	6.00	6.00
	pGr: Gravitation	_	n wirken senkrecht na		0.00	0.00
	,	, ·				
<u>Õ ^&@ ê&@} æe¢}</u>	Position	EW	Lastfall	Art		p [kN/m²]
	FLLA-1	Differe	nzlast Balkon			
		Gk	LF-1	PGr		1.00
		Qk.N	LF-2	PGr		1.30
	FLLA-2		nzlast Balkon			
	,	Gk	LF-1	PGr		1.00
		Qk.N	LF-2	PGr		1.30
	FLLA-3		nzlast Balkon	1 01		1.00
	I LL/(O	Gk	LF-1	PGr		1.00
		Qk.N	LF-2	PGr		1.30
	FLLA-4		nzlast Balkon	1 01		1.00
	1 66/17	Gk	LF-1	PGr		1.00
		Qk.N	LF-2	PGr		1.30
	FLLA-5		nzlast Balkon	1 01		1.50
	I LLA 3	Gk	LF-1	PGr		1.00
		Qk.N	LF-2	PGr		1.30
	FLLA-6		nzlast Balkon	1 01		1.50
	I LLA-0	Gk	LF-1	PGr		1.00
		Qk.N	LF-1 LF-2	PGr		1.30
	FLLA-7		nzlast Balkon	rGi		1.30
	FLLA-1	Gk	LF-1	PGr		1.00
		Qk.N		PGr		
	PGr: Gravitation		LF-2 n wirken senkrecht na			1.30
	i Si. Siavitatioi	.o.dot, poolitivo Edolo		.c unton		

Seite: 3-18


2023 300

D-3.1

ÙVPËÜPÄÄÜ¢4&\@ã ÁÛ>å

Y æ) åæ) æð ^Á\¦ê* ^\

Šæ æàdæ Áş[} Á, æ) åædæ * ^} ÁV¦ê*^¦}

WT-1

Yaa)åadada*^¦ÁV¦ê*^¦ÁQÖ^&\^Á;}c^¦@ada`D

>à^|} ã[{ c/sã ã Ásæ c^}

aus Modell: D-2.1

æ • Á, æ) åæbæð* ^{ ÁV¦ê* ^¦ÁÇÖ^&\ ^Á;à^¦@e)à DAÁY VËF

Linienlasten

Blocklasten der einzelnen Abschnitte

Stelle r		EW	Lastfall	Art	q
von	bis				
	[m]				[kN/m]
0.00	0.88	Gk	#WT1 #1 gk	PGr	91.71
		Gk	#WT1 LF-1	PGr	91.36
		Qk.N	#WT1 #1 qk.n	PGr	20.80
		Qk.N	#WT1 LF-2	PGr	-0.35
		Qk.N	#WT1 (PL-1)-1	PGr	36.38
0.88	1.77	Gk	#WT1 #1 gk	PGr	68.48
		Gk	#WT1 LF-1	PGr	33.59
		Qk.N	#WT1 #1 qk.n	PGr	14.15
		Qk.N	#WT1 LF-2	PGr	-0.54
		Qk.N	#WT1 (PL-1)-1	PGr	13.50
1.77	2.65	Gk	#WT1 #1 gk	PGr	72.16
		Gk	#WT1 LF-1	PGr	27.84
		Qk.N	#WT1 #1 qk.n	PGr	13.15
		Qk.N	#WT1 LF-2	PGr	-0.86
		Qk.N	#WT1 (PL-1)-1	PGr	11.31
2.65	3.53	Gk	#WT1 #1 gk	PGr	37.83
		Gk	#WT1 LF-1	PGr	25.33
		Qk.N	#WT1 #1 qk.n	PGr	3.99
		Qk.N	#WT1 LF-2	PGr	1.06
DC# C#O		Qk.N	#WT1 (PL-1)-1	PGr	9.73

PGr: Gravitationslast; positive Lasten wirken senkrecht nach unten

WT-2

Y æ) åædæt ^ | Á/ | ê* ^ | ÁÇÖ ^ &\ ^ Á } c' | @e(a) D

>à^\} ã { oban Asæ c^\} aus Modell: D-2.1

æ*•Á, æ) åædæt*^{ Á/¦ê*^¦ÁÇÖ^&\^Á(à^¦@æ)àDMÁY VËG

Linienlasten

Blocklasten der einzelnen Abschnitte

Position

2023 300 D-3.1

Seite: 3-19

Stelle r		EW	Lastfall	Art	q
von	bis [m]				[kN/m]
0.00	0.94	Gk	#WT1 #1 gk	PGr	44.04
		Gk	#WT1 LF-1	PGr	13.54
		Qk.N	#WT1 #1 qk.n	PGr	7.56
		Qk.N	#WT1 LF-2	PGr	-0.25
		Qk.N	#WT1 (PL-1)-1	PGr	5.48
0.94	1.89	Gk	#WT1 #1 gk	PGr	47.24
		Gk	#WT1 LF-1	PGr	31.85
		Qk.N	#WT1 #1 qk.n	PGr	8.35
		Qk.N	#WT1 LF-2	PGr	-0.11
		Qk.N	#WT1 (PL-1)-1	PGr	12.62
1.89	2.83	Gk	#WT1 #1 gk	PGr	48.48
		Gk	#WT1 LF-1	PGr	36.02
		Qk.N	#WT1 #1 qk.n	PGr	8.54
		Qk.N	#WT1 LF-2	PGr	-0.10
	0.77	Qk.N	#WT1 (PL-1)-1	PGr	14.33
2.83	3.77	Gk	#WT1 #1 gk	PGr	49.82
		Gk	#WT1 LF-1 #WT1 #1 qk.n	PGr PGr	37.28
		Qk.N Qk.N	#WT1 LF-2	PGr	8.75 -0.05
		Qk.N Qk.N	#WT1 (PL-1)-1	PGr	14.83
3.77	4.72	Gk	#WT1 #1 gk	PGr	51.27
5.11	7.12	Gk	#WT1 LF-1	PGr	37.50
		Qk.N	#WT1 #1 qk.n	PGr	8.98
		Qk.N	#WT1 LF-2	PGr	-0.02
		Qk.N	#WT1 (PL-1)-1	PGr	14.90
4.72	5.66	Gk	#WT1 #1 gk	PGr	52.76
		Gk	#WT1 LF-1	PGr	37.41
		Qk.N	#WT1 #1 qk.n	PGr	9.23
		Qk.N	#WT1 LF-2	PGr	0.00
		Qk.N	#WT1 (PL-1)-1	PGr	14.86
5.66	6.60	Gk	#WT1 #1 gk	PGr	54.24
		Gk	#WT1 LF-1	PGr	37.36
		Qk.N	#WT1 #1 qk.n	PGr	9.47
		Qk.N	#WT1 LF-2	PGr	0.00
		Qk.N	#WT1 (PL-1)-1	PGr	14.84
6.60	7.54	Gk	#WT1 #1 gk	PGr	55.70
		Gk	#WT1 LF-1	PGr	37.36
		Qk.N	#WT1 #1 qk.n	PGr	9.71
		Qk.N	#WT1 LF-2	PGr	-0.03
7.54	0.40	Qk.N	#WT1 (PL-1)-1	PGr	14.84
7.54	8.49	Gk	#WT1 #1 gk	PGr	57.12
		Gk Qk.N	#WT1 LF-1 #WT1 #1 qk.n	PGr PGr	37.08
		Qk.N Qk.N	#WT1 LF-2	PGr	9.94 -0.11
		Qk.N Qk.N	#WT1 (PL-1)-1	PGr	14.76
8.49	9.43	Gk	#WT1 #1 gk	PGr	58.55
0.43	3.43	Gk	#WT1 LF-1	PGr	35.79
		Qk.N	#WT1 #1 qk.n	PGr	10.17
		Qk.N	#WT1 LF-2	PGr	-0.30
		Qk.N	#WT1 (PL-1)-1	PGr	14.31
9.43	10.37	Gk	#WT1 #1 gk	PGr	60.24
-	-	Gk	#WT1 LF-1	PGr	31.49
		Qk.N	#WT1 #1 qk.n	PGr	10.47
		Qk.N	#WT1 LF-2	PGr	-0.83
		Qk.N	#WT1 (PL-1)-1	PGr	12.76
10.37	11.32	Gk	#WT1 #1 gk	PGr	61.92

Auftrags-Nr.	Position

2023 300 D-3.1 ÙVPËÜPĀĀŪc4&\@ā[ÂÛ>å

Stelle r	bis	EW	Lastfall	Art	q
	[m]				[kN/m]
		Gk	#WT1 LF-1	PGr	21.37
		Qk.N	#WT1 #1 qk.n	PGr	10.75
		Qk.N	#WT1 LF-2	PGr	-1.96
		Qk.N	#WT1 (PL-1)-1	PGr	9.08
11.32	12.26	Gk	#WT1 #1 gk	PGr	51.13
		Gk	#WT1 LF-1	PGr	19.72
		Qk.N	#WT1 #1 qk.n	PGr	7.97
		Qk.N	#WT1 LF-2	PGr	-0.23
		Qk.N	#WT1 (PL-1)-1	PGr	7.90

Seite: 3-20

PGr: Gravitationslast; positive Lasten wirken senkrecht nach unten

<u>WT-3</u>

Y æ) åælæî ^¦Á/¦ê*^¦ÁÇÖ^&\^Á} &\ ^Á} &\ @e\àD >à^\} ã[{ of\åæî ASæ e^} aus Modell: D-2.1

æ`•Á, æ) åælæî*^{ ÁV¦ê*^¦ÁÇÖ^&\^Á(à^¦@æ)à DKÁY VЁH

<u>Linienlasten</u>

Blocklasten der einzelnen Abschnitte					
Stelle r		EW	Lastfall	Art	q
von	bis				
	[m]				[kN/m]
0.00	0.94	Gk	#WT1 #1 gk	PGr	44.27
		Gk	#WT1 LF-1	PGr	14.44
		Qk.N	#WT1 #1 qk.n	PGr	7.58
		Qk.N	#WT1 LF-2	PGr	-0.10
		Qk.N	#WT1 (PL-1)-1	PGr	5.86
0.94	1.89	Gk	#WT1 #1 gk	PGr	47.50
		Gk	#WT1 LF-1	PGr	31.61
		Qk.N	#WT1 #1 qk.n	PGr	8.37
		Qk.N	#WT1 LF-2	PGr	-0.17
		Qk.N	#WT1 (PL-1)-1	PGr	12.53
1.89	2.83	Gk	#WT1 #1 gk	PGr	48.64
		Gk	#WT1 LF-1	PGr	35.98
		Qk.N	#WT1 #1 qk.n	PGr	8.54
		Qk.N	#WT1 LF-2	PGr	-0.11
		Qk.N	#WT1 (PL-1)-1	PGr	14.31
2.83	3.77	Gk	#WT1 #1 gk	PGr	49.86
		Gk	#WT1 LF-1	PGr	37.39
		Qk.N	#WT1 #1 qk.n	PGr	8.73
		Qk.N	#WT1 LF-2	PGr	-0.03
		Qk.N	#WT1 (PL-1)-1	PGr	14.86
3.77	4.72	Gk	#WT1 #1 gk	PGr	51.17
		Gk	#WT1 LF-1	PGr	37.55
		Qk.N	#WT1 #1 qk.n	PGr	8.93
		Qk.N	#WT1 LF-2	PGr	0.01
		Qk.N	#WT1 (PL-1)-1	PGr	14.91
4.72	5.66	Gk	#WT1 #1 gk	PGr	52.50
		Gk	#WT1 LF-1	PGr	37.36
		Qk.N	#WT1 #1 qk.n	PGr	9.15
		Qk.N	#WT1 LF-2	PGr	0.03
		Qk.N	#WT1 (PL-1)-1	PGr	14.82
5.66	6.60	Gk	#WT1 #1 gk	PGr	53.84
		Gk	#WT1 LF-1	PGr	37.22
		Qk.N	#WT1 #1 qk.n	PGr	9.36
		Qk.N	#WT1 LF-2	PGr	0.03
		Qk.N	#WT1 (PL-1)-1	PGr	14.77
6.60	7.54	Gk	#WT1 #1 gk	PGr	55.18
		Gk	#WT1 LF-1	PGr	37.18
			•		

2023 300	D-3.1	ÙVPËÜPÆÄÛc4&\@A.AÛ>å	Seite: 3-21

Stelle r	bis	EW	Lastfall	Art	q
7011	[m]				[kN/m]
		Qk.N	#WT1 #1 qk.n	PGr	9.58
		Qk.N	#WT1 LF-2	PGr	0.01
		Qk.N	#WT1 (PL-1)-1	PGr	14.75
7.54	8.49	Gk	#WT1 #1 gk	PGr	56.54
		Gk	#WT1 LF-1	PGr	37.02
		Qk.N	#WT1 #1 qk.n	PGr	9.79
		Qk.N	#WT1 LF-2	PGr	-0.05
		Qk.N	#WT1 (PL-1)-1	PGr	14.71
8.49	9.43	Gk	#WT1 #1 gk	PGr	57.94
		Gk	#WT1 LF-1	PGr	36.11
		Qk.N	#WT1 #1 qk.n	PGr	10.03
		Qk.N	#WT1 LF-2	PGr	-0.22
		Qk.N	#WT1 (PL-1)-1	PGr	14.40
9.43	10.37	Gk	#WT1 #1 gk	PGr	59.61
		Gk	#WT1 LF-1	PGr	32.94
		Qk.N	#WT1 #1 qk.n	PGr	10.32
		Qk.N	#WT1 LF-2	PGr	-0.59
		Qk.N	#WT1 (PL-1)-1	PGr	13.26
10.37	11.32	Gk	#WT1 #1 gk	PGr	61.26
		Gk	#WT1 LF-1	PGr	26.55
		Qk.N	#WT1 #1 qk.n	PGr	10.60
		Qk.N	#WT1 LF-2	PGr	-1.07
		Qk.N	#WT1 (PL-1)-1	PGr	10.87
11.32	12.26	Gk	#WT1 #1 gk	PGr	50.38
		Gk	#WT1 LF-1	PGr	26.26
		Qk.N	#WT1 #1 qk.n	PGr	7.80
		Qk.N	#WT1 LF-2	PGr	0.95
		Qk.N	#WT1 (PL-1)-1	PGr	10.14
PGr: Grav	itationslast; p	ositive Laster	n wirken senkrecht nach unten		

WT-4

Y æ) åædæt ^\Á\lê*^\ÁÇÖ^&\^Á\} &\ \É@\àD >à^\} ā[{ o\\$\ankle A\Sæv \} aus Modell: D-2.1

æi•Á, æ)åælæå^{ Á\¦ê*^¦ÁqÖ^&\^Á;à^¦@e†àDAÁV VË

Linienlasten

Blocklaster	n der ein:	zelnen Al	oschnitte		
Stelle r		EW	Lastfall	Art	q
von	bis				
	[m]				[kN/m]
0.00	0.94	Gk	#WT1 #1 gk	PGr	45.84
		Gk	#WT1 LF-1	PGr	16.59
		Qk.N	#WT1 #1 qk.n	PGr	8.00
		Qk.N	#WT1 LF-2	PGr	0.23
		Qk.N	#WT1 (PL-1)-1	PGr	6.72
0.94	1.89	Gk	#WT1 #1 gk	PGr	50.36
		Gk	#WT1 LF-1	PGr	33.63
		Qk.N	#WT1 #1 qk.n	PGr	9.10
		Qk.N	#WT1 LF-2	PGr	-0.30
		Qk.N	#WT1 (PL-1)-1	PGr	13.33
1.89	2.83	Gk	#WT1 #1 gk	PGr	51.78
		Gk	#WT1 LF-1	PGr	39.42
		Qk.N	#WT1 #1 qk.n	PGr	9.33
		Qk.N	#WT1 LF-2	PGr	-0.18
		Qk.N	#WT1 (PL-1)-1	PGr	15.73
2.83	3.77	Gk	#WT1 #1 gk	PGr	53.24
		Gk	#WT1 LF-1	PGr	41.64
		Qk.N	#WT1 #1 qk.n	PGr	9.56

Seite: 3-22

Stelle r EW Lastfall Art q bis von [kN/m] [m] #WT1|LF-2 PGr Qk.N -0.14 Qk.N #WT1|(PL-1)-1 **PGr** 16.62 4.72 PGr 3.77 Gk #WT1|#1|gk 54.79 #WT1|LF-1 **PGr** Gk 42.26 **PGr** Qk.N #WT1|#1|qk.n 9.82 Qk.N #WT1|LF-2 PGr -0.13Qk.N #WT1|(PL-1)-1 **PGr** 16.86 4.72 5.66 Gk #WT1|#1|qk **PGr** 56.37 Gk #WT1|LF-1 **PGr** 42.31 #WT1|#1|qk.n Qk.N **PGr** 10.09 Qk.N #WT1ILF-2 **PGr** -0.13#WT1|(PL-1)-1 Qk.N **PGr** 16.88 5.66 6.60 PGr Gk #WT1|#1|gk 57.96 Gk #WT1|LF-1 **PGr** 42.27 Qk.N #WT1|#1|qk.n **PGr** 10.35 Qk.N #WT1|LF-2 **PGr** -0.12Qk.N #WT1|(PL-1)-1 **PGr** 16.85 6.60 7.54 Gk #WT1|#1|gk PGr 59.56 **PGr** 42.19 Gk #WT1|LF-1 Qk.N **PGr** #WT1|#1|qk.n 10.62 PGr Qk.N #WT1|LF-2 -0.12Qk.N #WT1|(PL-1)-1 PGr 16.80 7.54 8.49 Gk #WT1|#1|gk PGr 61.17 **PGr** Gk #WT1|LF-1 41.79 Qk.N #WT1|#1|qk.n PGr 10.89 **PGr** Qk.N #WT1|LF-2 -0.16Qk.N #WT1|(PL-1)-1 PGr 16.65 9.43 #WT1|#1|gk 8.49 Gk PGr 62.84 Gk #WT1|LF-1 **PGr** 40.37 #WT1|#1|qk.n Qk.N **PGr** 11.18 **PGr** Qk.N #WT1|LF-2 -0.29Qk.N #WT1|(PL-1)-1 **PGr** 16.12 9.43 10.37 #WT1|#1|gk Gk **PGr** 64.79 Gk #WT1|LF-1 PGr 36.43 Qk.N #WT1|#1|qk.n PGr 11.53 **PGr** Qk.N #WT1|LF-2 -0.64#WT1|(PL-1)-1 **PGr** Qk.N 14.66 10.37 11.32 **PGr** Gk #WT1|#1|gk 66.75 Gk #WT1|LF-1 **PGr** 29.39 #WT1|#1|qk.n **PGr** Qk.N 11.88 Qk.N #WT1|LF-2 PGr -1.11 Qk.N #WT1|(PL-1)-1 **PGr** 12.01 12.26 11.32 Gk #WT1|#1|gk **PGr** 54.65 Gk #WT1|LF-1 PGr 27.80 Qk.N #WT1|#1|qk.n PGr 8.79

Qk.N PGr: Gravitationslast; positive Lasten wirken senkrecht nach unten

Qk.N

#WT1|LF-2

#WT1|(PL-1)-1

PGr

PGr

0.94

10.75

WT-5 >à^{} a { o Á sa A Sa e c^}

aus Modell: D-2.1

æ • Á, æ) åælæði ^{ ÁV¦ê* ^¦ÁÇÖ^&\ ^Át à ^¦@enþà DKÁY VÉÍ

Blocklasten der einzelnen Abschnitte Linienlasten

Position

2023 300 D-3.1

ÙVPËJPĀĀŪc4&\@ā; ÁJ>å Seite: 3-23

Stelle r	bis	EW	Lastfall	Art	q
VOIT	[m]				[kN/m]
0.00	0.94	Gk	#WT1 #1 gk	PGr	43.68
		Gk	#WT1 LF-1	PGr	9.24
		Qk.N	#WT1 #1 qk.n	PGr	8.31
		Qk.N	#WT1 LF-2	PGr	2.48
		Qk.N	#WT1 (PL-1)-1	PGr	2.89
0.94	1.89	Gk	#WT1 #1 gk	PGr	40.63
		Gk	#WT1 LF-1	PGr	11.03
		Qk.N	#WT1 #1 qk.n	PGr	7.49
		Qk.N Qk.N	#WT1 LF-2	PGr PGr	-0.60 4.59
1.89	2.83	Gk	#WT1 (PL-1)-1 #WT1 #1 gk	PGr	40.28
1.09	2.00	Gk	#WT1 LF-1	PGr	14.35
		Qk.N	#WT1 #1 qk.n	PGr	7.26
		Qk.N	#WT1 LF-2	PGr	-0.21
		Qk.N	#WT1 (PL-1)-1	PGr	5.82
2.83	3.77	Gk	#WT1 #1 gk	PGr	39.81
		Gk	#WT1 LF-1	PGr	16.36
		Qk.N	#WT1 #1 qk.n	PGr	6.99
		Qk.N	#WT1 LF-2	PGr	0.28
		Qk.N	#WT1 (PL-1)-1	PGr	6.28
3.77	4.72	Gk	#WT1 #1 gk	PGr	39.34
		Gk	#WT1 LF-1	PGr	46.11
		Qk.N	#WT1 #1 qk.n	PGr	6.73
		Qk.N Qk.N	#WT1 LF-2	PGr PGr	9.68
4.72	5.66	Gk.N	#WT1 (PL-1)-1 #WT1 #1 gk	PGr	11.57 39.06
4.72	5.00	Gk	#WT1 LF-1	PGr	55.32
		Qk.N	#WT1 #1 qk.n	PGr	6.52
		Qk.N	#WT1 LF-2	PGr	10.73
		Qk.N	#WT1 (PL-1)-1	PGr	15.31
5.66	6.60	Gk	#WT1 #1 gk	PGr	38.60
		Gk	#WT1 LF-1	PGr	32.45
		Qk.N	#WT1 #1 qk.n	PGr	6.26
		Qk.N	#WT1 LF-2	PGr	3.15
		Qk.N	#WT1 (PL-1)-1	PGr	11.61
6.60	7.54	Gk	#WT1 #1 gk	PGr	38.09
		Gk	#WT1 LF-1	PGr	24.06
		Qk.N	#WT1 #1 qk.n	PGr	6.00
		Qk.N	#WT1 LF-2	PGr	1.21
7.54	9.40	Qk.N Gk	#WT1 (PL-1)-1 #WT1 #1 gk	PGr PGr	9.32
7.54	8.49	Gk	#WT1 LF-1	PGr	37.58 27.30
		Qk.N	#WT1 #1 qk.n	PGr	5.72
		Qk.N	#WT1 LF-2	PGr	1.56
		Qk.N	#WT1 (PL-1)-1	PGr	10.63
8.49	9.43	Gk	#WT1 #1 gk	PGr	36.67
		Gk	#WT1 LF-1	PGr	12.40
		Qk.N	#WT1 #1 qk.n	PGr	5.36
		Qk.N	#WT1 LF-2	PGr	-0.94
		Qk.N	#WT1 (PL-1)-1	PGr	5.51
9.43	10.37	Gk	#WT1 #1 gk	PGr	36.51
		Gk	#WT1 LF-1	PGr	12.82
		Qk.N	#WT1 #1 qk.n	PGr	5.16
		Qk.N	#WT1 LF-2	PGr	-0.41
10.27	11 22	Qk.N	#WT1 (PL-1)-1	PGr	5.26
10.37	11.32	Gk	#WT1 #1 gk	PGr	36.54

Auftrags-Nr.	Position	Ingenieurgesellschaft mbH
2023 300	D-3.1	ÙVPËÜPÄÄÜ¢4&\@Aį ÁÛ>å

Stelle r	bis	EW	Lastfall	Art	q
VOIT	[m]				[kN/m]
		Gk	#WT1 LF-1	PGr	12.02
		Qk.N	#WT1 #1 qk.n	PGr	5.00
		Qk.N	#WT1 LF-2	PGr	-0.25
		Qk.N	#WT1 (PL-1)-1	PGr	4.84
11.32	12.26	Gk	#WT1 #1 gk	PGr	28.45
		Gk	#WT1 LF-1	PGr	-1.97
		Qk.N	#WT1 #1 qk.n	PGr	3.15
		Qk.N	#WT1 LF-2	PGr	0.02
		Qk.N	#WT1 (PL-1)-1	PGr	-0.79

Seite: 3-24

PGr: Gravitationslast; positive Lasten wirken senkrecht nach unten

WT-6

Y æ) åælæî ^¦Á/¦ê*^¦ÁÇÖ^&\^Á} &\ ^Á} &\ @e\àD >à^¦} ã! { obsañ ÁSæ e^} aus Modell: D-2.1

æੱ•Á,æ)åædæ † ^{ Á\¦ê*^¦ÁÇÖ^&\^Á\à^¦æ\àDAÝ VÊ

<u>Linienlasten</u>

Blocklaste	en der ein				
Stelle r		EW	Lastfall	Art	q
von	bis [m]				[kN/m]
0.00	0.94	Gk	#WT1 #1 gk	PGr	23.13
		Gk	#WT1 LF-1	PGr	-2.79
		Qk.N	#WT1 #1 qk.n	PGr	1.52
		Qk.N	#WT1 LF-2	PGr	-0.01
		Qk.N	#WT1 (PL-1)-1	PGr	-1.36
0.94	1.89	Gk	#WT1 #1 gk	PGr	8.05
		Gk	#WT1 LF-1	PGr	18.48
		Qk.N	#WT1 #1 qk.n	PGr	1.14
		Qk.N	#WT1 LF-2	PGr	0.00
		Qk.N	#WT1 (PL-1)-1		5.58
1.89	2.83	Gk	#WT1 #1 gk	PGr	26.20
		Gk	#WT1 LF-1	PGr	18.16
		Qk.N	#WT1 #1 qk.n	PGr	4.09
		Qk.N	#WT1 LF-2	PGr	0.00
		Qk.N	#WT1 (PL-1)-1		5.99
2.83	3.77	Gk	#WT1 #1 gk	PGr	55.43
		Gk	#WT1 LF-1	PGr	16.63
		Qk.N	#WT1 #1 qk.n	PGr	8.64
		Qk.N	#WT1 LF-2	PGr	0.01
		Qk.N	#WT1 (PL-1)-1		6.27
3.77	4.72	Gk	#WT1 #1 gk	PGr	15.02
		Gk	#WT1 LF-1	PGr	19.89
		Qk.N	#WT1 #1 qk.n	PGr	2.35
		Qk.N	#WT1 LF-2	PGr	0.01
		Qk.N	#WT1 (PL-1)-1		6.36
4.72	5.66	Gk	#WT1 #1 gk	PGr	17.31
		Gk	#WT1 LF-1	PGr	19.78
		Qk.N	#WT1 #1 qk.n	PGr	2.73
		Qk.N	#WT1 LF-2	PGr	0.01
		Qk.N	#WT1 (PL-1)-1		6.37
5.66	6.60	Gk	#WT1 #1 gk	PGr	56.67
		Gk	#WT1 LF-1	PGr	16.76
		Qk.N	#WT1 #1 qk.n	PGr	8.86
		Qk.N	#WT1 LF-2	PGr	0.00
		Qk.N	#WT1 (PL-1)-1		6.34
6.60	7.54	Gk	#WT1 #1 gk	PGr	22.98
		Gk	#WT1 LF-1	PGr	19.18

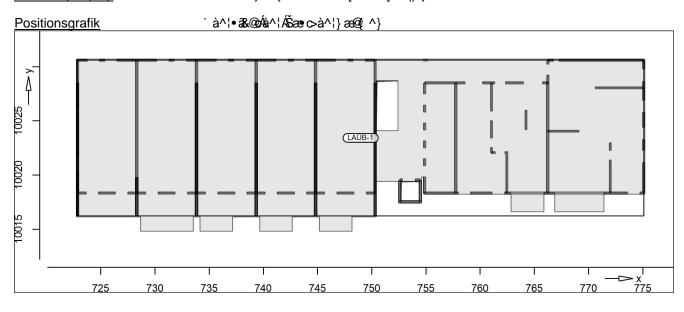
Stelle r

martens+puller
Ingenieurgesellschaft mbH

Auftrags-Nr. Position

2023 300 D-3.1 ÙVPËÜPĀÄÛc4&\@@ã ÁÛ>å

	EW	Lastfall	Art	q
· 				[kN/m]
	Qk.N	#WT1 #1 qk.n	PGr	3.57


Seite: 3-25

Otono i		_ * *	Lactian	, u c	9
von	bis				
	[m]				[kN/m]
		Qk.N	#WT1 #1 qk.n	PGr	3.57
		Qk.N	#WT1 LF-2	PGr	0.00
		Qk.N	#WT1 (PL-1)-1	PGr	6.32
7.54	8.49	Gk	#WT1 #1 gk	PGr	9.00
		Gk	#WT1 LF-1	PGr	20.07
		Qk.N	#WT1 #1 qk.n	PGr	1.42
		Qk.N	#WT1 LF-2	PGr	-0.01
		Qk.N	#WT1 (PL-1)-1	PGr	6.29
8.49	9.43	Gk	#WT1 #1 gk	PGr	43.45
		Gk	#WT1 LF-1	PGr	16.44
		Qk.N	#WT1 #1 qk.n	PGr	6.48
		Qk.N	#WT1 LF-2	PGr	-0.02
		Qk.N	#WT1 (PL-1)-1	PGr	6.19
9.43	10.37	Gk	#WT1 #1 gk	PGr	40.05
		Gk	#WT1 LF-1	PGr	14.81
		Qk.N	#WT1 #1 qk.n	PGr	4.99
		Qk.N	#WT1 LF-2	PGr	-0.03
		Qk.N	#WT1 (PL-1)-1	PGr	5.92
10.37	11.32	Gk	#WT1 #1 gk	PGr	23.27
		Gk	#WT1 LF-1	PGr	14.37
		Qk.N	#WT1 #1 qk.n	PGr	1.29
		Qk.N	#WT1 LF-2	PGr	0.01
		Qk.N	#WT1 (PL-1)-1	PGr	5.67
11.32	12.26	Gk	#WT1 #1 gk	PGr	13.73
		Gk	#WT1 LF-1	PGr	-12.34
		Qk.N	#WT1 #1 qk.n	PGr	-0.84
		Qk.N	#WT1 LF-2	PGr	-1.08
		Qk.N	#WT1 (PL-1)-1	PGr	-3.67

Qk.N #WT1|(PL-1)-1
Gravitationslast; positive Lasten wirken senkrecht nach unten

<u>Šæ•c>à^¦}æ@;^}</u>

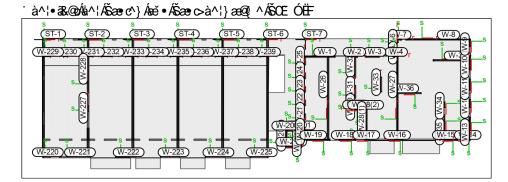
Šæ•c>à^¦}æ@(^Áæč•ÁTæ%|[Ø^ËT[å^||^}

ŠŒ ÓËF

Šæ; cà^{} æ@; ^ÁSઁæ; cà^{* æà^Øæě • ÁT [å^||ÁÖÖËÐÈC

Öâ^ÁŠæ•c>à^¦}æ@(^Án¦-{|*oÁn3, ã\`}*•d^`È Einwirkungen mit Lastgruppen werden weiterhin |æ cæ|d^ ´Áà^\} [{ { ^} È

2023 300


D-3.1

ÙVPËÜPĀÄÛ¢4&\@^ą̃ ÁÛ>å

Öâl Ásæ æ) c'ậl Áe • Ácê} åã ^} Ásæ c'} Áål \Loc ^} Äál \Auc>c ^} Äál \Auc>c ^} Äál \Auc>c ^} Äál \Auc>c \A

Seite: 3-26

Positionsgrafik

<u>Punktlasten</u>

Position	on	EW	Lastfall	Art	Р
					[kN]
ST-1		Gk	#1 gk	PGr	70.73
		Qk.N	#1 qk.n	PGr	14.02
ST-2		Gk	#1 gk	PGr	146.38
		Qk.N	#1 qk.n	PGr	33.38
ST-3		Gk	#1 gk	PGr	156.47
		Qk.N	#1 qk.n	PGr	32.96
ST-4		Gk	#1 gk	PGr	155.48
		Qk.N	#1 qk.n	PGr	32.72
ST-5		Gk	#1 gk	PGr	149.82
		Qk.N	#1 qk.n	PGr	29.89
ST-6		Gk	#1 gk	PGr	151.55
		Qk.N	#1 qk.n	PGr	35.06
ST-7		Gk	#1 gk	PGr	131.92
		Qk.N	#1 qk.n	PGr	28.54
PGr:	Gravitationslast; po	sitive Lasten	wirken senkrecht nach unter	n	

Linienlasten

Position	EW	Lastfall	Art	РА	p _E [kN/m]
W-1	Gk	#1 gk	pGr	29.61	116.86
	Qk.N	#1 qk.n	pGr	10.23	35.28
W-2	Gk	#1 gk	pGr	168.53	121.70
	Qk.N	#1 qk.n	pGr	54.60	35.58
W-3	Gk	#1 gk	pGr	107.44	89.69
	Qk.N	#1 qk.n	pGr	34.15	30.48
W-4	Gk	#1 gk	pGr	33.26	40.03
	Qk.N	#1 qk.n	pGr	8.46	13.11
W-5	Gk	#1 gk	pGr	61.78	82.21
	Qk.N	#1 qk.n	pGr	22.85	30.13
W-6	Gk	#1 gk	pGr	128.74	124.23
	Qk.N	#1 qk.n	pGr	35.06	30.71
W-7	Gk	#1 gk	pGr	84.08	47.26
	Qk.N	#1 qk.n	pGr	17.54	7.87
W-8	Gk	#1 gk	pGr	31.54	23.42
	Qk.N	#1 qk.n	pGr	6.90	2.19
W-9	Gk	#1 gk	pGr	25.58	37.70
	Qk.N	#1 qk.n	pGr	2.54	6.05
W-10	Gk	#1 gk	pGr	9.82	41.98
	Qk.N	#1 qk.n	pGr	-4.56	9.49
W-11	Gk	#1 gk	pGr	62.46	58.61
	Qk.N	#1 qk.n	pGr	17.79	16.40
W-12	Gk	#1 gk	pGr	62.10	47.19
	Qk.N	#1 qk.n	pGr	16.65	10.32

Position

2023 300 D-3.1

ÙVPËÜPĀĀÚd& @ā ÁÚ>å

Seite: 3-27

Position	EW	Lastfall	Art	ра	p⊨
1 00111011	_,,	Laotran	7.11.	PA	[kN/m]
W-13	Gk	#1 gk	pGr	41.91	20.51
	Qk.N	#1 qk.n	pGr	9.52	1.37
W-14	Gk	#1 gk	pGr	30.01	42.52
	Qk.N	#1 qk.n	pGr	2.88	7.31
W-15	Gk	#1 gk	pGr	6.94	73.59
	Qk.N	#1 qk.n	pGr	-1.88	16.11
W-16	Gk	#1 gk	pGr	132.10	9.12
	Qk.N	#1 qk.n	pGr	35.55	-7.02
W-17	Gk	#1 gk	pGr	54.95	37.63
	Qk.N	#1 qk.n	pGr	7.34	3.84
W-18	Gk	#1 gk	pGr	38.19	42.46
	Qk.N	#1 qk.n	pGr	8.35	9.58
W-19	Gk	#1 gk	pGr	17.19	33.72
14/ 00	Qk.N	#1 qk.n	pGr	0.81	4.19
W-20	Gk	#1 gk	pGr	24.35	48.03
W 04	Qk.N	#1 qk.n	pGr	-2.38	14.39
W-21	Gk	#1 gk	pGr	165.73	198.32
W 00	Qk.N	#1 qk.n	pGr	50.39	58.64
W-22	Gk	#1 gk	pGr	92.73	90.48
144.00	Qk.N	#1 qk.n	pGr	28.81	28.82
W-23	Gk	#1 gk	pGr	244.09	240.43
144.04	Qk.N	#1 qk.n	pGr	73.79	74.12
W-24	Gk	#1 gk	pGr	138.10	141.24
W 05	Qk.N	#1 qk.n	pGr	50.78	49.62
W-25	Gk	#1 gk	pGr	191.18	25.86
W 00	Qk.N	#1 qk.n	pGr	37.45	9.74
W-26	Gk	#1 gk #4 gk	pGr	63.07	24.52
W 07	Qk.N	#1 qk.n	pGr	20.18	7.96
W-27	Gk	#1 gk #4 gk	pGr	61.56	40.00
W-28(1)	Qk.N Gk	#1 qk.n	pGr	18.92	13.72
VV-20(1)		#1 gk #1 gk	pGr	40.43	59.63
W-28(2)	Qk.N Gk	#1 qk.n	pGr	10.08 76.14	24.05 71.91
VV-20(2)	Qk.N	#1 gk #1 gk	pGr		
W-29	Gk.N	#1 qk.n	pGr	29.75 67.51	27.82 86.46
VV-29	Qk.N	#1 gk #1 gk p	pGr pGr	26.03	34.84
W-30	Gk.N	#1 qk.n			
VV-3U	Qk.N	#1 gk #1 qk.n	pGr pGr	86.65 34.91	78.29 30.90
W-31	Gk.N	#1 qk.11 #1 gk	pGr	64.43	69.30
VV-31	Qk.N	#1 gk #1 qk.n	pGr	24.26	26.99
W-32	Gk.N	#1 qk.ii #1 gk	pGr	36.18	-2.08
VV-3Z	Qk.N	#1 gk #1 qk.n	pGr	17.18	-1.54
W-33	Gk	#1 qk.ii #1 gk	pGr	86.03	22.56
VV-33	Qk.N	#1 gk #1 qk.n	pGr	32.51	10.12
W-34	Gk	#1 gk	pGr	272.97	152.64
VV 34	Qk.N	#1 gk #1 qk.n	pGr	119.47	64.74
W-35	Gk	#1 qk.ii #1 gk	pGr	83.64	37.39
VV 33	Qk.N	#1 gk #1 qk.n	pGr	34.34	8.76
W-36	Gk	#1 gk	pGr	179.11	-33.27
** 00	Qk.N	#1 gk #1 qk.n	pGr	76.64	-19.94
W-37	Gk	#1 gk	pGr	131.80	8.66
	Qk.N	#1 gk.n	pGr	55.79	-2.01
W-200	Gk	#1 qk.ii #1 gk	pGr	346.32	335.76
50	Qk.N	#1 gk.n	pGr	130.52	124.03
W-201	Gk	#1 gk	pGr	165.04	124.29
5.	Qk.N	#1 gk #1 qk.n	pGr	47.38	27.19
	∞. \ 1	٣٠٠٠٠	۲۵,		_,

2023 300 D-3.1 ÚVPEÜPĀĀŪd& @ ą̃ ÁŪ>å Seite: 3-28

Position	EW	Lastfall	Art	РА	p _E [kN/m]
W-202	Gk	#1 gk	pGr	44.49	51.50
	Qk.N	#1 qk.n	pGr	-10.40	4.96
W-203	Gk	#1 gk	pGr	45.19	42.04
	Qk.N	#1 qk.n	pGr	1.80	-0.47
W-204	Gk	#1 gk	pGr	12.48	126.52
	Qk.N	#1 qk.n	pGr	-12.99	25.32
W-220	Gk	#1 gk	pGr	19.35	83.80
	Qk.N	#1 qk.n	pGr	-5.96	14.55
W-221	Gk	#1 gk	pGr	91.96	25.03
	Qk.N	#1 qk.n	pGr	15.65	1.18
W-222	Gk	#1 gk	pGr	142.52	34.03
14/ 000	Qk.N	#1 qk.n	pGr	40.09	4.06
W-223	Gk	#1 gk	pGr	132.44	21.01
14/ 00/	Qk.N	#1 qk.n	pGr	33.37	-1.98
W-224	Gk	#1 gk	pGr	123.29	21.07
W-225	Qk.N	#1 qk.n	pGr	30.45	-2.03
VV-225	Gk Qk.N	#1 gk	pGr	218.35	-43.28 -27.01
W-227	Gk.N	#1 qk.n	pGr	62.60 427.76	359.96
VV-221	Qk.N	#1 gk #1 gk p	pGr pGr		99.54
W-228	Gk.N	#1 qk.n #1 gk	pGr pGr	122.88 202.22	35.60
VV-220	Qk.N	#1 gk #1 qk.n	pGr	52.75	1.80
W-229	Gk.IN	#1 qk.ii #1 gk	pGr pGr	48.08	202.79
VV-223	Qk.N	#1 gk #1 qk.n	pGr	0.77	54.80
W-230	Gk	#1 qk.:1	pGr	328.28	293.74
W 200	Qk.N	#1 qk.n	pGr	87.89	75.04
W-231	Gk	#1 gk	pGr	133.68	-3.42
W 201	Qk.N	#1 qk.n	pGr	37.24	-10.37
W-232	Gk	#1 gk	pGr	42.65	224.12
202	Qk.N	#1 qk.n	pGr	-2.33	63.92
W-233	Gk	#1 gk	pGr	119.85	10.03
	Qk.N	#1 qk.n	pGr	30.46	-8.64
W-234	Gk	#1 gk	pGr	58.05	230.98
	Qk.N	#1 qk.n	pGr	5.41	67.42
W-235	Gk	#1 gk	pGr	92.06	31.68
	Qk.N	#1 qk.n	pGr	12.95	5.20
W-236	Gk	#1 gk	pGr	104.41	175.06
	Qk.N	#1 qk.n	pGr	29.94	38.57
W-237	Gk	#1 gk	pGr	88.57	46.30
	Qk.N	#1 qk.n	pGr	14.05	12.04
W-238	Gk	#1 gk	pGr	80.59	202.98
	Qk.N	#1 qk.n	pGr	16.62	45.32
W-239	Gk	#1 gk	pGr	223.08	115.67
_	Qk.N	#1 qk.n	pGr	57.70	37.52
pGr: Gravitation	slast; positive Laster	n wirken senkrecht na	ch unten		

Einwirkungen

DIN EN 1990 Einwirkungen nach DIN EN 1990

S>:\^	Beschreibung
	Typisierung
Gk	Eigenlasten
	Ùœ}åã*^ÁÒã; ã\`}*^}
Qk.N	Nutzlasten
	Sæe^*[¦ãNÁOÐÁÖÁY[@y,ËÁ\}åÁOE-^}c@eo†o•¦ê*{^

 $\underline{\check{S}}\underline{a}\underline{c}\underline{e}\underline{||}^{\hat{A}} \hat{a}\underline{A}\underline{a}^{\hat{A}}\underline{$

Seite: 3-29

Position Auftrags-Nr. ÙVPËJPÆÄJO4& @ã ÁJ>å 2023 300 D-3.1

LF-1, #1|gk, #WT1|#1|gk, #WT1|LF-1, #WT|LF-1 Gk

Qk.N LF-2, (PL-1)-1, #1|qk.n, #WT1|#1|qk.n, #WT1|LF-2, #WT1|(PL-1)-1

Bemessung (GZT+GZG)

Biegung PI-As-erf-Iso Plattenbiegebemessung nach DIN EN 1992-1-1

Ó^{ ^••`} * Á>¦ ÁÚ|ææc^ÁQÙææ@à^d; } DÁÚŠËF PL-1

Mat./Querschnitt Beton C 30/37

Õ^• c^ã,•\4¦} `} * ÁÛ`æ: ãc Betonstahl B 500MA

Öæk\^} Ás^¦ê} å^¦|æk@Á@ÁMÁGŒÈŒŒÌÌÌÈÈ ÈŒ€Á&{

*^{ êi ÁÖ OÞÁÖÞÁFJJ GËFËFÉVæà ÉÁ ÈF Expositionsklasse

> Position Seite ΚI Kommentar XC3 PL-1 { êi ãt ^ ÁØ^ ` &@^ oben Pê ~ at / fi å ^ l / hê } * ^ l ^ ÁZ ^ a dÁ WF feuchter Beton d[&\^} A\ a^\ A\ ce\} aa A\ æ•• unten XC1 Weitgehend trockener Beton WO

Vorgaben zur Bewehrungsdefinition Bewehrung

Betondeckung 10 / 20 $C_{min,u}/C_{min,o} =$ mm &def,u D &def,o =10 / 15 mm 20 / 35 Cnom,u/Cnom,o = mm Bewehrungsabstand $d'_{ru/su} =$ 30 / 30 mm $d'_{ro/so} =$ 30 / 30 mm Bewehrungsrichtung $W_{ru/su} =$ 0.0 / 90.0 0.0 / 90.0 Wro/so

Tænc^ÉAÙcêà^ Grundbewehrung Seite d'r a_{sg,r} d's $a_{\text{sg,s}}$ Ž&(Ð)á <Ž,{&ÐŽ&{á [mm] Ž& ₽) á [mm] Unten 30 2.27 30 2.27 Oben 30 30 3.35 3.35

Tænc^ÉAÙcêà^ Zulagebewehrung Seite d'_r d's a_{sz,r} a_{sz,s} <Ž{{aB•Ž&{á ₽)á [mm] Đ)á [mm] **ZULAGE-1** Unten 7.99 30 7.99 30 Oben 30 6.91 30 6.91

Nachweisparameter nach DIN EN 1992-1-1

Tā, å^•cà^, ^@`} * ÁQ ÈDÈÈDÁ `¦å^Áà^!>& • & @ã cÈ

Tæi*^à^}å^ÁS[{àã,æaã,}^}Á,æ&@ÄÖQDAÖÞÁ≂JJ€ Kombinationen

> Ew Einwirkungsname

Lastkombinationsnummer Lkn

c[| @ | | • & @ } a^Ac^| ê } a^| | a& @ AOa _ a\ ` } *

Öan ÁÓn chātā *) * Ánā; : ^ | } ^ ¦ Ásæ cê | | ^ Áā; } ^ ¦ @età Áeiner Einwirkung wird mit diesem

Ausgabeformat nicht dokumentiert.

Ew Gk Qk.N Lkn Grundkombination 1-20 1.50 ! 1.35

Auftrags-Nr.

Seite: 3-30

D-3.1

ÙVPËÜPÄÄÛ¢4&\@@ã ÁÛ>å

<u>as,r,unten</u> Šê} * • à^, ^@* } * ÁŞ ÁËÜ &&@* } * ÁŞ Á ; C^!^! ÁŠæt ^

Q[|ãjã^}•č~}ÁMÁCHÈ€Á&{ Ð

Achsabstand erf. Bewehrung: d'_{ru} = 30 mm Achsabstand vorh. Bewehrung: d'_{ru} = 30 mm

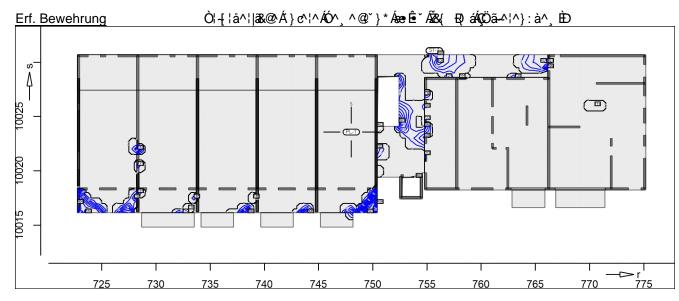
			ACIISADSIAITU V	om. beweinun	$g. u_{ru} = 30 \text{ m}$	II <u> </u>	/>> /	_
			vorhandene Be	ewehrung (Grun	าd+Zulagen): ส	asvorh,ru = Œ		
Punkt	X	У	$m_{r,Ed}$	$m_{s,Ed}$	$m_{rs,Ed}$	m_{Ed}	a _{s,ru}	Lkn
		[m]				[kNm/m]	Z&{ Ð()á	
F01	766.16	10030	3.76	11.36	17.48	21.24	0.20	1
F02	765.50	10029	44.26	-22.42	14.84	54.09	5.20	2
F03	759.00	10029	35.21	-19.89	-25.14	60.35	6.19	2
F04	754.78	10028	14.89	-28.72	-22.51	32.53	1.86	6
F05	732.00	10016	53.47	-3.26	-2.84	55.95	5.50	1
F06	728.16	10019	72.52	9.78	4.29	76.80	8.84	5
F07	750.35	10019	18.94	3.66	-5.02	23.96	0.60	7
F08	765.00	10029	20.55	-10.04	28.01	48.56	4.34	2
F09	752.00	10029	79.98	-3.89	-0.65	80.09	9.38	12
F10	763.50	10029	14.12	-48.84	-20.57	22.79	0.42	3
F11	725.50	10029	126.16	103.55	-2.45	128.62	1.88	7
F12	748.00	10027	36.75	18.99	0.76	37.51	2.62	13
F13	742.00	10027	23.64	8.75	0.57	24.21	0.63	1
F14	736.50	10027	26.95	10.61	0.55	27.50	1.12	5
F15	731.00	10027	23.18	8.48	0.39	23.56	0.54	5
F16	725.00	10027	37.30	18.01	-0.32	37.62	2.64	1
F17	732.50	10016	81.89	8.03	-22.94	104.83	13.55	5
F18	730.00	10016	10.71	-13.74	15.30	26.01	0.90	1
F19	747.50	10016	18.26	-2.06	4.35	22.61	0.40	1
F20	754.78	10024	3.00	0.98	24.82	27.82	1.16	6
F21	733.82	10016	-222.68	-110.06	-19.24	-241.92	7.50	5
F22	744.82	10016	-202.34	-82.82	9.16	-211.50	2.51	1
F23	728.32	10018	122.70	-17.94	-3.80	123.50	16.86	5
F24	733.82	10018	61.70	-5.37	-5.54	67.24	7.29	9
F25	739.32	10018	54.90	-4.32	-3.17	57.23	5.70	9
F26	744.82	10018	59.16	-4.38	0.42	59.20	6.01	9
R01	752.42	10024	91.71	6.11	29.09	120.80	16.37	1
R02	751.50	10029	73.83	-0.29	8.43	82.26	9.74	2
R03	750.40	10024	4.42	0.03	-22.65	27.07	1.05	3
R04	751.50	10024	71.95	0.58	-11.64	83.59	9.96	1
R05	722.74	10017	-1.08	-0.64	49.96	48.88	4.39	4

Auftrags-Nr. Position IIII Ingenieurgesellschaft mbH

2023 300 D-3.1 ÜVPËÜPÆÄVæl & @ Ã ÁV>å Seite: 3-31

Punkt	Х	У	$m_{r,Ed}$	$m_{s,Ed}$	$m_{rs,Ed}$	m_{Ed}	a _{s,ru}	Lkn
		[m]	,	,	,	[kNm/m]	Ž&{ Ð, á	
R06	752.00	10031	54.43	1.18	2.59	57.02	5.67	1
R07	771.41	10018	20.67	-27.54	6.67	22.29	0.35	5
R08	754.58	10020	10.83	-4.79	17.58	28.41	1.25	6
R09	751.50	10019	14.60	-1.48	-12.43	27.03	1.05	1
R10	750.40	10017	-1.11	5.55	-65.91	64.80	6.90	5
R11	749.00	10016	131.51	9.22	-48.21	179.73	28.33	7
R12	745.16	10016	19.74	-11.16	11.00	30.58	1.57	8
R13	743.50	10016	68.59	8.81	-31.04	99.63	12.65	9
R14	739.66	10016	17.11	-8.76	9.12	26.24	0.93	8
R15	738.00	10016	78.80	9.11	-32.06	110.86	14.60	9
R16	734.16	10016	22.61	-11.52	11.54	34.16	2.11	10
R17	733.52	10016	33.17	-35.98	11.67	36.95	2.54	8
R18	731.50	10015	40.58	0.38	-1.80	42.38	3.38	1
R19	725 00	10016	68 71	7 55	30.71	99 42	12.61	11

D-3.1


Seite: 3-32

ÙVPËÜPĀÄÛ¢4&\@^ą̃ ÁÛ>å

as,s,unten

Auftrags-Nr.

Šê}*•à^, ^@`}*Á§Á;ÉÜæ&@`}*Á§Á}¢^¦^¦Á§æ*^

Q [|ã, ã^}• c - ^} ÁMÁ€ÉL €Á&{ Ð

Punkt	Х	У	m _{r.Ed}	m _{s,Ed}	m _{rs,Ed}	m_{Ed}	a _{s,su}	. પ્ર Lkn
1 01111	,	[m]	····,_u	s,Eu	ı3,∟u	[kNm/m]	Ž&{ Đ(á	
ST-7		[]	-43.97	24.43	-10.83	27.10	1.06	14
F01	766.16	10030	3.76	11.36	17.48	28.84	1.31	1
F02	754.78	10024	13.74	51.13	-3.87	55.00	5.35	10
F03	754.78	10021	2.30	22.33	-4.19	26.52	0.97	10
F04	758.00	10029	13.28	1.10	-20.70	21.80	0.28	1
F05	754.78	10026	-1.51	19.74	6.26	26.00	0.90	1
F06	754.78	10023	0.08	19.67	14.98	34.66	2.19	5
F07	765.50	10030	15.34	2.45	30.73	33.18	1.96	1
F08	756.00	10030	-27.38	6.58	-30.76	37.34	2.60	5
F09	766.16	10030	0.65	23.23	23.81	47.05	4.10	1
F10	754.78	10027	4.31	28.51	2.71	31.21	1.66	6
F11	770.50	10026	8.81	14.42	6.36	20.78	0.13	11
F12	728.32	10022	19.02	40.23	0.89	41.12	3.18	14
F13	728.32	10021	10.39	22.72	2.45	25.18	0.77	7
F14	728.32	10018	76.72	25.47	-1.55	27.02	1.04	5
F15	739.00	10018	-14.84	-4.64	-25.96	21.32	0.21	9
F16	733.50	10018	-16.81	-6.21	-32.05	25.84	0.87	9
F17	728.00	10018	-0.15	2.96	-28.64	31.60	1.72	14
F18	733.00	10017	23.50	-21.70	-42.33	20.64	0.11	5
F19	732.50	10016	77.66	12.54	-19.34	31.88	1.76	15
F20	763.16	10029	4.65	13.63	14.89	28.52	1.27	1
F21	756.78	10029	-5.30	8.60	-21.55	30.15	1.51	1
F22	754.78	10025	-0.97	13.23	-9.67	22.90	0.44	5
F23	750.40	10022	0.99	8.17	-21.19	29.36	1.39	10
R01	752.42	10025	-13.29	24.16	34.88	59.04	5.99	1
R02	750.40	10024	4.42	0.03	-22.67	22.69	0.41	5
R03	754.00	10019	-5.66	0.77	19.33	20.09	0.03	6
R04	722.74	10017	-1.08	-0.64	49.96	49.33	4.46	4
R05	756.00	10031	-25.90	-0.18	-35.96	35.78	2.36	5
R06	750.40	10017	-1.11	5.55	-65.91	71.47	7.97	5
R07	749.50	10016	72.46	4.20	-70.12	74.32	8.44	5

Auftrags	-Nr.	Positio	on	Ingenieurgesellschaft mbH				
2023 300 D-3.1 ÙVPËÜPÄÄJ¢48			Ù04&\@aį AÛ>	04&\@a ÂU>å 5				
Punkt	Х	y [m]	$m_{r,Ed}$	$m_{\text{s},\text{Ed}}$	$m_{\text{rs,Ed}}$	m _{Ed} [kNm/m]	a _{s,su} Ž&{ ₽) á	Lkn
R08	744.00	10016	17.48	-1.47	-44.81	43.33	3.52	5
R09	738.50	10016	28.76	-0.21	-48.02	47.81	4.22	9
R10	723.50	10016	31.86	11.00	47.22	58.21	5.85	4

Auftrags-Nr. Position

2023 300 D-3.1 ÚVPËÜPĀĀŪd& @ ą̃ ÂŪ>å Seite: 3-34

as,r,oben

Šê}*•à^¸^@*}*Á§ÁËÜæ&@*}*Á§Á; á\a^¦^¦ÁŠæ*^

Q[|ã,ã^}•c~}ÁMÁGÈ€€Á&{ Ð

Achsabstand erf. Bewehrung: d'ro = 30 mm Achsabstand vorh. Bewehrung: d'ro = 30 mm vorhandene Bewehrung (Grund+Zulagen): asvorh,ro = HÈH ÆÆ €ÈĴ Æ €

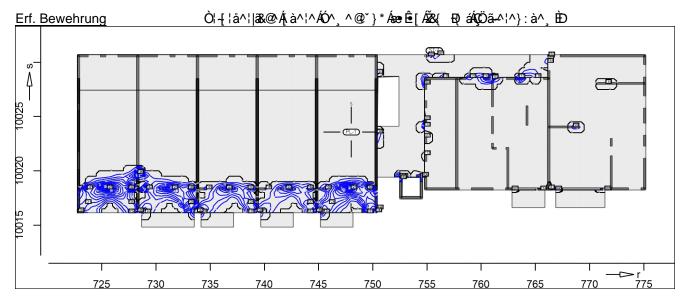
Punkt	х	у	m _{r,Ed}	m _{s,Ed}	m _{rs,Ed}	m _{Ed}	a _{s,ro}	Lkn
		[m]	111,20	11-0,24	1110,24	[kNm/m]	Ž&{ Ð, á	
ST-7			-82.32	13.81	-14.81	-97.12	11.17	2
F01	763.50	10029	-18.92	-48.38	24.47	-43.39	2.46	6
F02	763.16	10029	-21.58	3.19	-11.06	-32.64	0.84	2
F03	761.47	10029	-17.81	-15.91	27.60	-45.41	2.77	1
F04	758.47	10029	-25.08	-2.72	-23.62	-48.70	3.28	2
F05	754.78	10031	-103.38	-14.70	-6.10	-109.48	13.33	1
F06	755.16	10031	-105.80	-13.39	-24.56	-130.36	17.18	1
F07	761.04	10029	-30.27	-58.53	-8.17	-38.44	1.70	1
F08	756.50	10029	-15.82	-21.43	-24.44	-40.26	1.98	1
F09	766.16	10030	-0.21	-5.64	32.43	-32.64	0.84	1
F10	765.50	10029	-26.53	-11.99	12.41	-38.94	1.78	1
F11	739.32	10028	-123.71	-29.97	0.23	-123.94	1.40	7
F12	739.32	10027	-45.10	-9.27	-0.48	-45.59	2.80	9
F13	733.82	10027	-43.91	-8.78	0.33	-44.24	2.59	1
F14	728.32	10027	-58.32	-17.51	-0.98	-59.30	4.95	9
F15	739.32	10026	-40.58	-8.56	-0.53	-41.11	2.11	9
F16	728.32	10024	-53.44	-22.92	1.40	-54.84	4.24	16
F17	747.50	10018	-28.65	-93.58	8.86	-37.52	1.56	9
F18	731.50	10018	-24.05	-78.14	-5.01	-29.06	0.32	9
F19	725.50	10018	-32.97	-108.05	5.49	-38.46	1.70	5
F20	750.00	10018	-9.52	-11.16	-43.51	-53.03	3.96	9
F21	747.00	10018	-13.08	-52.32	22.16	-35.24	1.22	9
F22	723.50	10018	-13.86	-21.55	30.04	-43.90	2.54	4
F23	729.50	10018	-18.66	-19.06	14.92	-33.59	0.98	9
F24	744.82	10027	-100.09	-15.88	3.75	-103.85	5.25	17
F25	754.78	10029	-63.54	-12.76	-33.34	-96.88	11.13	5
F26	722.84	10016	-46.44	-57.62	32.43	-78.87	8.10	4
F27	728.32	10016	-162.67	-74.56	3.56	-166.22	24.56	1
F28	728.32	10020	-54.77	-102.10	-1.04	-55.81	4.40	17
F29	733.82	10016	-222.68	-110.06	-19.24	-241.92	39.62	5
F30	739.32	10016	-181.88	-75.69	-1.66	-183.54	28.73	1

Auftrags-Nr.	Position
2023 300	D-3.1

ÙVPËJPÄÄJO4&\@ã ÁJ>å

Seite:	3-35
COILC.	000

Punkt	х	y [m]	$m_{r,\text{Ed}}$	$m_{s,Ed}$	$m_{\text{rs,Ed}}$	m _{Ed} [kNm/m]	a _{s,ro} Ž&{Ð)á	Lkn
F31	744.82	10016	-202.34	-82.82	9.16	-211.50	34.63	1
F32	750.30	10016	-54.16	-58.26	-47.65	-101.80	11.98	5
F33	729.15	10018	-46.86	-73.95	-3.32	-50.18	3.51	5
F34	727.49	10018	-35.49	-73.87	-4.88	-40.38	2.00	5
F35	762.46	10018	-15.55	-7.49	12.40	-27.95	0.16	2
F36	766.24	10018	-57.43	-21.43	-6.15	-63.57	5.63	1
F37	772.01	10022	-29.39	-18.11	-1.22	-30.61	0.54	18
R01	752.42	10025	-13.29	24.16	34.88	-48.18	3.20	1
R02	754.38	10019	-9.60	-35.05	18.34	-27.94	0.16	1
R03	752.68	10019	-14.33	-51.83	-20.99	-35.32	1.23	6
R04	722.74	10017	-1.08	-0.64	49.96	-51.04	3.65	4
R05	754.98	10031	-113.97	1.63	-14.54	-128.51	16.82	2
R06	772.00	10018	-41.43	4.05	-12.82	-54.25	4.15	6
R07	766.50	10018	-54.32	2.79	-0.87	-54.59	4.20	2
R08	762.47	10018	-15.41	-6.16	12.30	-27.71	0.12	5
R09	750.40	10017	-1.11	5.55	-65.91	-67.03	6.18	5
R10	750.00	10016	-6.97	-2.24	-54.31	-61.29	5.26	5
R11	748.17	10016	-17.35	5.60	12.98	-30.33	0.50	1
R12	745.16	10016	-137.43	-43.93	26.10	-163.53	23.95	1
R13	744.50	10016	-112.13	16.91	-2.95	-112.64	13.90	1
R14	739.66	10016	-123.28	-38.78	11.82	-135.10	18.09	1
R15	739.00	10016	-96.05	16.06	-12.02	-105.04	12.55	1
R16	734.16	10016	-155.31	-52.67	-5.92	-161.23	23.45	5
R17	733.52	10016	-106.04	5.82	-22.81	-128.85	16.89	5
R18	728.66	10016	-98.47	-33.02	14.55	-113.02	13.97	1
R19	728.00	10016	-90.88	11.85	-6.57	-94.52	10.73	1


Auftrags-Nr. Position martens+puller Ingenieurgesellschaft mbH

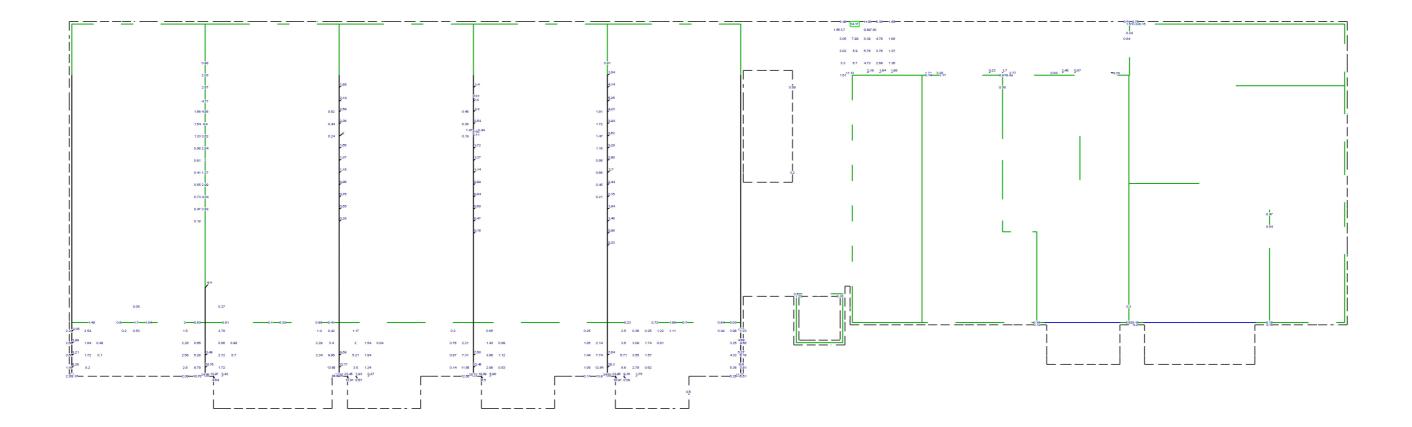
2023 300 D-3.1 ÜVPEÜPÄÄJc4& @ ą ÁJ>å

as,s,oben

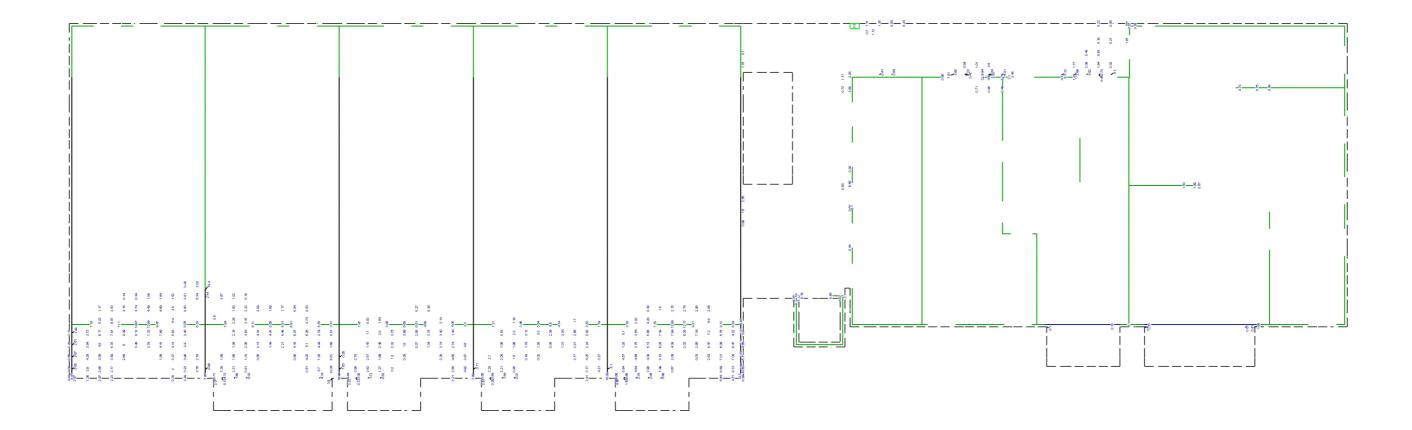
Šê}*•à^¸^@`}*ÁşÁ;ÉÜæ&@`}*ÁşÁ;à^¦^¦ÆŠæ*^

Seite: 3-36

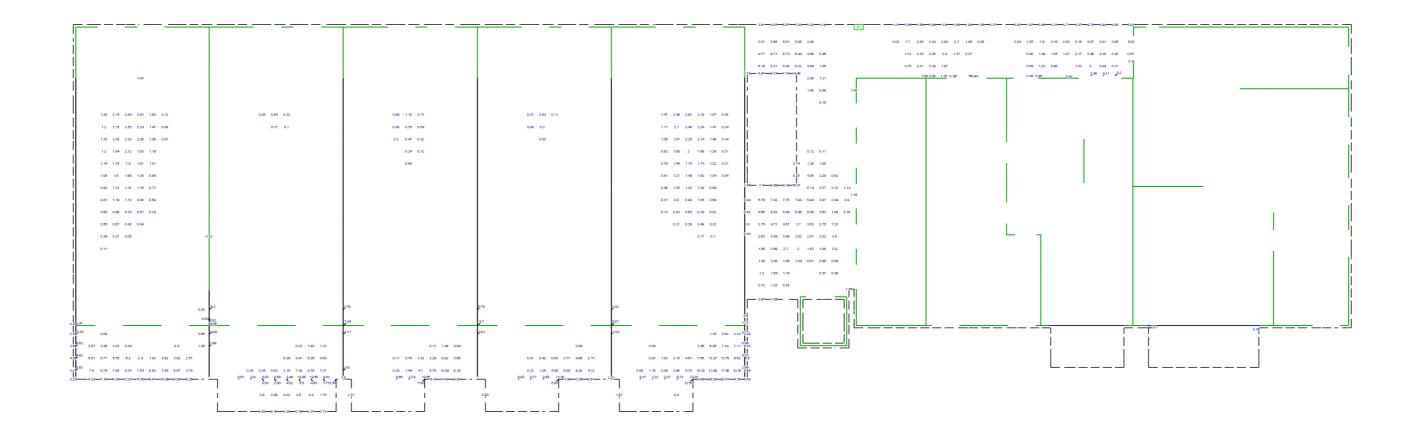
Q[|ã,ã^}•č.~\}ÁMÁFÈE€Á&{ Ð

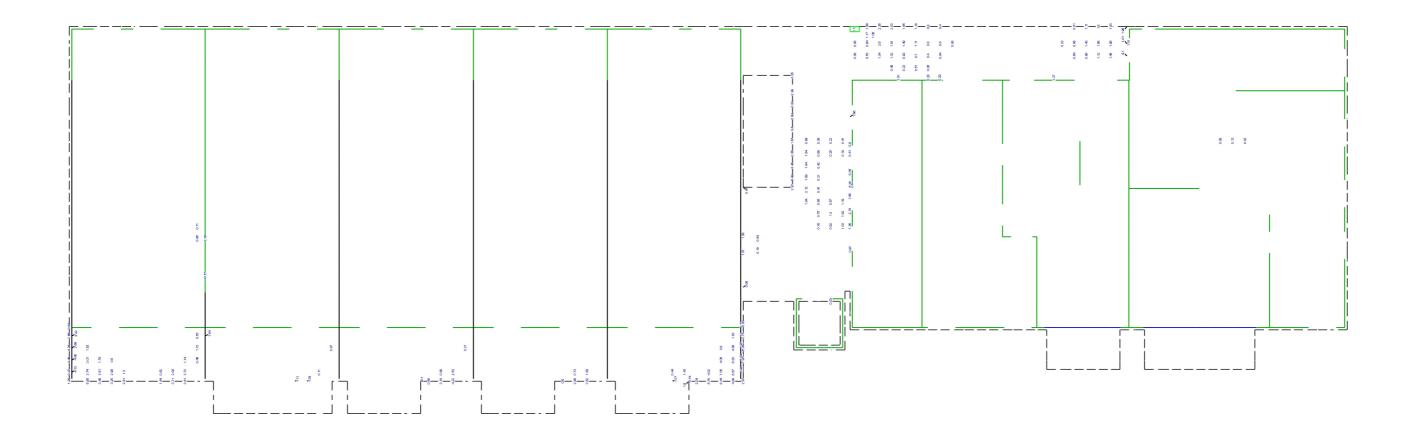

Achsabstand erf. Bewehrung: d'_{so} = 30 mm Achsabstand vorh. Bewehrung: d'_{so} = 30 mm vorhandene Bewehrung (Grund+Zulagen): asvorh,so = HÈH ÆÆF€ÈĴ Æ ₽

Punkt	х	у	m _{r,Ed}	m _{s,Ed}	m _{rs,Ed}	m _{Ed}	a _{s,so}	Lkn
		[m]	, -	-, -	-, -	[kNm/m]	Ž&{ ĐÔá	
F01	750.40	10029	-1.13	-22.10	16.66	-38.76	1.75	2
F02	763.50	10029	-18.92	-48.38	24.47	-72.86	7.12	2
F03	759.00	10029	35.21	-19.89	-25.14	-37.84	1.61	2
F04	754.78	10028	14.89	-28.72	-22.51	-51.23	3.68	6
F05	754.78	10025	-6.43	-14.97	-14.58	-29.54	0.39	12
F06	750.40	10024	-0.89	-21.65	-22.39	-44.04	2.56	3
F07	754.78	10023	-1.75	-24.27	6.94	-31.20	0.63	5
F08	755.16	10031	-105.80	-13.39	-24.56	-37.95	1.63	1
F09	761.04	10029	-29.70	-59.06	-8.14	-67.20	6.21	2
F10	760.18	10029	-13.35	-39.30	-13.00	-52.30	3.84	2
F11	756.50	10029	-15.69	-21.47	-24.36	-45.83	2.84	2
F12	754.78	10024	-8.77	-55.07	14.86	-69.93	6.65	19
F13	754.78	10021	-2.05	-22.58	7.33	-29.91	0.44	6
F14	765.50	10018	-0.44	-23.18	-4.58	-27.77	0.13	2
F15	766.16	10030	-0.21	-6.03	32.23	-38.26	1.67	2
F16	765.00	10029	3.90	-18.26	11.71	-29.97	0.45	1
F17	763.50	10029	13.79	-48.95	-20.80	-69.75	6.62	2
F18	759.00	10029	-7.00	-39.98	-11.08	-51.06	3.65	2
F19	771.50	10028	-14.31	-32.04	0.02	-32.06	0.75	2
F20	768.50	10024	-19.95	-35.92	-1.41	-37.33	1.53	20
F21	748.00	10018	-28.86	-100.03	2.85	-102.88	12.17	9
F22	742.00	10018	-18.84	-60.56	4.33	-64.89	5.84	9
F23	736.50	10018	-20.11	-64.56	5.45	-70.01	6.66	9
F24	731.50	10018	-24.05	-78.14	-5.01	-83.14	8.81	9
F25	725.50	10018	-32.98	-108.11	5.47	-113.57	14.07	4
F26	746.00	10017	-16.14	-23.53	34.14	-57.67	4.69	1
F27	744.00	10017	-1.43	-19.51	-35.36	-54.87	4.25	7
F28	738.50	10017	5.41	-19.10	-38.30	-57.40	4.65	1
F29	733.00	10017	3.60	-28.08	-46.18	-74.26	7.35	5
F30	727.50	10017	-4.54	-13.00	-39.94	-52.94	3.95	11
F31	723.50	10017	8.98	-7.55	47.58	-55.13	4.29	4



Auftrags-Nr. Position | I | I | Ingenieurgesellschaft mbH | 2023 300 | D-3.1 | ÛVPËJPÆÄJc4&\@aį ÂJ>å | Seite: 3-37


Punkt	х	V	m. r.	m. r.	m r	m_{Ed}	2	Lkn
i ulikt	^	y [m]	$m_{r,Ed}$	$m_{s,Ed}$	$m_{rs,Ed}$	[kNm/m]	a _{s,so} Ž&(-E)á	LKH
F32	745.50	10016	-48.60	-33.93	36.05	-69.98	6.66	9
F33	729.00	10016	-25.42	-28.69	25.34	-54.03	4.12	1
F34	722.84	10016	-46.44	-57.62	32.43	-90.05	9.97	4
F35	728.32	10016	-160.47	-74.60	3.47	-78.07	7.97	9 5
F36	728.32	10020	-54.74	-103.12	-1.07	-104.19	12.40	5
F37	733.82	10016	-222.68	-110.06	-19.24	-129.30	16.98	5
F38	739.32	10016	-181.32	-75.95	-1.62	-77.57	7.89	9
F39	744.82	10016	-201.52	-83.04	9.10	-92.14	10.32	9
F40	750.30	10016	-54.16	-58.26	-47.65	-105.90	12.70	5
F41	723.65	10018	-18.49	-54.84	18.46	-73.30	7.19	4
F42	729.15	10018	-46.86	-73.95	-3.32	-77.27	7.84	5
F43	727.49	10018	-35.49	-73.87	-4.88	-78.75	8.09	5
F44	734.65	10018	-21.93	-36.72	-0.23	-36.95	1.47	9
F45	732.99	10018	-18.97	-49.62	-12.63	-62.26	5.42	9
F46	740.15	10018	-20.37	-34.31	0.84	-35.15	1.21	9
F47	738.49	10018	-17.07	-45.27	-8.37	-53.64	4.06	9
F48	745.65	10018	-22.74	-42.15	5.74	-47.89	3.16	9
F49	743.99	10018	-17.81	-42.96	-7.25	-50.21	3.52	9
F50	749.49	10018	-11.98	-59.68	-19.29	-78.97	8.12	9
F51	766.24	10018	-57.43	-21.43	-6.15	-27.58	0.10	1
F52	761.05	10028	-14.39	-43.21	18.02	-61.23	5.25	1
F53	766.26	10031	-16.38	-12.39	20.43	-32.82	0.87	2
F54	752.58	10019	-15.73	-84.07	1.05	-85.12	9.14	5
R01	754.38	10019	-9.56	-35.07	18.37	-53.44	4.02	5
R02	752.68	10019	-14.33	-51.83	-20.99	-72.82	7.12	6
R03	722.74	10016	-0.75	-13.72	42.17	-55.89	4.41	4
R04	756.00	10031	-25.90	-0.18	-35.96	-36.14	1.35	5
R05	771.41	10018	-4.39	-20.36	-19.32	-39.68	1.89	2
R06	766.87	10018	2.78	-22.37	18.73	-41.11	2.11	2
R07	762.86	10018	6.77	-26.62	-2.46	-27.52	0.10	5
R08	754.58	10020	-7.51	-27.95	13.10	-41.05	2.10	7
R09	752.48	10019	-11.18	-59.57	9.32	-68.89	6.48	6
R10	750.40	10017	2.07	-39.18	-54.78	-93.96	10.63	5 5
R11	749.50	10016	72.46	4.20	-70.12	-63.66	5.64	
R12	745.16	10016	-137.43	-43.93	26.10	-70.04	6.66	1
R13	744.00	10016	17.48	-1.47	-44.81	-46.28	2.91	5
R14	739.66	10016	-123.28	-38.78	11.82	-50.60	3.58	1
R15	738.50	10016	28.76	-0.21	-48.02	-48.23	3.21	9
R16	734.16	10016	-155.26	-52.66	-5.93	-58.59	4.84	9
R17	733.52	10016	28.03	-46.31	10.27	-50.07	3.50	5
R18	728.66	10016	-98.47	-33.02	14.55	-47.57	3.11	1
R19	727.50	10016	5.71	-2.73	-45.99	-48.73	3.29	11


ÖËHÈÁÖ^&\^Ásà^¦ÁFÈÁJŐ Modell : `} W YbVYa Yggi b[Erforderliche Bewehrung as,erf (Differenzbew.) Tæi•cæàkÁFKFÍÍ Bauvorhaben 2023 300 Vorhandene Bew. as,vorh = 3.35...10.26 (Grund+Zulagen) ÙVPËÜPÆÄÛ¢1&\@^a(AÛ>å m p Beton C 30/37 aus allen Nachweisen Datum 13.02.2024 ¦ËÜa&@č}*Áţà^}Á§AÃ&{ Ð;á Bew.-Abstand d' = 30 mm Max = 39.62 (Kn. 192), Min = 0 (Kn. 35) m+p Ingenieurgesellschaft mbH - Pockelsstr.7 - 38106 Braunschweig - Tel. 0531 / 238 32 - 0 Bauteildicke h = 20.00...28.00 cm Seite 3-38

ÖËHÈÁÖ^&\^Ásà^¦ÁFÈÁJŐ Modell : `} WY YbVYa Yggi b[Erforderliche Bewehrung as,erf (Differenzbew.) Tæi•cæàkÁFkFÍÍ Bauvorhaben 2023 300 Vorhandene Bew. as,vorh = 3.35...10.26 (Grund+Zulagen) m-p ÙVPËÜPÄÄÜ¢4&\@^ā(AÛ>å Beton C 30/37 aus allen Nachweisen Datum 13.02.2024 •ËÜ&&@č}*Áţà^}Á§AÃ&{ Ð(á Bew.-Abstand d' = 30 mm Bauteildicke h = 20.00...28.00 cm Max = 16.98 (Kn. 192), Min = 0 (Kn. 35) m+p Ingenieurgesellschaft mbH - Pockelsstr.7 - 38106 Braunschweig - Tel. 0531 / 238 32 - 0 Seite 3-39

ÖËHÈÁÖ^&\^Ásà^¦ÁFÈÁJŐ Modell : `} WY YbVYa Yggi b[Erforderliche Bewehrung as,erf (Differenzbew.) Tæi∙cæàkÁFKFÍÍ Bauvorhaben 2023 300 Vorhandene Bew. as,vorh = 2.27...10.26 (Grund+Zulagen) m-p ÙVPËÜPÄÄÜ¢4&\@`āį ÁÜ>å Beton C 30/37 aus allen Nachweisen Datum 13.02.2024 ¦EÜa&@č}*Á}c^}Áş,Æ&{ Ð;á Bew.-Abstand d' = 30 mm Bauteildicke h = 20.00...28.00 cm Max = 28.33 (Kn. 320), Min = 0 (Kn. 35) m+p Ingenieurgesellschaft mbH - Pockelsstr.7 - 38106 Braunschweig - Tel. 0531 / 238 32 - 0 Seite 3-40

ÖËHÈÁÖ^&\^Ásà^¦ÁFÈÁJŐ Modell : `} W YbVYa Yggi b[Erforderliche Bewehrung as,erf (Differenzbew.) Tæi∙cæàkÁFKFÍÍ Bauvorhaben 2023 300 Vorhandene Bew. as,vorh = 2.27...10.26 (Grund+Zulagen) ÙVPËÜPÆÄÛ¢4&\@^ã(AÛ>å m p Beton C 30/37 aus allen Nachweisen Datum 13.02.2024 •ËÜ&&@č}*Á}¢^}Áş,Æ&{ Ð;á Bew.-Abstand d' = 30 mm Max = 8.44 (Kn. 321), Min = 0 (Kn. 35) m+p Ingenieurgesellschaft mbH - Pockelsstr.7 - 38106 Braunschweig - Tel. 0531 / 238 32 - 0 Bauteildicke h = 20.00...28.00 cm Seite 3-41

Seite: 3-42

2023 300

D-3.1

ÙVPËÜPÄÄÛ¢4&\@ã ÁÛ>å

Querkraft Pl-As-Iso

Querkraftbemessung Plattenbereiche

PL-1

Querkraftbemessung der Platte (Isolinien)

Querkraftbemessung nach DIN EN 1992-1-1

Beton C 30/37, Betonstahl B 500SA

Õ^• c^ā,•\4¦} `} * ÁÛ `æ: ãc

Druckstrebenneigung wurde vom Programm optimiert.

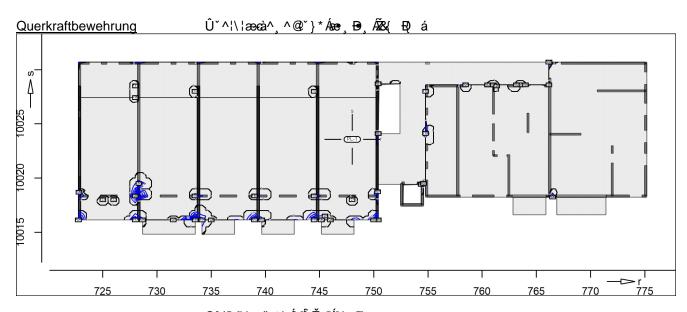
Mindestbewehrung (9.3.2) wurde nicht ermittelt.

Ö&&\^} Áç^¦ê} å^¦|&&@Á@ÁMÁÁO€FÈ€€ÌÌÌÈÈ ÌÈ€€Á&{

Kombinationen

Tæi *^à^} å^ÁS[{ àãjæaaī}}^}Ájæ&@ÁÖΦÞÁÖÞÁFJJ€

Ew Einwirkungsname


Lkn Lastkombinationsnummer

! ç[¦@¦¦•&@}å^Áç^¦ê}å^¦|&&@ÁÒą¸ã\`}*

Öð ÁÓ 🌣 🎁 * Áð : ^|} ^ ¦ Ášæ cê|| /Ás } ^ ¦ @ þ Ásiner Einwirkung wird mit diesem

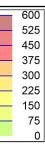
Ausgabeformat nicht dokumentiert.

Ew	Gk	Qk.N
Lkn	Grundkombination	
1-12	1.35	1.50 !

Q[|ã,ã^}•č.^}ÁMÄ,Ě.€Á&{ Ð;

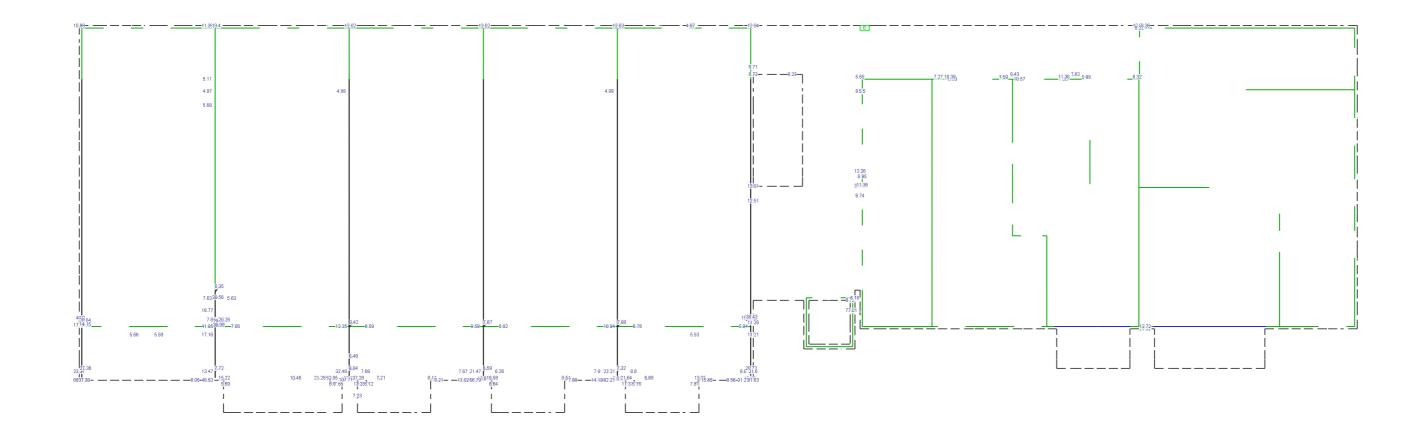
Punkt	Х	У	vEd	vEd,res	vRd,c	vRd,max	asw/sw	Summe	Lkn
		[m]				[kN/m]		Ž&{ Ð; á	
F01	763.50	10029 r	-31.0	132.9	92.2 m	497.3	0.00	7.62	5
		S	129.2		92.2 m	497.3	7.62		
F02	763.16	10029 r	51.7	149.8	92.2 m	497.3	0.00	11.36	5
		S	140.5		92.2 m	434.8	11.36		
F03	760.50	10029 r	4.1	128.8	92.2 m	497.3	0.00	7.59	5
		S	128.8		92.2 m	497.3	7.59		
F04	758.47	10029 r	-50.7	186.1	92.2 m	497.3	0.00	18.39	5
		S	179.0		92.2 m	514.6	18.39		
F05	754.78	10024 r	-255.9	257.7	92.2 m	580.2	32.42	32.42	9

Auftrags-Nr.	Position	Ingenieurgesellschaft mbH	
2023 300	D-3.1	ÙVPËÜPÆÄÜ¢4&\@aį AÛ>å	Seite: 3-43

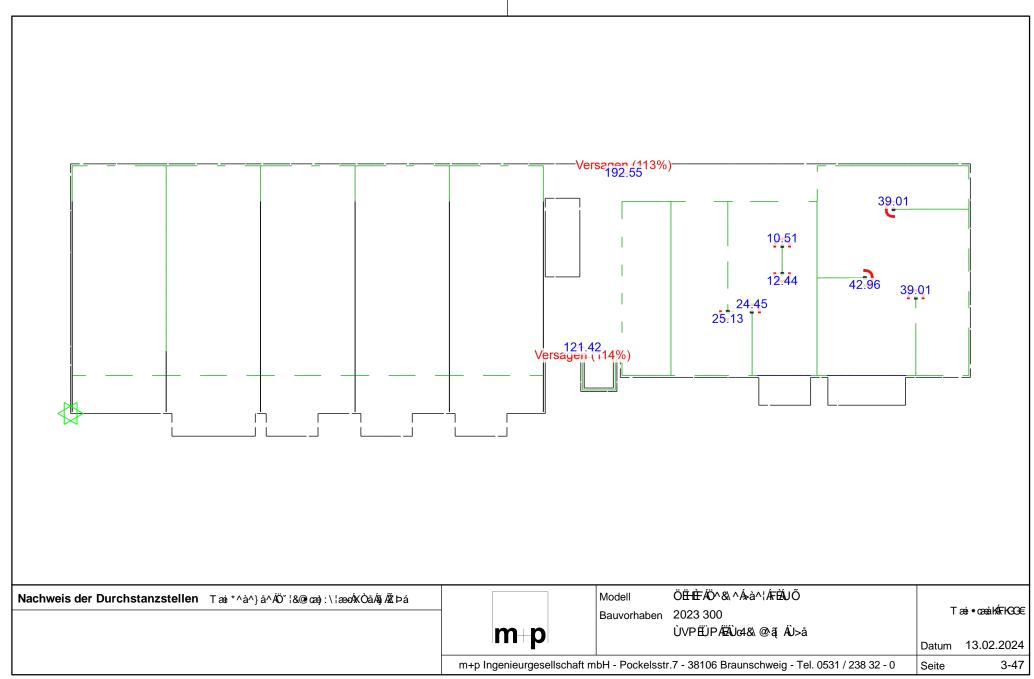

Punkt	Х	y [m]	νE		vRd,c	vRd,max [kN/m]		Summe Ž&{ Đైá	Lkn
			s 30.		92.2		0.00		
F06	722.79	10019	r -324.		92.2		44.90	44.90	4
			s 5.		92.2		0.00		
F07	750.35	10019	r 288.		92.2		38.43	38.43	8
			s 73.		92.2		0.00		
F08	764.00	10029	r 7.		92.2		0.00	5.99	5
			s 101.	6	92.2	m 497.3	5.99		
F09	761.04	10029	r 38.	3 148.1	92.2	m 497.3	0.00	8.43	5
			s 143.	0	92.2	m 497.3	8.43		
F10	754.78	10024	r -128.	5 130.5	92.2	m 497.3	7.58	7.58	10
			s 22.	5	92.2	m 497.3	0.00		
F11	728.00	10029	r -139.	9 140.0	125.0	m 803.3	5.11	5.11	8
			s 5.	8	125.0	m 707.6	0.00		
F12	754.78	10028	r -159.	0 159.8	92.2	m 497.3	9.38	9.38	6
			s -15.		92.2		0.00		
F13	744.50		r -136.		125.0		4.99	4.99	1
			s 26.		125.0		0.00		
F14	733.50		r -133.		125.0		4.88	4.88	3
	. 55.55		s 27.		125.0		0.00		•
F15	728.00		r -96.		92.2		5.68	5.68	8
1 10	720.00		s 4.3		92.2		0.00	0.00	J
F16	728.32		r -8.		92.2		0.00	30.56	6
1 10	720.02		s -304.		92.2		30.56	30.30	U
F17	744.50	10018	r 171.		92.2		10.94	10.94	8
1 17	744.50		s -8.		92.2		0.00	10.54	O
F18	739.00	10018			92.2		9.58	9.58	8
ГЮ	739.00				92.2		0.00	9.36	0
F19	733.50				92.2			12.25	8
гіэ	733.30		r 180.				12.25	12.23	0
F20	700.00		s -11.		92.2		0.00	44.05	_
F20	728.00		r 380.		92.2		41.85	41.85	6
E04	740.00		s -58.		92.2		0.00	5 50	_
F21	748.00		r 25.		92.2		0.00	5.53	3
500	700.00		s -93.		92.2		5.53	5 50	
F22	726.00		r 20.		92.2		0.00	5.59	4
500	705.00		s -94.		92.2		5.59	= 00	
F23	725.00	10018	r -42.		92.2		0.00	5.66	11
5 0.4	745.50		s -96.		93.4	497.3	5.66		
F24	745.50		r 117.		92.2		8.60	8.60	1
=	- 40.00		s 11.		92.2		0.00		_
F25	746.00		r 95.		92.2		6.99	6.99	3
			s -7.		92.2		0.00		
F26	735.00		r 98.		92.2		7.21	7.21	3
			s -4.		92.2		0.00		
F27	731.50	10016	r 135.		92.2		10.46	10.46	12
			s -13.		92.2		0.00		
F28	766.16	10029	r -107.		92.2		6.32	6.32	7
			s 28.		92.2		0.00		
F29	761.34	10028	r 136.		92.2		10.57	10.57	1
			s 29.		92.2		0.00		
R01	750.40	10029	r 210.	5 213.1	125.0	m 707.6	8.72	8.72	1
			s 33.		125.0		0.00		
R02	750.40	10024	r 149.	6 149.6	92.2	m 459.2	13.01	13.01	2
			s -4.	2	92.2	m 401.6	0.00		
R03	754.38	10019	r 65.	7 161.8	92.2	m 401.6	0.00	8.72	3
			s -147.		92.2		8.72		
R04	722.74	10016	r -311.		92.2		42.60	88.63	4
			s -330.		92.2		46.03		

Auftrags-Nr. Position 2023 300 D-3.1

ÙVPËÜPÄÄÜd4&\@4 ÁÛ>å


Seite: 3-44

Punkt	х	y [m]		vEd	vEd,res	vRd,c	vRd,max [kN/m]	asw/sw	Summe Ž&{ Ð} á	Lkn
R05	766.16	10031	r	-152.8	157.7	92.2 m	466.9	13.60	13.60	5
			s	38.8		92.2 m	401.6	0.00		
R06	766.50	10018	r	61.6	220.4	92.2 m	497.3	0.00	24.32	6
			s	-211.6		92.2 m	550.9	24.32		
R07	754.58	10020	r	-104.5	104.6	92.2 m	497.3	6.16	6.16	7
			s	5.9		92.2 m	497.3	0.00		
R08	750.40	10016	r	423.4	484.3	92.2 m	622.2	62.99	91.63	6
			s	-235.2		92.2 m	568.5	28.64		
R09	750.00	10016	r	-88.6	264.6	92.2 m	401.6	0.00	31.22	6
			s	-249.3		92.2 m	576.8	31.22		
R10	745.16	10016	r	-68.9	253.3	123.7	497.3	0.00	21.64	1
			s	-243.7		92.2 m	664.5	21.64		
R11	744.50	10016	r	-215.0	388.6	106.2	627.2	17.41	62.21	8
			s	-323.7		92.2 m	604.5	44.80		
R12	739.66	10016	r	-46.9	234.5	114.1	497.3	0.00	19.58	1
			s	-229.8		92.2 m	648.1	19.58		
R13	739.00	10016	r	-198.4	365.9	103.3	597.7	14.95	56.79	8
			s	-307.5		92.2 m	600.0	41.84		
R14	734.16	10016	r	-57.1	354.4	123.0	497.3	0.00	37.28	8
			s	-349.8		92.2 m	732.6	37.28		
R15	733.52	10016	r	-336.0	582.0	112.0	727.1	35.24	107.71	8
			s	-475.3		92.2 m	627.7	72.46		
R16	728.66	10016	r	33.6	203.0	106.3	497.3	0.00	15.22	1
			s	-200.2		92.2 m	601.3	15.22		
R17	728.00	10016	r	-156.8	332.8	99.2	497.3	9.25	48.53	1
	ç^¦ oÁ)æ&@#ÖO⊅ #Ö	ÞÆJJŒËËÃ	S DEÇÎEG	-293.5 à̀Dᠱ(æi*^à^}å		92.2 m	595.6	39.29		



Querkraftbemessung	Ó^{ ^••`}*•``^!\¦æd¢;ÒåÊ^•Áeĕ•Á/¦æt-ê@t\^ã•}æ		Modell Bauvorhaben	ÖÜÜÜÜTÄÖ^&\^Ásà^¦ÁFEÁJŐ 2023 300 ÙVPEÜPÄEÁJG4&\@A[ÄÜ>å	T Datum	æi•œaàk√arkríí 13.02.2024
Max = 582.04, $Min = 0$, $Step = 75$		m+p Ingenieurgesellscha	ft mbH - Pocke	lsstr.7 - 38106 Braunschweig - Tel. 0531 / 238 32 - 0	Seite	3-45

	Querkraftbemessung	Û`^¦\¦ææà^,^@`}*Áæ•,Ð,Áæĕ•Áæ∯^}Áræ&@,^ãr^}Á		Modell Bauvorhaben	ÖÜÜÜEÄÖ^&\^Á>à^¦ÁFEÄJŐ 2023 300 ÙVPEÜPÄÄÄJG4&\@A(Ä)>å	T Datum	æi•œank√arkaríí 13.02.2024
-	Max = 107.71, $Min = 0$		m+p Ingenieurgesellscha	ft mbH - Pocke	sstr.7 - 38106 Braunschweig - Tel. 0531 / 238 32 - 0	Seite	3-46

Position Auftrags-Nr. ÙVPËJPÆÄJO4& @ã ÁJ>å 2023 300 D-3.1 Seite: 3-48

Durchstanzstellen-Tab Nachweis der Durchstanzstellen

DS-1 Durchstanznachweis nach DIN EN 1992-1-1

<u>Angaben</u> Beton C 30/37, Betonstahl B 500MA

Šæ• c^ā, |^ãc`} *• √ê&@ K

Rechteck 38.0 b(r) cm 20.0 h(s) cm Plattendicke h_0 20.0 cm Tãd ĐÁ cæaã &@ Áp c @ 4 @ d_{m} 17.0 cm Šê}*•à^, ^@*}* &{ 8.00 Đ) $a_{s,m}$ Šê{ *•à^, ^@`} *•*¦æå 0.47 % I,vorh 1.96 % I,zul Tæi*ÉÖ`¦&@æa):\¦æ€ 192.5 kΝ V_{Ed} Šæro*¦@4@}*•~ækqf¦ 1.50

Nachweis Durchstanzversagen!

Ø⊳¦ÁsanÁ, æi*^à^}å^ÁÓ^|æ•č}*••ãčæāā;}Á¸`¦å^ÁsanÁ, ãcd^¦^ÁŠê}*•à^¸^@^`}*Á

asm an der Oberseite à^ l>& • 3&@2 dÈ

Òā, ^ÁÛ > c ^} \ [] -ç^\ • œ̂ | \ `} * Á, ã å Á, ã&@Áà ^ | > &\ • ã&@ã dÈ Öā ^ÁÖ ` | &@ æa) : \ | ææ ÁX Òå Á, ` | å ^Áæ{ ÁU > c ^} æ) • &@ ãc Áa us gewertet.

Mindestbewehrung (NCI Zu 9.4.3(2)) wurde à^¦>& • &@a dÈ

Tæi *^à^}å^ÁS[{ àãjæaãj}^}Ájæ&@ÁÖΦÞÁFJJ€ Kombinationen

> Ew Einwirkungsname

Lkn Lastkombinationsnummer

c[| @ | | • & @ } a ^ Ac ^ | ê } a ^ | a & @ AO a _ a \ ` } * !

Öðl ÁÓ v ð ð ð * Á ð : ^|} ^ ¦ Á ð œ eê|| Áð } ^ ¦ @ þ à Áeiner Einwirkung wird mit diesem

0.812

Ausgabeformat nicht dokumentiert.

Gk Qk.N Ew Lkn Grundkombination 1.50 ! 1 1.35

Rund-Abstand vEd vRd,max minAsw erfAsw u vRd,c schnitt Ž>Đ(á Ž&{ á [cm] [m]Ucrit 34.00 0.580 1.85 0.919 >

Auttrags-Nr.	Position	Ingenieurgeseilschaft hibh	
2023 300	D-3.1	ÙVPËÜPÆÄÛ¢4&\@@ãAÛ>å	Seite: 3-49

DS-2 Durchstanznachweis nach DIN EN 1992-1-1

<u>Angaben</u> Beton C 30/37, Betonstahl B 500MA

Šæ• c^ā, |^ãc`} * • √ê&@K

Wandecke	a	=	24.0	cm
	b	=	24.0	cm
Plattendicke	h_0	=	20.0	cm
TãodÉÁcæaã&@Áp`c@4@	d_m	=	17.0	cm
Šê} *•à^. ^@`}*	a _{s,m}	=	5.22	&{ Đ)
Šê} ['] *•à^¸^@`}* Šê}*•à^¸^@`}*•*¦æå	l,vorh	=	0.31	. %
	l,zul	=	1.96	%
Tæi*ÉÄÖ`¦&@iœa):∖¦æec	$V_{\sf Ed}$	=	121.4	kN
Šæ•c^\{@4@{}}*•~æ¦		=	1.20	

Nachweis Durchstanzversagen!

Ø>¦ÁsanÁ, æi*^à^}å^ÁÓ^|æ•č}*••ãčæāā;}Á¸`¦å^ÁsanÁ, ãcd^¦^ÁŠê}*•à^¸^@`}*Á

asm an der Oberseite à^ | >& • 2&@2 dÈ

Òā, ^ÁÛ>c^}\[]-ç^\•œî\`}*Á, āåÁ, a&@Áà^\>&\•a&@à dÈ Öā\ÁÖ`|&@caa):\|æóÁXÒåÁ, `¦å^Áæ(AÛ>c^}ao)•&@, acóausgewertet.

Tæi*^à^}å^ÁS[{àã|æeā|}^}Á|æ&@ÁÖOÞÁÖÞÁFJJ€ Kombinationen

> Ew Einwirkungsname

Lkn Lastkombinationsnummer

c[| @ | | • & @ | a^Ac^| ê | a^| | a @ AOa | a | ~ a | *

Öā ÁÓ c āā } * Á ā : ^|} ^ L Šæ cê || Á } } ^! @ ta Áciner Einwirkung wird mit diesem Ausgabeformat nicht dokumentiert.

Gk Qk.N Ew Grundkombination Lkn 1.35 1.50 !

Rund- schnitt	Abstand [cm]	u [m]	vEd	vRd,c	vRd,max ŽÞÐ) { á	minAsw	erfAsw Ž&{á
Ucrit	34.00	0.99	0.862 >	0.542			
			>		0.759		

Position Auftrags-Nr. ÙVPËJPÆÄJc4& @ã ÁJ>å 2023 300 D-3.1 Seite: 3-50 DS-9 Durchstanznachweis nach DIN EN 1992-1-1 **Angaben** Beton C 30/37, Betonstahl B 500MA Šæ• c^ā, |^āc`} * • √ê&@K Wandecke а 17.5 cm h 17.5 cm Plattendicke h_0 20.0 cm Tãod ÉÁn cæasãa & @ ÁÞ c @ 4 @ . d_{m} 17.0 cm Šê}*•à^, ^@*}* Šê}*•à^, ^@*}*•*¦æå a_{s,m} 3.35 &{ Ð 0.20 % I,vorh 1.96 % I,zul Tæi*ÈÄÖ`¦&@eæ):\¦æec V_{Ed} 24.4 kΝ Šæ• c^¦@4@{}*•~æ\d[¦ 1.20 **Nachweis** Keine Durchstanzbewehrung Asw erforderlich. Ø>¦ÁåaðiÁ, æi*^à^}å^ÁÓ^|æ•č}*••ãčæāj}Á, `¦å^ÁåaðiÁ, ãdd^¦^ÁŠê}*•à^, ^@`}*Á asm an der Oberseite à^ | > & • 2& @2 dE ÖāN•^ÁŠê}*•à^、^@^`}*ÁãróÁ§}^¦@aqàÁå^•Áf^•æ(c^}Áê`i^¦^}ÁÜ`}å•&@,ãæ•Á a): `[| a) ^} Á } a Áse i ^ | @eta Ádieses Rundschnitts zu verankern.

Oa ^AÛOc ^} \[] -ç^! • œ!\` } * Á ā a Á ā @Ase AÛOc ^} a) • &@ ācAsusgewertet.

Oa ÁÖ | &@ ca): \| æAKOå Å ` | a ^Áse ÁUOc ^} a) • &@ ācAsusgewertet. Mindestbewehrung (NCI Zu 9.4.3(2)) wurde à^¦>& • & œ dÈ Kombinationen Tæi: *^à^}å^ÁS[{àã;æeāi}^}Á;æ&@ÁÖOD•ÁÖÞÁFJJ€

> Ew Einwirkungsname

Lkn Lastkombinationsnummer

Ţ c[| @ | | • & @ } a^Ac^| ê } a^| | a& @ AOa _ a\ ` } *

Öā ÁÓ c đã * } * Á ā : ^ | } ^ ¦ Á šæ cê | | ^ Áa } ^ ! @ dà Áeiner Einwirkung wird mit diesem Ausgabeformat nicht dokumentiert.

Ew Gk Qk.N Grundkombination Lkn

1.35 1.50 !

Rund-Abstand vEd vRd,max minAsw erfAsw u vRd,c schnitt [m] ŽD-Ð){ á Ž&{ á [cm] Ucrit 34.00 0.88 0.195 m 0.542

Position Auftrags-Nr. ÙVPËJPÆÄJc4& @ã ÁJ>å 2023 300 D-3.1 Seite: 3-51 **DS-10** Durchstanznachweis nach DIN EN 1992-1-1 **Angaben** Beton C 30/37, Betonstahl B 500MA Šæ• c^ā, |^ãc`} * • √ê&@K Wandecke а 17.5 cm b 17.5 cm Plattendicke h_0 20.0 cm Tãnd ÉÁ casaã & @ ÁP c @ 4 @ d_{m} 17.0 cm Šê}*•à^, ^@*}* Šê}*•à^, ^@*}*•*¦æå a_{s,m} 3.35 & Đ 0.20 % l,vorh 1.96 % l,zul Tæi*ÈÄÖ`¦&@eæ):\¦æec V_{Ed} 25.1 kΝ Šæ• c^¦@4@{}*•~æ\d[¦ 1.20 Keine Durchstanzbewehrung Asw erforderlich. **Nachweis** Ø>¦ÁsanÁ, æi*^à^}å^ÁÓ^|æ•č}*••ãčæāā;}Á¸`¦å^ÁsanÁ, ãcd^¦^ÁŠê}*•à^¸^@`}*Á asm an der Oberseite à^ l>& • 3&@2 dÈ ÖāN•^ÁŠê}*•à^、^@^`}*ÁãróÁ§}^¦@aqàÁå^•Áf^•æ(c^}Áê`i^¦^}ÁÜ`}å•&@,ãæ•Á a): `[¦å}^}Á'}åÁsě i ^¦@spàÁdieses Rundschnitts zu verankern.
Òā ^ÁÜ>c ^}\[] -ç^!•œ̂!\`}*Á; ãåÁý æ‰sé\-&&•æådè
ÖæÁÖ`¦&@æà;\¦æóÁXÒåÁ; ¦å^Ásé; ÁÜ>c ^}æð; &@ ææÁsusgewertet. Mindestbewehrung (NCI Zu 9.4.3(2)) wurde à^¦>& • & œ tÈ Kombinationen Tæi*^à^}å^ÁS[{àã}æaã[}^}Á;æ&@ÄÖOD•ÁÖÞÁFJJ€ Ew Einwirkungsname Lkn Lastkombinationsnummer c[| @ | | • & @ } a^Ac^| ê } a^| | a& @ AOa _ a\ ` } * Öðl ÁÓ v ð ð ð * Á ð : ^|} ^ ¦ Á ð œ eê|| Áð } ^ ¦ @ þ à Áeiner Einwirkung wird mit diesem Ausgabeformat nicht dokumentiert.

Ew	Gk	Qk.N
Lkn	Grundkombination	
1	1.35	1.50 !

Rund-	Abstand	u	vEd	vRd,c	vRd,max	minAsw	erfAsw
schnitt	[cm]	[m]			ŽD-E0{ á		Ž&{ á
Licrit	34 00	0.88	0.201 m	0.542			

Position Auftrags-Nr. ÙVPËÜPÄÄÛ¢4&\@`ã ÁÛ>å 2023 300 D-3.1 Seite: 3-52 **DS-11** Durchstanznachweis nach DIN EN 1992-1-1 **Angaben** Beton C 30/37, Betonstahl B 500MA Šæ• c^ā, |^ãc`} * • √ê&@K Wandende а 17.5 cm b 17.5 cm Plattendicke h_0 20.0 cm Tãod ÉÁn cæasãa & @ ÁÞ c @ 4 @ . d_{m} 17.0 cm Šê}*•à^, ^@*}* Šê}*•à^, ^@*}*•*¦æå a_{s,m} 3.35 & Đ 0.20 % I,vorh 1.96 % l,zul Tæi*ÉÄÖ`¦&@@æ):\¦æec V_{Ed} 12.4 kΝ Šæ• c^¦@4@{}*•~æ\d[¦ 1.35 Keine Durchstanzbewehrung Asw erforderlich. **Nachweis** Ø>¦ÁsanÁ, æi*^à^}å^ÁÓ^|æ•č}*••ãčæāā;}Á¸`¦å^ÁsanÁ, ãcd^¦^ÁŠê}*•à^¸^@`}*Á asm an der Oberseite à^ l>& • 3&@2 dÈ ÖāN•^ÁŠê}*•à^、^@^`}*ÁãróÁ§}^¦@aqàÁå^•Áf^•æ(c^}Áê`i^¦^}ÁÜ`}å•&@,ãæ•Á a): `[¦å}^}Á'}åÁsě i ^¦@spàÁdieses Rundschnitts zu verankern.
Òā ^ÁÜ>c ^}\[] -ç^!•œ̂!\`}*Á; ãåÁý æ‰sé\-&&•æådè
ÖæÁÖ`¦&@æà;\¦æóÁXÒåÁ; ¦å^Ásé; ÁÜ>c ^}æð; &@ ææÁsusgewertet. Mindestbewehrung (NCI Zu 9.4.3(2)) wurde à^¦>& • 3&@ à dÈ Kombinationen Tæi*^à^}å^ÁS[{àã}æaã[}^}Á;æ&@ÄÖOD•ÁÖÞÁFJJ€ Ew Einwirkungsname Lkn Lastkombinationsnummer c[| @ | | • & @ } a^Ac^| ê } a^| | a& @ AOa _ a\ ` } *

Öðl ÁÓ v ð ð ð * Á ð : ^|} ^ ¦ Á ð œ eê|| Áð } ^ ¦ @ þ à Áeiner Einwirkung wird mit diesem Ausgabeformat nicht dokumentiert.

Ew	Gk	Qk.N		
Lkn	Grundkombination			
1	1.35	1.50 !		

Rund-	Abstand	u	vEd	vRd,c	vRd,max	minAsw	erfAsw
schnitt	[cm]	[m]			ŽD-E0{ á		Ž&{ á
Ucrit	34.00	1.59	0.062 m	0.542			

Position Auftrags-Nr. ÙVPËÜPÄÄÛ¢4&\@`ã ÁÛ>å 2023 300 D-3.1 Seite: 3-53 **DS-12** Durchstanznachweis nach DIN EN 1992-1-1 **Angaben** Beton C 30/37, Betonstahl B 500MA Šæ• c^ā, |^ãc`} * • √ê&@ K Wandende а 17.5 cm b 17.5 cm Plattendicke h_0 20.0 cm Tãnd ÉÁ casaã & @ ÁP c @ 4 @ d_{m} 17.0 cm Šê}*•à^, ^@*}* Šê}*•à^, ^@*}*•*¦æå $a_{s,m}$ 3.35 & Đ 0.20 % I,vorh 1.96 % l,zul Tæi*ÉÄÖ`¦&@@æ):\¦æec V_{Ed} 10.5 kΝ Šæ• c^¦@4@{}*•~æ\d[¦ 1.35 Keine Durchstanzbewehrung Asw erforderlich. **Nachweis** Ø>¦ÁsanÁ, æi*^à^}å^ÁÓ^|æ•č}*••ãčæāā;}Á¸`¦å^ÁsanÁ, ãcd^¦^ÁŠê}*•à^¸^@`}*Á asm an der Oberseite à^ l>& • 3&@2 dÈ ÖāN•^ÁŠê}*•à^、^@^`}*ÁãróÁ§}^¦@aqàÁå^•Áf^•æ(c^}Áê`i^¦^}ÁÜ`}å•&@,ãæ•Á a): `[¦å}^}Á'}åÁsě i ^¦@spàÁdieses Rundschnitts zu verankern.
Òā ^ÁÜ>c ^}\[] -ç^!•œ̂!\`}*Á; ãåÁý æ‰sé\-&&•æådè
ÖæÁÖ`¦&@æà;\¦æóÁXÒåÁ; ¦å^Ásé; ÁÜ>c ^}æð; &@ ææÁsusgewertet. Mindestbewehrung (NCI Zu 9.4.3(2)) wurde à^¦>& • & œ tÈ Kombinationen Tæi*^à^}å^ÁS[{àã}æaã[}^}Á;æ&@ÄÖOD•ÁÖÞÁFJJ€ Ew Einwirkungsname Lkn Lastkombinationsnummer c[| @ | | • & @ } a^Ac^| ê } a^| | a& @ AOa _ a\ ` } * Öðl ÁÓ v ð ð ð * Á ð : ^|} ^ ¦ Á ð œ eê|| Áð } ^ ¦ @ þ à Áeiner Einwirkung wird mit diesem Ausgabeformat nicht dokumentiert.

Ew	Gk	Qk.N	
Lkn	Grundkombination		
1	1.35	1.50 !	

Rund-	Abstand	u	vEd	vRd,c	vRd,max	minAsw	erfAsw
schnitt	[cm]	[m]			ŽD-E0{ á		Ž&{ á
Licrit	34.00	1 50	0.052 m	0.542			

Position Auftrags-Nr. ÙVPËÜPÄÄÛ¢4&\@`ã ÁÛ>å 2023 300 D-3.1 Seite: 3-54 **DS-13** Durchstanznachweis nach DIN EN 1992-1-1 **Angaben** Beton C 30/37, Betonstahl B 500MA Šæ• c^ā, |^ãc`} * • √ê&@ K Wandende а 17.5 cm b 17.5 cm Plattendicke h_0 20.0 cm Tãod ÉÁn cæasãa & @ ÁÞ c @ 4 @ . d_{m} 17.0 cm Šê}*•à^, ^@*}* Šê}*•à^, ^@*}*•*¦æå $a_{s,m}$ 3.50 & Đ 0.21 % l,vorh 1.96 % l,zul Tæi*ÉÄÖ`¦&@@æ):\¦æc V_{Ed} 43.0 kΝ Šæ• c^¦@4@{}*•~æ\d[¦ 1.35 Keine Durchstanzbewehrung Asw erforderlich. **Nachweis** Ø>¦ÁsanÁ, æi*^à^}å^ÁÓ^|æ•č}*••ãčæāā;}Á¸`¦å^ÁsanÁ, ãcd^¦^ÁŠê}*•à^¸^@`}*Á asm an der Oberseite à^ l>& • 3&@2 dÈ ÖāN•^ÁŠê}*•à^、^@^`}*ÁãróÁ§}^¦@aqàÁå^•Áf^•æ(c^}Áê`i^¦^}ÁÜ`}å•&@,ãæ•Á a): `[¦å}^}Á'}åÁsě i ^¦@spàÁdieses Rundschnitts zu verankern.
Òā ^ÁÜ>c ^}\[] -ç^!•œ̂!\`}*Á; ãåÁý æ‰sé\-&&•æådè
ÖæÁÖ`¦&@æà;\¦æóÁXÒåÁ; ¦å^Ásé; ÁÜ>c ^}æð; &@ ææÁsusgewertet. Mindestbewehrung (NCI Zu 9.4.3(2)) wurde à^¦>& • 3&@ à dÈ Kombinationen Tæi*^à^}å^ÁS[{àã}æaã[}^}Á;æ&@ÄÖOD•ÁÖÞÁFJJ€ Ew Einwirkungsname Lkn Lastkombinationsnummer c[| @ | | • & @ } a^Ac^| ê } a^| | a& @ AOa _ a\ ` } * Öðl ÁÓ v ð ð ð * Á ð : ^|} ^ ¦ Á ð œ eê|| Áð } ^ ¦ @ þ à Áeiner Einwirkung wird mit diesem Ausgabeformat nicht dokumentiert.

Ew	Gk	Qk.N	
Lkn	Grundkombination		
1	1.35	1.50 !	

Rund-	Abstand	u	vEd	vRd,c	vRd,max	minAsw	erfAsw
schnitt	[cm]	[m]			ŽD-E0 { á		Ž { á
Licrit	34.00	1 50	0.214 m	0.542			

Position Auftrags-Nr. ÙVPËÜPÄÄÛ¢4&\@`ã ÁÛ>å 2023 300 D-3.1 Seite: 3-55 **DS-14** Durchstanznachweis nach DIN EN 1992-1-1 **Angaben** Beton C 30/37, Betonstahl B 500MA Šæ• c^ā, |^ãc`} * • √ê&@ K Wandende а 17.5 cm b 17.5 cm Plattendicke h_0 20.0 cm Tãod ÉÁn cæasãa & @ ÁÞ c @ 4 @ . d_{m} 17.0 cm Šê}*•à^, ^@*}* Šê}*•à^, ^@*}*•*¦æå a_{s,m} 3.38 & Đ 0.20 % l,vorh 1.96 % l,zul Tæi*ÉÄÖ`¦&@@æ):\¦æc V_{Ed} 39.0 kΝ Šæ• c^¦@4@{}*•~æ\d[¦ 1.35 Keine Durchstanzbewehrung Asw erforderlich. **Nachweis** Ø>¦ÁsanÁ, æi*^à^}å^ÁÓ^|æ•č}*••ãčæāā;}Á¸`¦å^ÁsanÁ, ãcd^¦^ÁŠê}*•à^¸^@`}*Á asm an der Oberseite à^ l>& • 3&@2 dÈ ÖāN•^ÁŠê}*•à^、^@^`}*ÁãróÁ§}^¦@aqàÁå^•Áf^•æ(c^}Áê`i^¦^}ÁÜ`}å•&@,ãæ•Á a): `[¦å}^}Á'}åÁsě i ^¦@spàÁdieses Rundschnitts zu verankern.
Òā ^ÁÜ>c ^}\[] -ç^!•œ̂!\`}*Á; ãåÁý æ‰sé\-&&•æådè
ÖæÁÖ`¦&@æà;\¦æóÁXÒåÁ; ¦å^Ásé; ÁÜ>c ^}æð; &@ ææÁsusgewertet. Mindestbewehrung (NCI Zu 9.4.3(2)) wurde à^¦>& • 3&@ à dÈ Kombinationen Tæi*^à^}å^ÁS[{àã}æaã[}^}Á;æ&@ÄÖOD•ÁÖÞÁFJJ€ Ew Einwirkungsname Lkn Lastkombinationsnummer c[| @ | | • & @ } a^Ac^| ê } a^| | a& @ AOa _ a\ ` } * Öðl ÁÓ v ð ð ð * Á ð : ^|} ^ ¦ Á ð œ eê|| Áð } ^ ¦ @ þ à Áeiner Einwirkung wird mit diesem Ausgabeformat nicht dokumentiert.

Ew	Gk	Qk.N
Lkn	Grundkombination	
1	1.35	1.50 !

Rund-	Abstand	u	vEd	vRd,c	vRd,max	minAsw	erfAsw
schnitt	[cm]	[m]			ŽD-E0{ á		Ž&{ á
Ucrit	34.00	1.59	0.194 m	0.542			

Position Auftrags-Nr. ÙVPËÜPÄÄÛ¢4&\@`ã ÁÛ>å 2023 300 D-3.1 Seite: 3-56 **DS-15** Durchstanznachweis nach DIN EN 1992-1-1 **Angaben** Beton C 30/37, Betonstahl B 500MA Šæ• c^ā, |^ãc`} * • √ê&@ K Wandende а 17.5 cm b 17.5 cm Plattendicke h_0 20.0 cm Tãnd ÉÁ casaã & @ ÁP c @ 4 @ d_{m} 17.0 cm Šê}*•à^, ^@*}* Šê}*•à^, ^@*}*•*¦æå $a_{s,m}$ 3.39 & Đ 0.20 % l,vorh 1.96 % l,zul Tæi*ÉÄÖ`¦&@@æ):\¦æc V_{Ed} 39.0 kΝ Šæ• c^¦@4@{}*•~æ\d[¦ 1.35 Keine Durchstanzbewehrung Asw erforderlich. **Nachweis** Ø>¦ÁsanÁ, æi*^à^}å^ÁÓ^|æ•č}*••ãčæāā;}Á¸`¦å^ÁsanÁ, ãcd^¦^ÁŠê}*•à^¸^@`}*Á asm an der Oberseite à^ l>& • 3&@2 dÈ ÖāN•^ÁŠê}*•à^、^@^`}*ÁãróÁ§}^¦@aqàÁå^•Áf^•æ(c^}Áê`i^¦^}ÁÜ`}å•&@,ãæ•Á a): `[¦å}^}Á'}åÁsě i ^¦@spàÁdieses Rundschnitts zu verankern.
Òā ^ÁÜ>c ^}\[] -ç^!•œ̂!\`}*Á; ãåÁý æ‰sé\-&&•æådè
ÖæÁÖ`¦&@æà;\¦æóÁXÒåÁ; ¦å^Ásé; ÁÜ>c ^}æð; &@ ææÁsusgewertet. Mindestbewehrung (NCI Zu 9.4.3(2)) wurde à^¦>& • 3&@ à dÈ Kombinationen Tæi*^à^}å^ÁS[{àã}æaã[}^}Á;æ&@ÄÖOD•ÁÖÞÁFJJ€ Ew Einwirkungsname Lkn Lastkombinationsnummer c[| @ | | • & @ } a^Ac^| ê } a^| | a& @ AOa _ a\ ` } * Öðl ÁÓ v ð ð ð * Á ð : ^|} ^ ¦ Á ð œ eê|| Áð } ^ ¦ @ þ à Áeiner Einwirkung wird mit diesem Ausgabeformat nicht dokumentiert.

Ew	Gk	Qk.N
Lkn	Grundkombination	
1	1.35	1.50 !

Rund-	Abstand	u	vEd	vRd,c	vRd,max	minAsw	erfAsw
schnitt	[cm]	[m]			ŽD-E0{ á		Ž&{ á
Ucrit	34.00	1.59	0.194 m	0.542			

Auftrags-Nr. Position 2023 300 D-3.1 Seite: 3-57

`à^¦ËEW}c^¦: ॅ*ËÓ^{ EÕ¦æ-Ó^{ ^••`} * Á¶ ÁÕ¦^}::`• œà åÁå^¦Á/¦æť ÷ê @ðt \^ãoÁ æ&@ÁÖŒÞÁÒÞÁFJJŒËËË

Ó^{ ^••`} * Áå^¦Á à^¦ËÁ} åÁW} ♂¦:>*^ `à^¦ЁM}*c*^¦:>*^

Material- und Querschnittswerte nach DIN EN 1992-1-1 Mat./Querschnitt

Šê} * ^ Material Position Betonstahl **Beton** Šê} * • Ó>* ^| [m] UZ-1 3.13 B 500SA B 500SA C 25/30 Q UZ-2 B 500SA B 500SA C 25/30 Q 4.64

Q: Õ^• c^āj•\4¦} * ÁÛ * æ: ãc

Querschnitt Position Exz. bPI bw h hf [cm] [cm] [cm] [cm] [cm] UZ-1, UZ-2 UΖ 100.0 53.0 20.0 20.0 UZ: Únterzug

*^{ êi ÁÖ OÞÁÖÞÁFJJ GËFËFÉVæà ÈÁ ÈF Expositionsklasse

> Position Seite ΚI Kommentar

UZ-1, UZ-2 umlaufend XC1 d[&\^} A[å^¦A[œ]} åð Ajæ•

Bewehrung Vorgaben zur Bewehrungsdefinition

Betondeckung Position &def,u Cmin,u Cnom,u &def,o C_{min,o} Cnom,o [mm] [mm] [mm] UZ-1, UZ-2 20 10 10 10 10 20

Ó^, ^@`}*•æà•œ̂}å^ der erforderlichen (Differenz-)Bewehrung

Position d'o d'u [mm] [mm] 50 50

UZ-1. UZ-2

> ¦Áá^} ÁÕ¦^}:: `• œa} åÁá^¦ÁV¦æť-ê@ð\^ãóÁ,æ&@ÁÖQÞÁÒÞÁFJJŒÜÜÜ Bemessungsparameter

(GZT)

Biegung/Querkraft Position min. Theta Mindestbewehrung Abs. 6.1, 6.2 Šê} * • Querkraft Žγá UZ-1, UZ-2 ja optimiert ja

Mindestbewehrung nach Abs. 9.2.1.1 bzw. 9.2.2

Schubfuge Position bi Uà^¦-lê&@ С Abs. 6.2.5 [cm] UZ-1, UZ-2 0.40 0.70 0.50 20.0 rau

2023 300 D-3.1 ÜVPËÜPÄÄÜd&\@`aį ÁÜ>å Seite: 3-58

Bemessung Unterzug (Stahlbeton) Bemessung

<u>UZ-1</u> Unterzug

Tæi *^à^} å^ÆS[{ àãa æaãa } ^} Án æ&@ÓOΦ ÁÖÞÁFJJ€

Ew Einwirkungsname

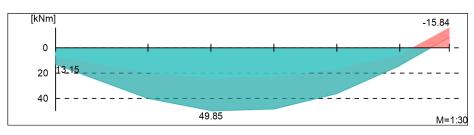
Lkn Lastkombinationsnummer

ç[¦@;|•&@}å^Áç^;ê}å^;|3&@ÁÒā;ã\`}*

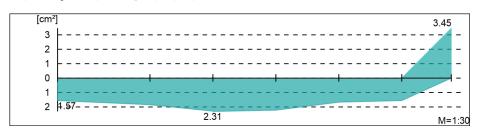
Öð ÁÓ ° † † * Á † : ^|} ^ ¦ Æ æ cê || ^ Á } } ^ ¦ @ ф à Æ iner Einwirkung wird mit diesem Ausgabeformat nicht dokumentiert.

Ew	Gk	Qk.N	
Lkn	Grundkombination		
1	1.00		
2-5	1.35	1.50 !	
6	1.00	1.50 !	

<u>Šê}*•à^, ^@*}*</u>

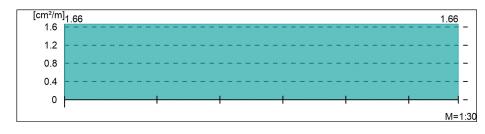

Ò; { ; ; å^; | &&@^ ÁŠê} * • à^, ^ @` } * ÁOE Á; à^} Ð) c^}

Bemessungsmomente beinhalten auch Plattenmomente im Bereich von bPI.


V¦æ*i-ê@a*∖^ãc

Biege- und Normalkraftbemessung, Abs. 6.1

Bemessungsmomente MEd oben/unten


Šê}*•à^. ^@*}*ÁŒÁà^}Đ)♂}

Querkraftbewehrung

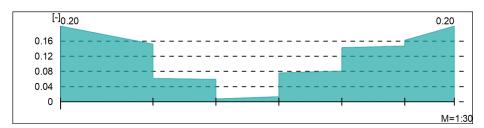
 $\dot{O}_{1}^{1} = \dot{A}_{1}^{1} = \dot{A}_{2}^{1} + \dot{A}_{2}^{2} + \dot{A}_{3}^{2} = \dot{A}_{3}^{2} + \dot{A}_{3}^{2} + \dot{A}_{3}^{2} = \dot{A}_{3}^{2} + \dot{A}_{3}^{2} + \dot{A}_{3}^{2} = \dot{A}_{3}^{2} + \dot{A}$

Ó^{ ^••`}*•``^!\|ê-e^Áa^ā; @ede^} Áeĕ &@ÁU|æee^}``^!\|ê-e^Áā; ÁÓ^!^&&@Ác[} Áàw.

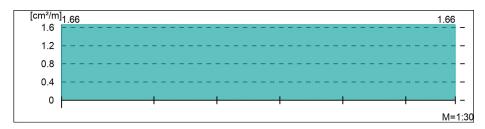

D-3.1

ÙVPËÜPÄÄÛc4&\@4 ÁÛ>å

<u>V¦æ*-ê@#\^ã</u>c

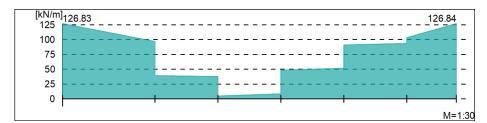

Querkraftbemessung, Abs. 6.2

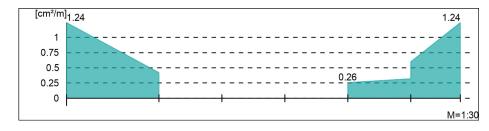
Bemessungsquerkraft VEd



Seite: 3-59

Querkraftausnutzung VEd/VRd,max


Querkraftbewehrung asw


Schubfuge

Nachweis der Schubfuge, Abs. 6.2.5

Ó^{ ^••`}*•|ê}*••&@à\¦æo{çÒå

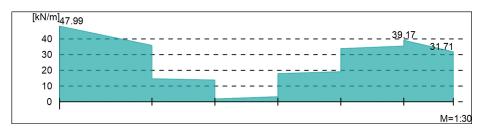
Verbundbewehrung asw

Auftrags-Nr.

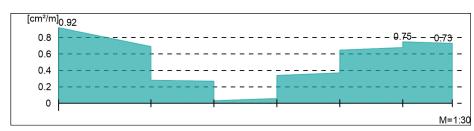
Position

2023 300

D-3.1


ÙVPËÜPÄÄÛc4&\@^ãį ÁÛ>å

Gurtbewehrung


Gurtanschlussbemessung, Abs. 6.2.4

Seite: 3-60

Ó^{ ^••`}*•|ê}*••&@à\¦æ⁄�¢Òå

Gurtanschlussbewehrung asf

ÙVPËÜPÄÄÜ¢4& @ãį ÁÛ>å Seite: 3-61

<u>UZ-2</u> <u>Kombinationen</u> T

Unterzug Tæi*^à^}å^Ás[{àājæaāj}^}Ájæ&@#ÖΦAÖÞÁFJJ€

Ew Einwirkungsname

Lkn Lastkombinationsnummer

ç[¦@\|•&@\}å^Æç^\ê}å^\|&&@\ÁÒ@; ã\`}*

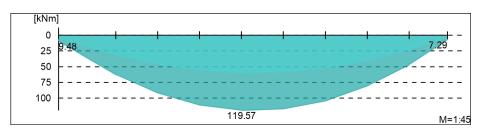
Öð ÁÓ °C ðð `} * Áð : ^|} ^ ¦ Ášæ cê|| ^Á } } ^ ¦ @d Áeiner Einwirkung wird mit diesem Ausgabeformat nicht dokumentiert.

Ew	Gk	Qk.N
Lkn	Grundkombination	
1	1.00	
2-7	1.35	1.50 !
8-9	1.00	1.50 !

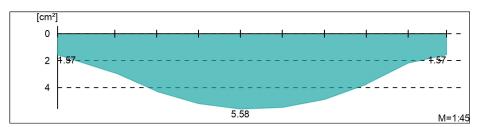
D-3.1

Šê} * • à^ , ^ @ ` } *

Ò¦-{¦å^¦|&@^ÁŠê}*•à^¸^@*}*ÁŒÁ;à^}Ð}৫^}

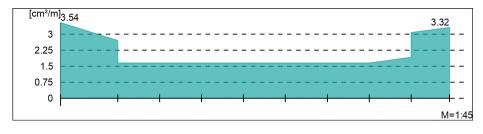

Bemessungsmomente beinhalten auch Plattenmomente im Bereich von bPI.

<u>V¦æ*-ê@#\^ac</u>


2023 300

Biege- und Normalkraftbemessung, Abs. 6.1

Bemessungsmomente MEd oben/unten


Šê}*•à^. ^@*}*ÁŒÁàà^}Ð}♂}

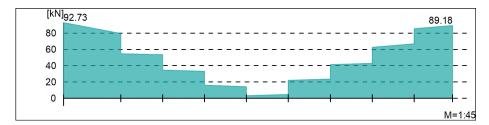
Querkraftbewehrung

Ò; { | å^| | & @ ÁÛ ^ | \ | æ æ ^ , ^ @ ` } * Áæ , ÁÇÓ>* ^ | D

Ó^{ ^••`}*•``^!\|ê-e^Áa^a] @ede^} Áeĕ &@ÁÚ|ææe^}``^!\|ê-e^Áā[ÁÓ^!^&&@Ác[} Ááw.

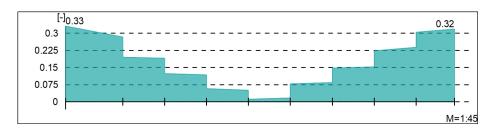
martens+puller
Ingenieurgesellschaft mbH

2023 300

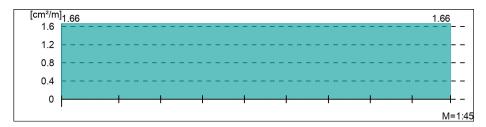

D-3.1

ÙVPËÜPÆÄÛ¢4&\@^ãį ÁÛ>å

<u>V¦æ*-ê@#∖^ã</u>c

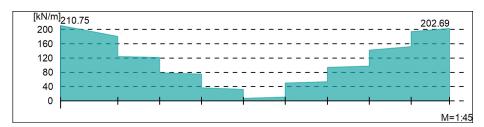

Querkraftbemessung, Abs. 6.2

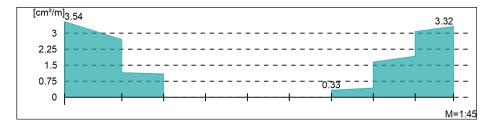
Bemessungsquerkraft VEd



Seite: 3-62

Querkraftausnutzung VEd/VRd,max


Querkraftbewehrung asw

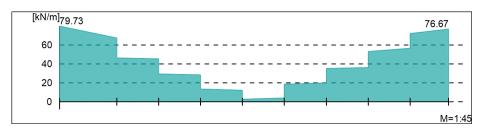

Schubfuge

Nachweis der Schubfuge, Abs. 6.2.5

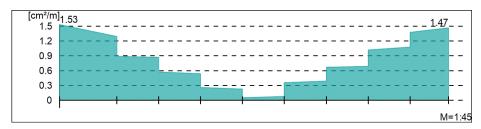
Ó^{ ^••`}*•|ê}*••&@à\¦æo{çÒå

Verbundbewehrung asw

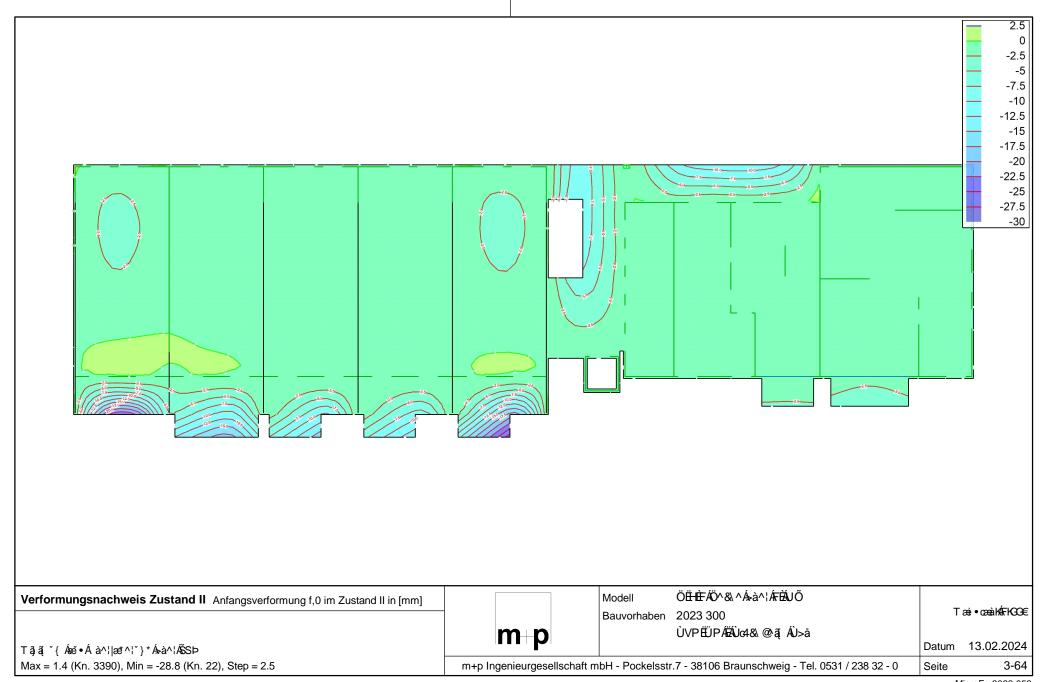
D-3.1

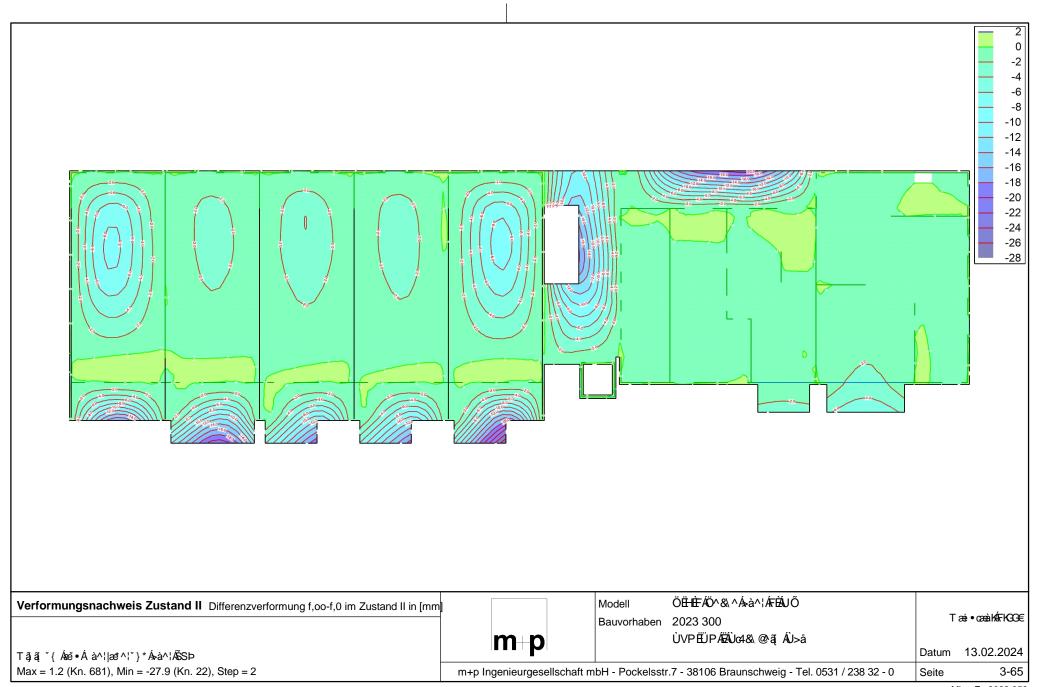

ÙVPËÜPÄÄÛ¢4&\@^ãį ÁÛ>å

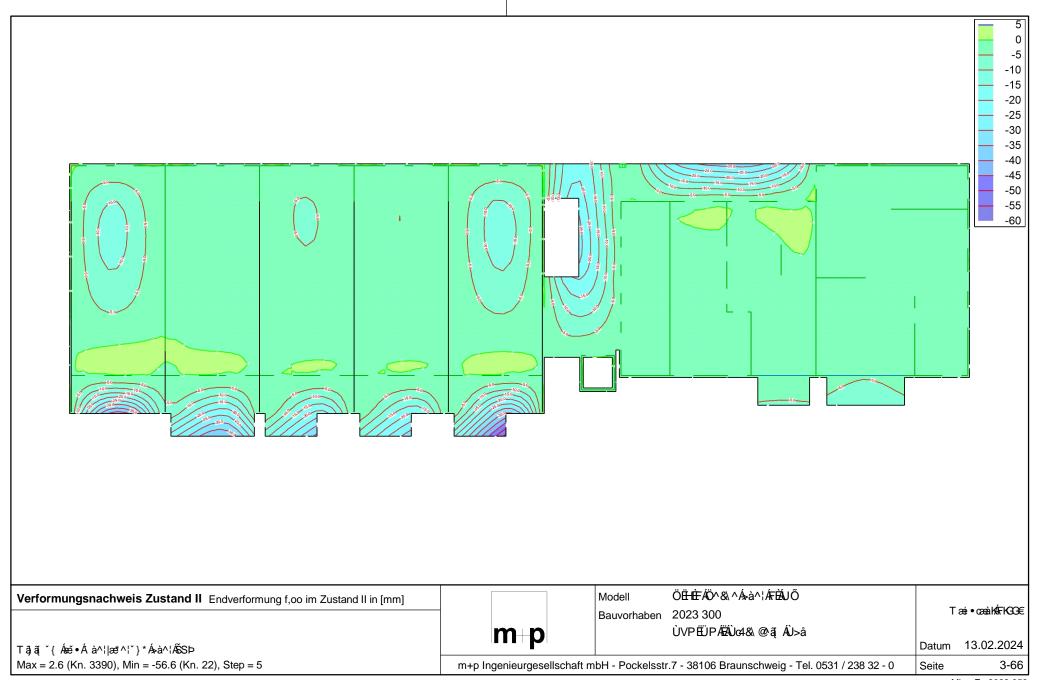
Gurtbewehrung


Gurtanschlussbemessung, Abs. 6.2.4

Seite: 3-63

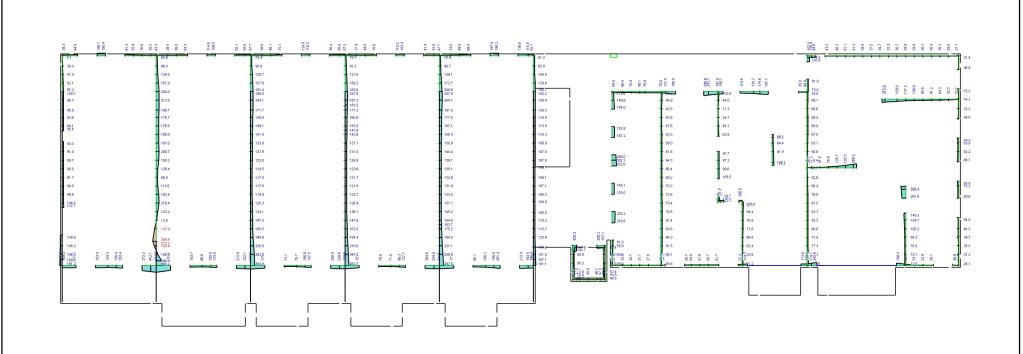

Ó^{ ^••`}*•|ê}*••&@à\¦æ⁄�¢Òå



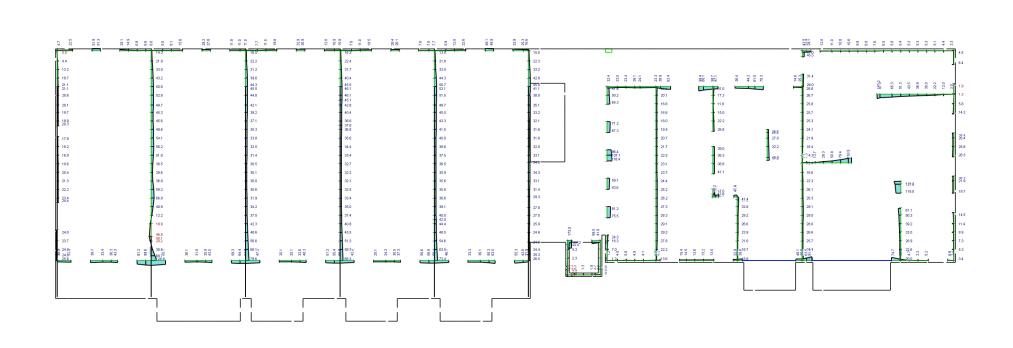

Gurtanschlussbewehrung asf

Nachweise (GZG)

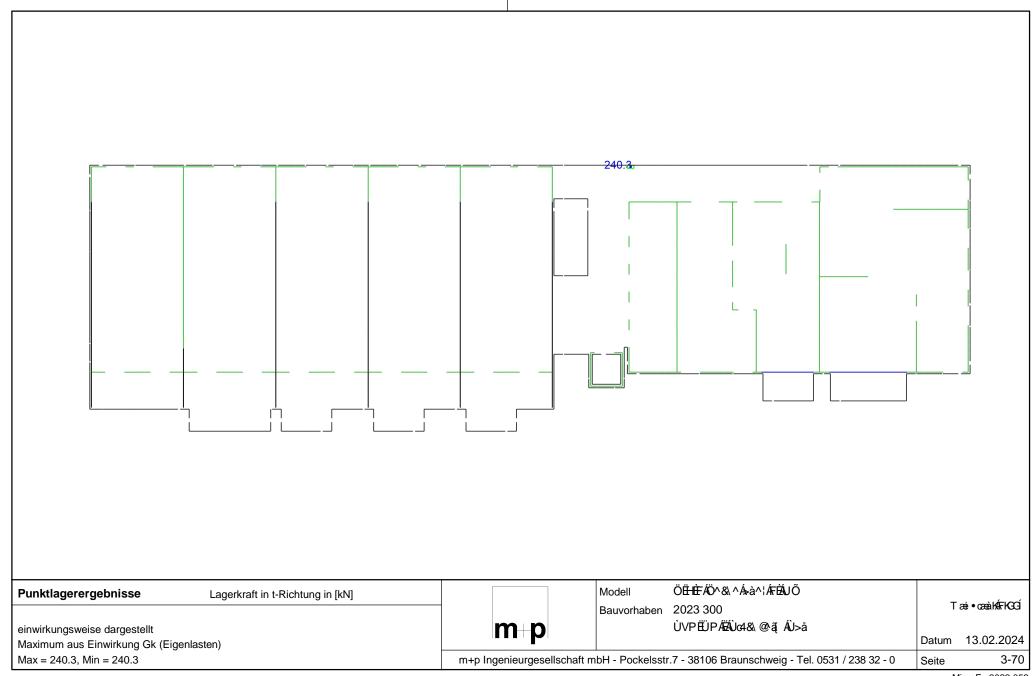
Auftrags-Nr. Position

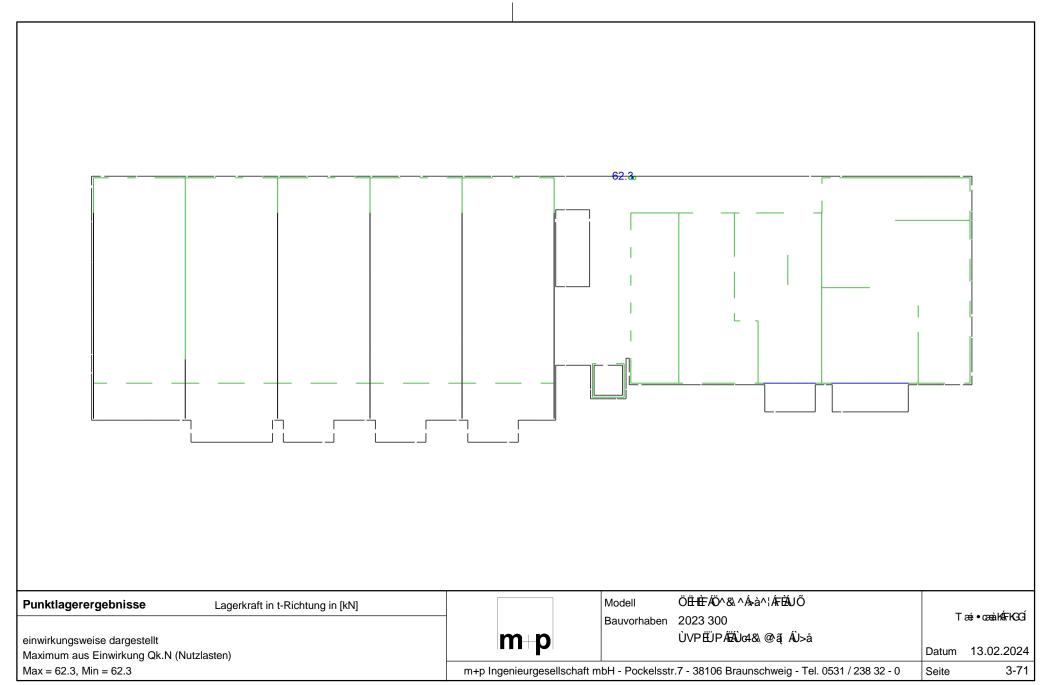


Seite: 3-67


2023 300

D-3.1


5 i ZU[Yf_f} ZhY



Linienlagerergebnisse Lagerkraft in t-Richtung in [kN/m]		Modell	ÖËHÈÁÖ^&\^Áṣà^¦ÁFÐÁJŐ		
		Bauvorhaben		Т	aai•oaaaakAFKGG€
einwirkungsweise dargestellt Maximum aus Einwirkung Gk (Eigenlasten)	lm+p		ÙVPËÜPÄÄÄÛ¢4&\@`q̃ÄÛ>å	Datum	13.02.2024
Max = 565.2, Min = -272.3	m+p Ingenieurgesellschaft m	nbH - Pockelssti	:.7 - 38106 Braunschweig - Tel. 0531 / 238 32 - 0	Seite	3-68

Linienlagerergebnisse Lagerkraft in t-Richtung in [kN/m]		Modell	ÖËHÈÁÖ^&\^Ásà^¦ÁFÈÒJÕ	_	
		Bauvorhaben	2023 300 ÙVPËÜPÆÄÜ¢&\@A ÂÜ>å	T	`æi•cæàk/kFkCG€
einwirkungsweise dargestellt Maximum aus Einwirkung Qk.N (Nutzlasten)	l m +p		OVI EDI ALBUSTON & Q ABZO	Datum	13.02.2024
Max = 179.0, Min = -50.1	m+p Ingenieurgesellschaft m	nbH - Pockelssti	:.7 - 38106 Braunschweig - Tel. 0531 / 238 32 - 0	Seite	3-69

D-3.1

ÙVPËJPÆÄJc4& @ã ÁJ>å

Seite: 3-72

F]ggVfY]hYbVY[fYbnib['Zf'6UihY]'\"\Y\'1'\$ž&, a

Begrenzung der Rissbreite nach DIN EN 1992-1-1: 2015 mit NA: 2015-12

Anforderungen

Expositionsklasse: XC1

Rechenwert der Rissbreite $w_{max} = 0,40 \text{ mm}$.

Baustoffe, Geometrie

Rechteckquerschnitt: Höhe = 28,0 cm; Breite = 100,0 cm

Betonfestigkeitsklasse: C30/37 Betondeckung c: 2,5 cm

Stabdurchmesser: d_{s.vorh} = 14,0 mm (Betonrippenstahl)

Nachweis der Mindestbewehrung

Einwirkung: Zentrischer Zug

Ort der Zwangeinwirkung: Im Bauteil selbst

Wirksame Betonzugfestigkeit: f_{ct,eff} = 0,65 · f_{ctm} = 1,89 N/mm²

$$A_{s,min} \cdot \sigma_s = k_c \cdot k \cdot f_{ct,eff} \cdot A_{ct}$$
 (7.1)

mit $k_c = 1.00$

k = 0.80

 $f_{ct,eff} = 1,89 \text{ N/mm}^2$

 $A_{ct} = 2800,0 \text{ cm}^2$ $\sigma_s = \text{siehe folgende Berechnung}$

Die Begrenzung der Rissbreite wird durch eine Begrenzung des Stabdurchmessers nachgewiesen.

$$\phi_{\text{S}} = \phi_{\text{S}}^{\star} \cdot \frac{k_{\text{C}} \cdot k \cdot h_{\text{Cr}}}{8 \cdot (h - d)} \cdot \frac{f_{\text{ct,eff}}}{2.9} \ge \phi_{\text{S}}^{\star} \cdot \frac{f_{\text{ct,eff}}}{2.9} \tag{7.7DE}$$

mit k = 0.80 $h_{cr} = 28.0$ cm d = 24.8 cm

 $h_{cr} = 28,0 \text{ cm}$ $f_{ct,eff} = 1,89 \text{ N/mm}^2$ d = 24,8 cm $\phi_s = d_{s,vorh} = 14 \text{ mm}$

$$\Rightarrow \quad \phi_{s} = \phi_{s}^{*} \cdot 0.57 < \phi_{s}^{*} \cdot 0.65$$

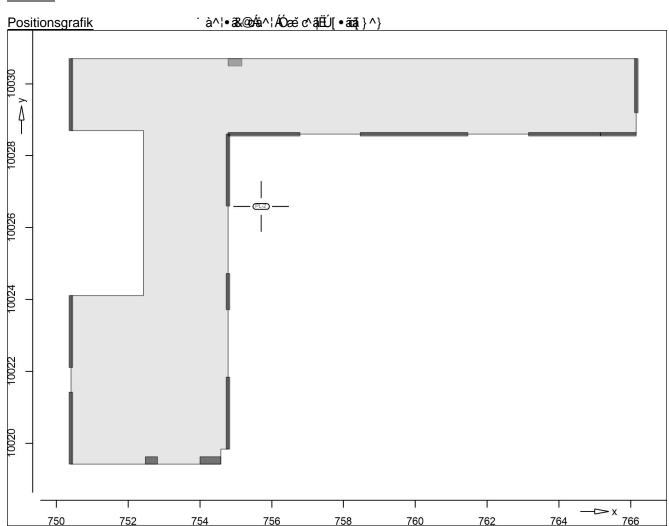
 $\Rightarrow \phi_s^* = 14,0 \text{ mm} / 0,65 = 21,54 \text{ mm}$

 $\sigma_s = \sqrt{(3.48 \cdot 10^6 \cdot w_k / d_s^*)} = 254.22 \text{ N/mm}^2 \text{ nach Tabelle 7.2DE}$

 $A_{s,min} = 8,30 \text{ cm}^2 \text{ je Lage}$

D-3.2

ÙVPËÜPÄÄÄJØ4&\@āį ÁĴJ>å Seite: 3-73


Pos. D-3.2

8 YW YbgnghYa "VYf'%"C; '!'6 YfYJW 'HF<'Ž'h Yfa]gW Y'HfYbbi b[

System

Positionsplan Positionsplan

Bauteile Bauteil-Positionen

Ы	atten

Platten-Positionen

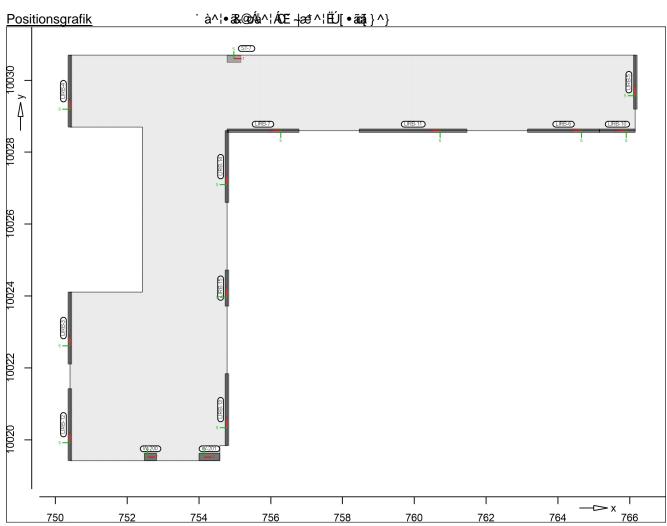
Stahlbeton

Position	Winkel	Art	,	Material	Dicke
	Ž∕á		Šê} * •	Quer	[cm]
PL-2	0.0	iso		C 30/37 Q	20.0
			B 500MA	B 500SA	

Winkel: iso: Q:

Expositionsklasse

*^{ êi ÁÖΦÁÒÞÁFJJŒFFÉVæàÀÈ


Position	Seite		Kommentar
PL-2	oben		{ êi ãt ^ÁØ^`&@z^
		WF	Pê ~ at Aj a ^ ¦ Ajê} * ^ ¦ ^ AjZ ^ az Á
			feuchter Beton
	unten	XC1	d[&\^} A[å^\Ande} åð A]æ•
		WO	Weitgehend trockener Beton

Auftrags-Nr.	Position	Ingenieurgesellschaft mbH	
2023 300	D-3.2	ÙVPËÜPÄÄĴØ4&\@ãį ÁĴ>å	Seite: 3-74

<u>Koordinaten</u>	Position	X	у
		[m]	[m]
	PL-2	750.40	10030.70
		766.16	10030.70
		766.16	10028.60
		754.78	10028.60
		754.78	10019.84
		754.58	10019.84
		754.58	10019.42
		750.40	10019.42
		750.40	10024.11
		752.42	10024.11
		752.42	10028.70
		750.40	10028.70

<u>Auflager</u> Auflager-Positionen

Auftrags-Nr. Position IIII Ingenieurgesellschaft mbH

2023 300 D-3.2 ÜVPEÜPÆÜU4& @ ā ÂJ>å Seite: 3-

2023 300	D-3.2	ÙVΡË	ÜPĀĀŪd&N@Ā	Ù>å		S	eite: 3-75
<u>Ùc>c ^} æt ^¦</u>	Ùc>c ^} æ* ^¦ ЁÚ[• ãã (
<u>Stahlbeton</u>	Position		Šê} * ^	1	Material	b _(r)	h _(s)
	ST-7		[m] 3.00	C	25/30 Q	[cm] 38.0	[cm] 20.0
	Q: Õ^•¢^ā•\4¦}`}*Á	ĺÚřæd⊹ãc			3 500SA		
<u>Federsteifigkeiten</u>	Position		K _{R,r}	Fla N I	K _{R,s}		K _{T,t}
	ST-7		[kNm/rad] frei	ĮKINI	m/rad] frei	+/-	[kN/m] 785333
Koordinaten	Position			Ž∕á		x [m]	y [m]
	ST-7			0.00	75		10030.60
Linienlager	Position		K _{R,r} [kNm/rad/m]	[kNm/i	K _{R,s}		K _{T,t} [kN/m/m]
	LIRB-3LIRB-5		frei	[KI WIII	frei	+/-	250000
	LIRB-6, LIRB-7, LIRB-10, LIRB-	+/-	10000		frei	+/-	250000
	11 LIRB-12LIRB- 15		frei		frei	+/-	250000
<u>Koordinaten</u>	Position					X [m]	y [==1
	LIRB-3				750	[m] 0.40	[m] 10022.11
							10024.11
	LIRB-4					0.40	10028.70
							10030.70
	LIRB-5						10029.20
	LIRB-6						10030.70 10028.60
	LIKD-0						10028.60
	LIRB-7						10028.60
							10028.60
	LIRB-10						10028.60
							10028.60
	LIRB-11						10028.60
	1100.40						10028.60
	LIRB-12						10019.42 10021.42
	LIRB-13						10021.42
	LIND-13						10013.04
	LIRB-14						10026.60
							10028.60
	LIRB-15				754		10023.72
					754	4.78	10024.72
<u>Wandlager</u>	Wandlager-Posi	itionen					
<u>Stahlbeton</u>	Position		[m]	Šê} * ^ [m]		Material	Dicke [cm]
	W-200		3.00	0.34		25/30 Q B 500MA	20.0
	\\/_201		3.00	0.58		B 3001VIA	

3.00

0.58

C 25/30 Q

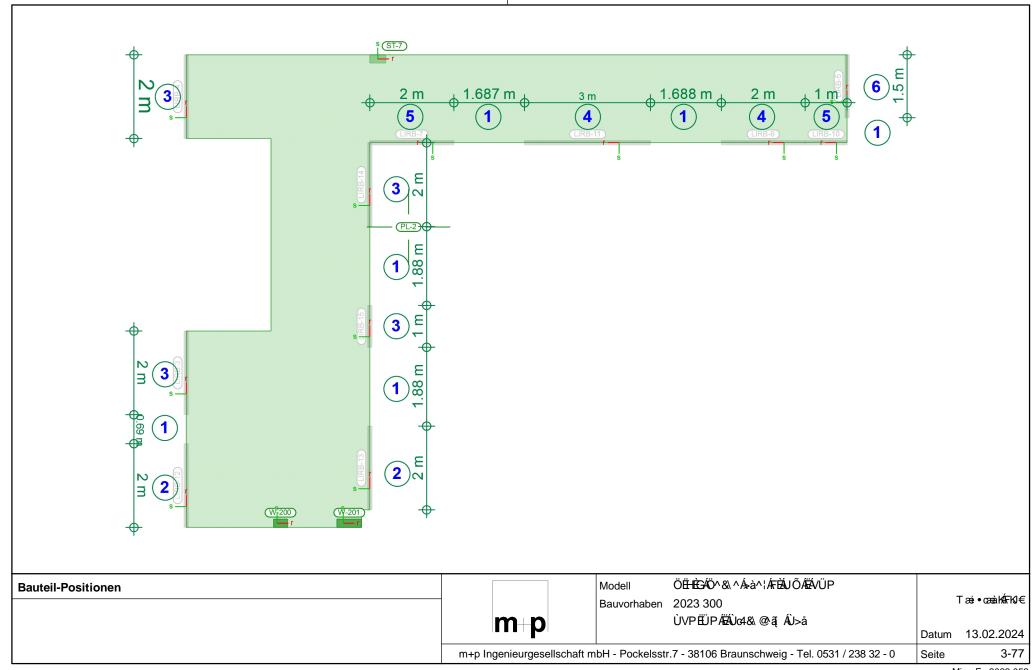
B 500MA

20.0

W-201

Q: $\tilde{O}^{\wedge \bullet} c^{\wedge} \tilde{a}_{l} \cdot (4!)^{*} * \hat{AU}^{*} ad: \tilde{ac}$

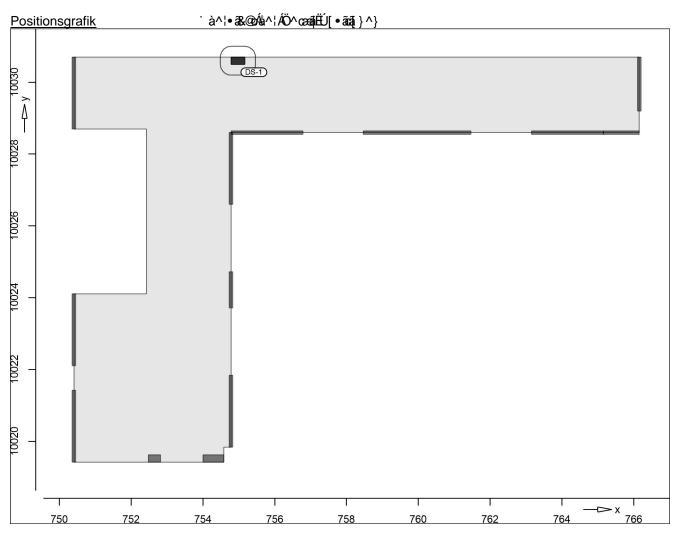
Auftrags-Nr. Position ÙVPËÜPÆÄÛc4&\@@ā ÁÛ>å 2023 300 D-3.2 Seite: 3-76 $K_{T,t}$ <u>Federsteifigkeiten</u> Position $K_{R,r}$ $K_{R,s}$ [kNm/rad/m] [kNm/rad/m] [kN/m/m] W-200, W-201 frei frei +/-2066667 Koordinaten Position Х [m] [m]W-200 752.48 10019.52 752.82 10019.52 W-201 754.00 10019.52 754.58 10019.52 Material Materialkennwerte Stahlbeton Position Material Wichte E_{cm} f_{ck} DIN EN 1992-1-1 G f_{ctm} ŽÞÐ á ŽÞ₽) { **Ž**Þ₽(_á á ST-7, W-200, W-201 C 25/30 Q 25.00 31000 25.00 12900 2.60 PL-2 C 30/37 Q 25.00 33000 30.00 13750 2.90 **Betonstahl** Position Material Wichte E_s f_{yk} DIN EN 1992-1-1 G $f_{tk,cal}$ ŽÞÐ á ŽD-E(){ á <u>Ž</u>D-Ę0 { _á PL-2, W-200, W-201 B 500MA 78.50 200000 500.00 77000 525.00 PL-2, ST-7 B 500SA 78.50 200000 500.00 77000 525.00 Geometrische Auswertung der Positionen Auswertung Ø|ê&@} -4|{ ã^ÁÓæĕ c^ã\\[Ú[•ãa];}^} Ø|ê&@\} Stahlbeton Position Dicke Ølê&@ Volumen Ž á Ž á [cm] PL-2 12.79 20.0 63.94 <u>Ùc>c ^} |æ* ^</u> Stahlbeton Position Mantelfl. Volumen b(r) h(s) [cm] $[m^2]$ [m³][cm] ST-7 3.48 0.23 38.0 20.0 Wandlager Yê}å^Ása^¦ÁYæ}å|æ*^¦ËÚ[•ãaā[}^} Stahlbeton Position P4@ Ølê&@ Volumen Dicke [cm] [cm] $[m^2]$ [m³]W-200 20.0 300.0 1.01 0.20


20.0

300.0

1.75

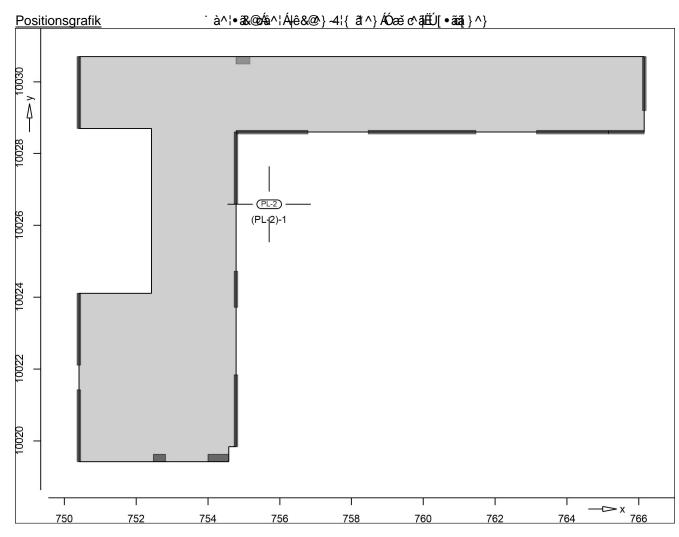
0.35


W-201

Detailplan Detailplan

<u>Details</u> Detail-Positionen

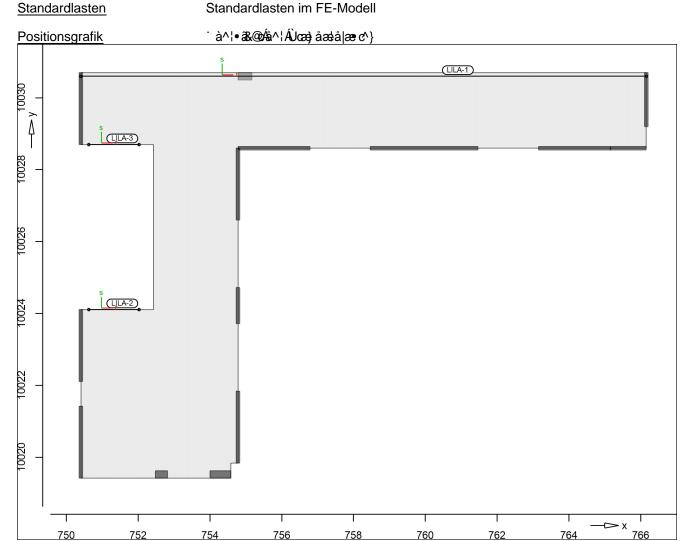
<u>Durchstanzstellen</u>	Position		Lel von	MinBew	Rundsch	
	DS-1 unten: MinBew: Rundsch:	Lasteinleitung erfolgt von unten Mindestbewehrung nach NCI Zu 9. Rundschnitt am Rand erweitern?	unten 4.3(2)?	ja	neir	1.50
Geometrie	Õ^[{ ^dã	```. ``A&a^¦ASae•c^ā; ^āc`}*•- ê&@				
	Position	Тур		Winkel Ž⁄a	b(r)/D [cm]	h(s) [cm]
	DS-1 Re: Rechte	Re ck		0.00	38.0	20.0
Koordinaten	Position				X [m]	Y [m]
	DS-1			75	54.97	10030.60


Belastungen

ÜPÄÄÜ04&\@ãį ÁÜ>å Seite: 3-79

Lastplan Lasten des FE-Modells

<u>Bauteillasten</u> Bauteilbezogene Lasten



Eigengewicht	Position	EW	Lastfall	Art	g [kN/m²]
	PL-2 PGr: Gravitations	Gk slast; positive Laster	LF-1 n wirken senkrecht nach	PGr unten	5.00
<u>Ù[}•cāt^Árcê}åāt^ÆSæec</u>	Position	EW	Lastfall	Art	g [kN/m²]
	PL-2 PGr: Gravitations	Gk slast; positive Laster	LF-1 n wirken senkrecht nach	PGr unten	2.80
<u>Nutzlast</u>	Position	EW	Lastfall je Last	feld Art	p [kN/m²]
	PL-2 PGr: Gravitations	Qk.N slast; positive Laster	(PL-2)-1 n wirken senkrecht nach	PGr unten	4.00

Seite: 3-80

2023 300 D-3.2 ÙVPËJPÆÄUd& @ ą ÁU>å

<u>Linienlasten</u>	Position	EW	Lastfall	Art	p _A ,m _A [kN/m]	p _E ,m _E],[kNm/m]
	LILA-1	Ùà ĦÓ	>• <i>c`}*Ê</i> ái£© <i>ÁM</i> €l	ŒŒŒÁ		
		Gk	LÉ-1	pĠr	6.00	6.00
	LILA-2	Treppe	ı	•		
		Gk	LF-1	pGr	25.00	25.00
		Qk.N	LF-2	pGr	12.00	12.00
	LILA-3	Treppe	l .			
		Gk	LF-1	pGr	25.00	25.00
		Qk.N	LF-2	pGr	12.00	12.00
	pGr: Gravitations	slast; positive Laster	n wirken senkrecht nac			

Einwirkungen

DIN EN 1990 Einwirkungen nach DIN EN 1990

S>:: ^	Beschreibung					
	Typisierung					
Gk	Eigenlasten					
	Ùœ^} åðt^ÁÒðj, ði\`}*^}					
Qk.N	Nutzlasten					
	Sæe^*[¦ã\ÁOEÁËÝ[@\ËÁ}åÁOE~^}c@ealo•¦ê`{^					

Auftrags-Nr.	Position	martens+puller
2023 300	D-3.2	ÙVPËÜPÄÄÛ¢4&\@ãį ÁÛ>å

Šærcê||^Á} åÁå^\^}ÁZ~[¦å}~}*Á~Áå^}ÁÒā, ā\~}*A) Šær cê∥^

LF-1 Gk

Qk.N LF-2, (PL-2)-1

Bemessung (GZT+GZG)

Biegung PI-As-erf-Iso Plattenbiegebemessung nach DIN EN 1992-1-1

Ó^{ ^••`} * Á>¦ÁÚ|ææc^ÁQÙcæ@à^d;} DÁÚŠËG PL-2

Beton C 30/37 Mat./Querschnitt

Õ^• c^ã,•\4¦} `} * ÁÛ `æ: ãc Betonstahl B 500MA

Dicke konstant h = 20.00 cm

*^{ êi ÁÖ OÞÁÖÞÁFJJ GËFËFÉÁVæà ÉÁ ÈF Expositionsklasse

> Position Seite ΚI Kommentar PL-2 XC3 { êi ãt ^ ÁØ^ ` &@^ oben Pê ~ ð Á å å \ Á ê } * ^ ¦ ^ ÁZ ^ ã Á WF feuchter Beton XC1 d[&\^} A\d^\A\ce\delta^\delta A\ce\delta \delta A\ce\delta A\c unten

WO Weitgehend trockener Beton

Seite: 3-81

Bewehrung Vorgaben zur Bewehrungsdefinition

Betondeckung 10 / 20 C_{min,u}/C_{min,o} mm &def,uD &def,o =10 / 15 mm 20 / $C_{nom,u}/C_{nom,o} =$ 35 mm Bewehrungsabstand $d'_{ru/su} =$ 30 / 30 mm $d'_{ro/so} =$ 30 / 30 mmBewehrungsrichtung $W_{ru/su} =$ 0.0 / 90.0 Wro/so = 0.0 / 90.0

Grundbewehrung Seite Tænc^ÉAÙcêà^ d'r d's a_{sg,r} a_{sg,s} <Ž,{&ÐŽ&{á [mm] ₽) á Ž۷ ₽) á [mm] Unten 3.35 30 3.35 30 Oben 30 3.35 30 3.35

<u>Nachweisparameter</u> nach DIN EN 1992-1-1

Tā, å^•cà^. ^@`} * ÁQ ÈDÈÈDÁ `¦å^Áà^!>& • 3&@ā cÈ

Tæi*^à^}å^ÁS[{àā}æaā[}^}Án æ&@ÁÖOD•ÁÖÞÁFJJ€ Kombinationen

> Ew Einwirkungsname

Lkn Lastkombinationsnummer

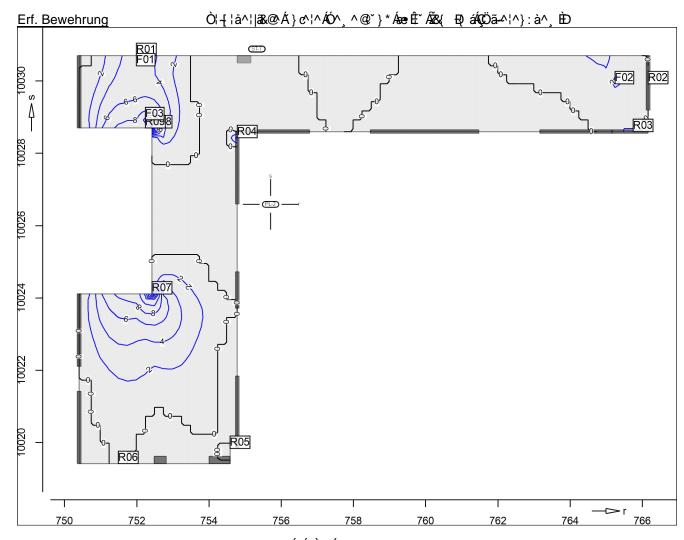
ç[| @ | | • & @ } å ^ Áç ^ | ê } å ^ | | **3**& @ Á Ò**3**, **3** \ ` } *

Öðl ÁÓ v ð ð ð * Á ð : ^|} ^ ¦ Á ð e cê|| Áð } ^ ; @ d Áeiner Einwirkung wird mit diesem

Ausgabeformat nicht dokumentiert.

Ew	Gk	Qk.N
Lkn	Grundkombination	
1-2	1.35	1.50 !

Seite: 3-82


2023 300

D-3.2

ÙVPËÜPÄÄÛ¢4&\@@ã ÁÛ>å

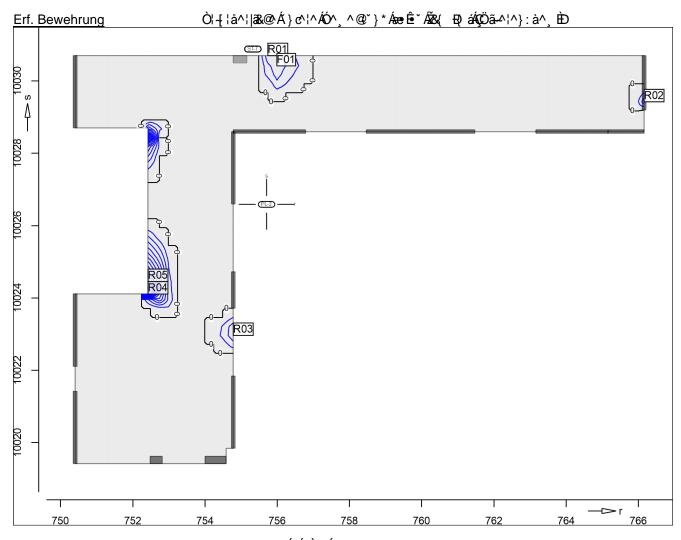
as,r,unten

Šê}*•à^¸^@`}*Á§ÁËÜæ&@č}*Á§Á}¢^!^!ÁŠæ*^

Q[|ã,ã^}•c~}ÁMÁGÈ€€Á&{ E?

Achsabstand erf. Bewehrung: $d'_{ru} = 30 \text{ mm}$ Achsabstand vorh. Bewehrung: $d'_{ru} = 30 \text{ mm}$ $\tilde{O}()^*$ $\tilde{a}()^*$ $\tilde{a}()^*$ $\tilde{a}()^*$ $\tilde{a}()^*$

Punkt	Х	У	$m_{r,Ed}$	$m_{s,Ed}$	$m_{rs,Ed}$	m_{Ed}	$\mathbf{a}_{s,ru}$	Lkn
		[m]				[kNm/m]	Ž&{ Ð()á	
F01	751.99	10030	56.19	-1.65	1.85	58.04	4.75	1
F02	765.24	10030	12.70	-4.04	27.93	40.63	2.03	2
F03	752.24	10029	87.07	-4.37	-6.71	93.78	10.58	1
R01	751.99	10031	55.79	0.42	1.89	57.69	4.69	1
R02	766.16	10030	0.00	-12.55	33.04	33.04	0.86	2
R03	765.74	10029	20.98	-8.50	20.96	41.94	2.23	2
R04	754.78	10028	13.57	-23.86	-45.70	59.27	4.94	1
R05	754.58	10020	19.02	10.99	15.09	34.10	1.02	1
R06	751.49	10019	15.90	0.10	-11.98	27.88	0.09	1
R07	752.42	10024	106.63	15.41	43.47	150.10	20.85	1
R08	752.42	10029	103.16	-6.08	-40.58	143.75	19.60	1
R09	752.24	10029	82.17	1.04	-3.55	85.71	9.23	1



2023 300 D-3.2 ÙVPËJPĀĀÚd& @ ą ÁÚ>å

Seite: 3-83

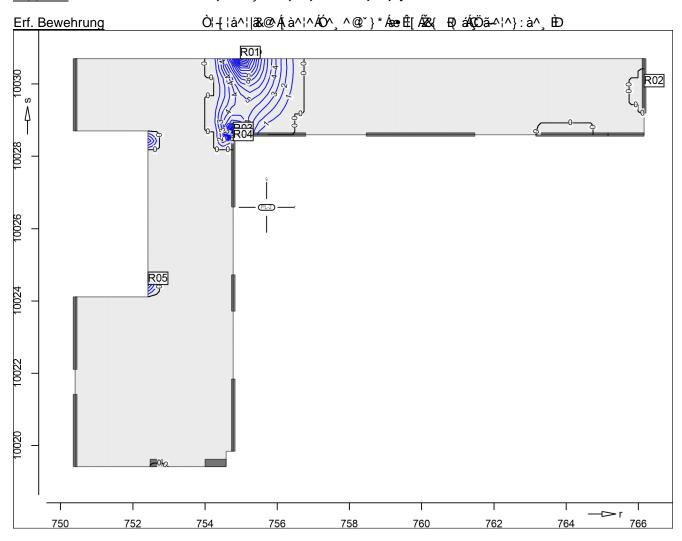
as,s,unten

Šê}*•à^¸^@*}*Á§ÁÉÜæ&@*}*Á§Á`}♂\^\ÁŠæ*^

Q[|ã,ã^}•c~}ÁMÁ€ÌÈHÉÁ&{ E?

Achsabstand erf. Bewehrung: $d'_{su} = 30 \text{ mm}$ Achsabstand vorh. Bewehrung: $d'_{su} = 30 \text{ mm}$ $\tilde{O}()^* \hat{a}_s \hat{a}_s \hat{a}_s \hat{a}_s \hat{b}_s \hat{$

Punkt	Х	у	$m_{r,Ed}$	$m_{s,Ed}$	$m_{\text{rs},\text{Ed}}$	m _{Ed}	a _{s,su}	Lkn
		[m]				[kNm/m]	Z&{ Ð()á	
F01	755.99	10030	-21.74	2.37	-30.16	32.52	0.78	1
R01	755.74	10031	-32.92	0.74	-32.55	32.92	0.84	1
R02	766.16	10029	0.08	3.80	28.92	32.72	0.81	2
R03	754.78	10023	0.07	18.17	14.58	32.75	0.81	1
R04	752.42	10024	106.63	15.41	43.47	58.88	4.88	1
R05	752.42	10024	-17.82	24.00	38.17	62.18	5.40	1



2023 300 D-3.2

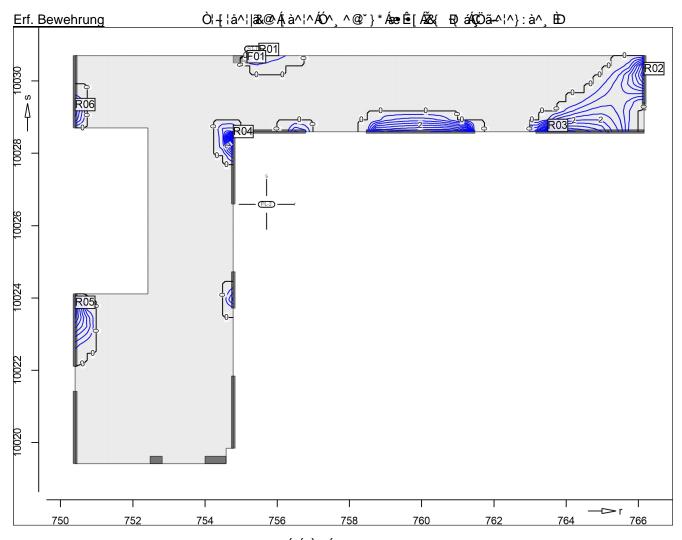
Seite: 3-84

as,r,oben

Šê}*•à^¸^@`}*ÁŞÁËÜæ&@`}*ÁŞÁ;à^\à\\åŠæ*^

Q[|ã,ã^}•c~}ÁMÁFÈ€€Á&{ E?

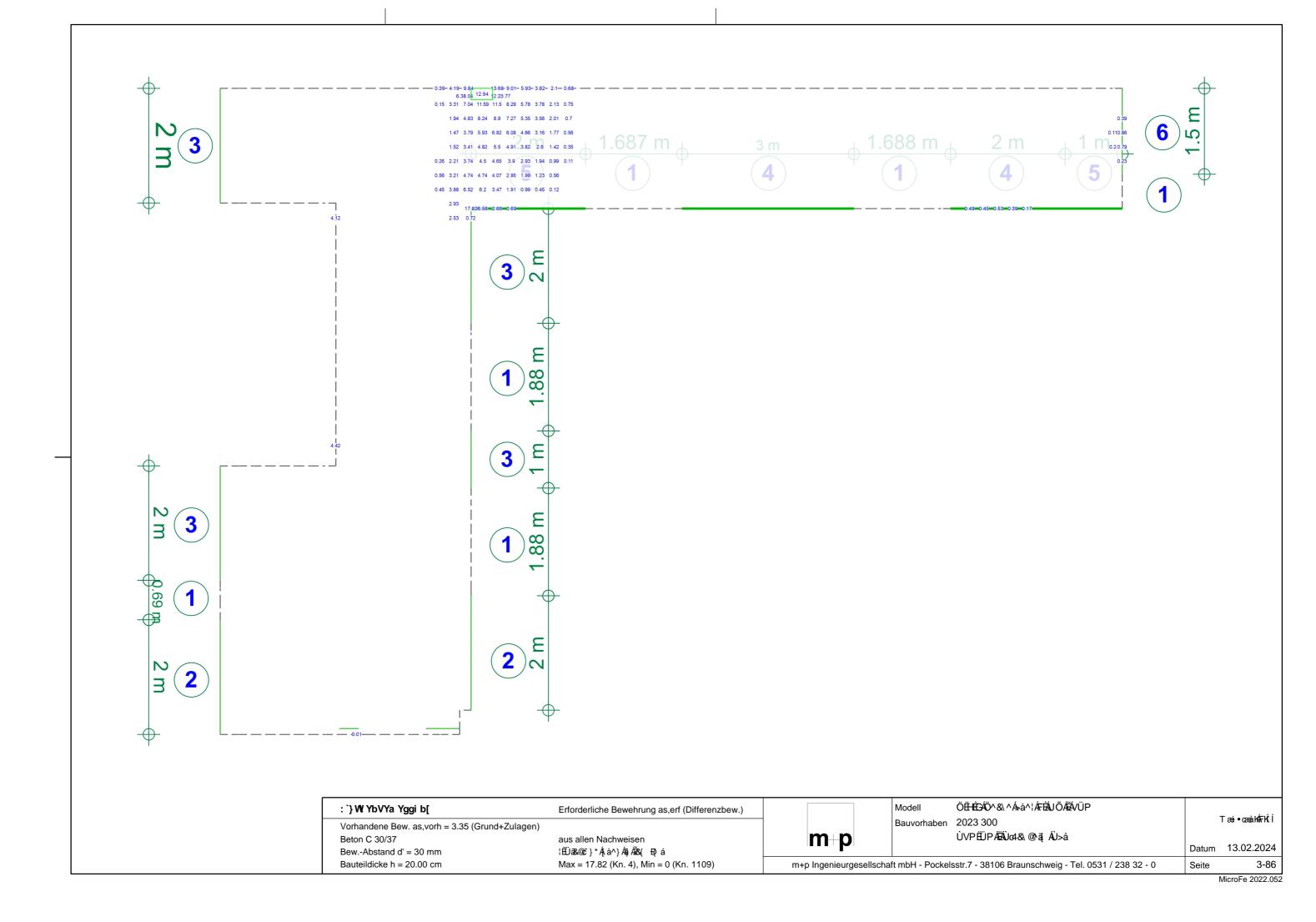
Achsabstand erf. Bewehrung: $d'_{ro} = 30 \text{ mm}$ Achsabstand vorh. Bewehrung: $d'_{ro} = 30 \text{ mm}$ $\tilde{O}()^*$ \tilde{a} \tilde{a} \tilde{A} \tilde{A} \tilde{A} \tilde{A} \tilde{A}

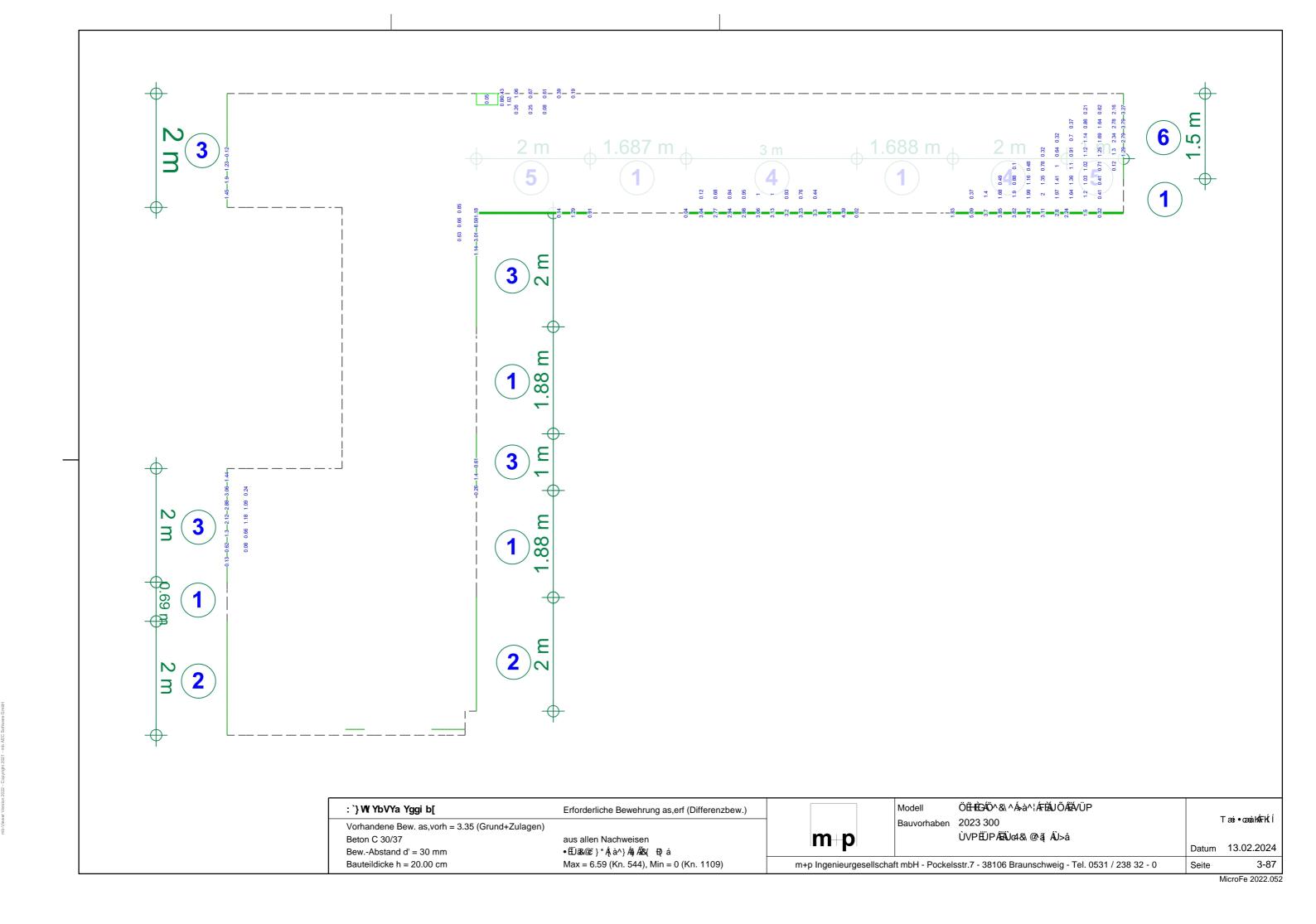

Punkt	Х	у [m]	$m_{r,\text{Ed}}$	$m_{s,Ed}$	$m_{rs,Ed}$	m _{Ed} [kNm/m]	a _{s,ro} Ž&√ Ðoá	Lkn
OT 7		[m]	400.40	44.57	44.04		<u> </u>	
ST-7			-108.12	-11.57	-11.94	-120.06	15.16	1
R01	754.98	10031	-117.14	-0.36	-11.91	-129.05	16.80	1
R02	766.16	10030	0.00	-12.55	33.04	-33.04	0.86	2
R03	754.78	10029	-99.98	-0.63	-34.51	-134.49	17.82	1
R04	754.78	10028	13.57	-23.86	-45.70	-32.13	0.72	1
R05	752.42	10024	-17.82	24.00	38.17	-56.00	4.42	1

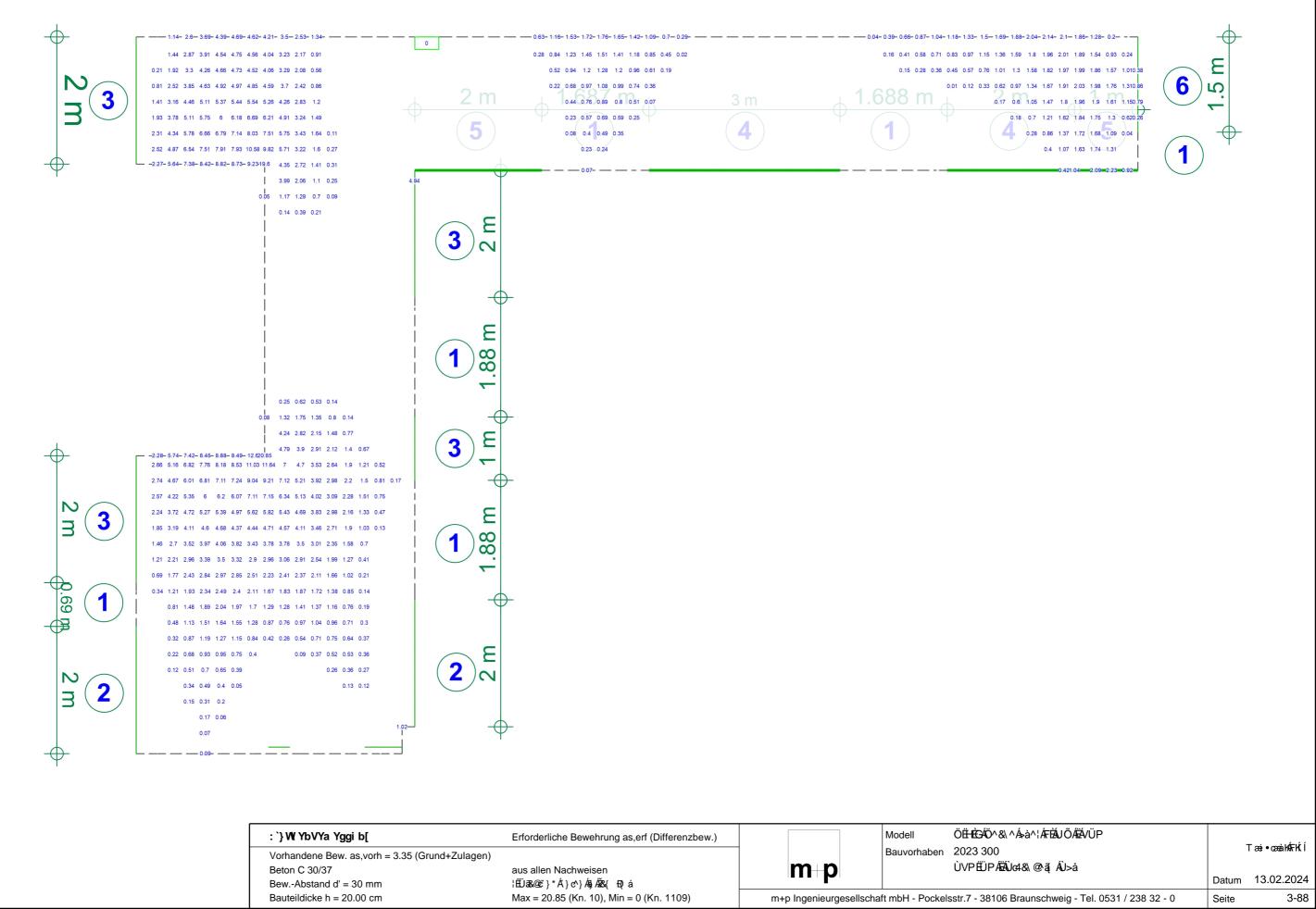
Seite: 3-85

2023 300 D-3.2 ÙVPËÜPĀÄŪc4&\@ā, ÂŪ>å

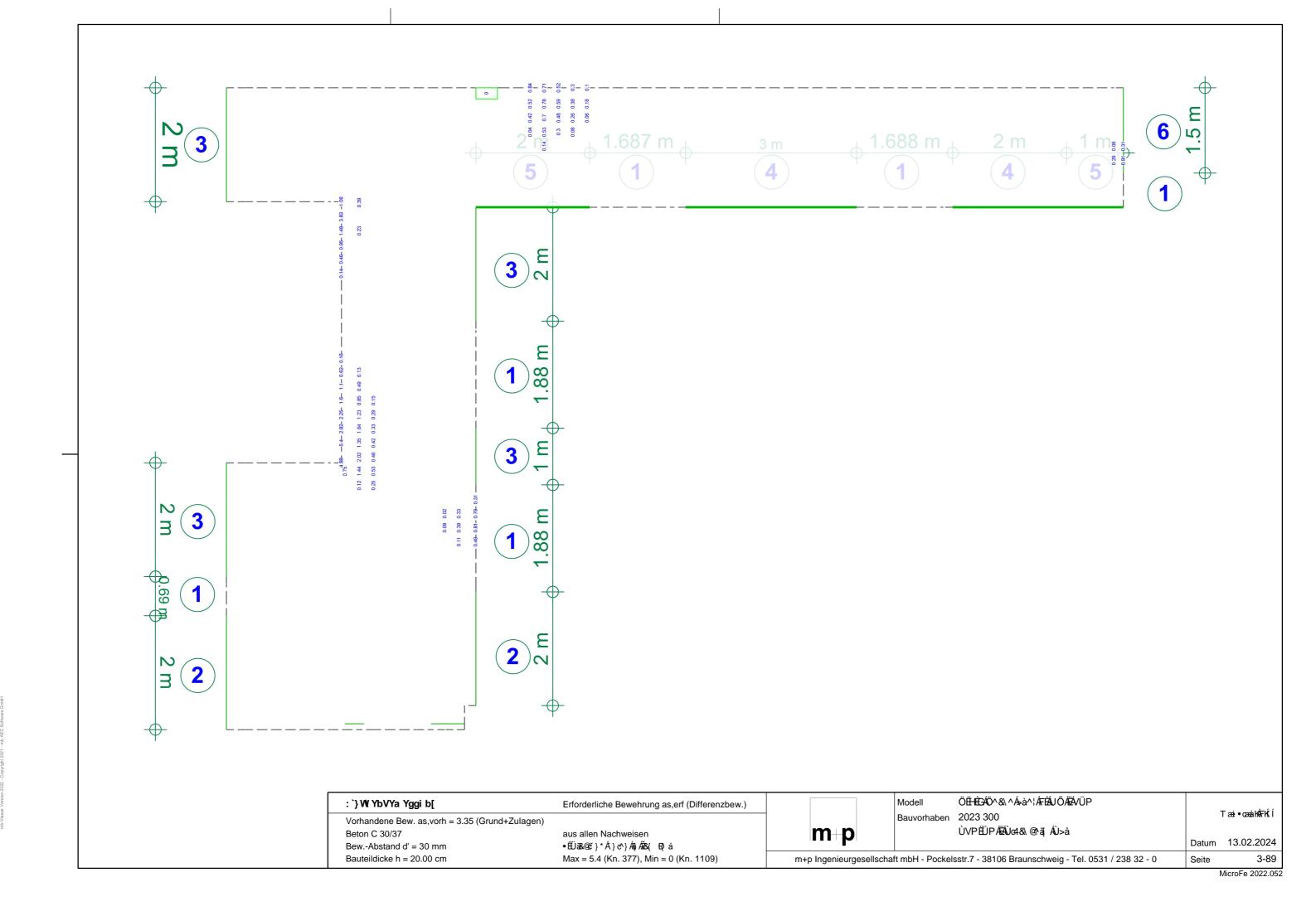
as,s,oben


Šê}*•à^¸^@`}*Á§Á;ËÜæ&@č}*Á§Á;à^¦^¦ÆŠæ*^




Q[|ã,ã^}•č.~\}ÁMÁ€ÈÈ€Á&{ E?

Achsabstand erf. Bewehrung: $d'_{so} = 30$ mm Achsabstand vorh. Bewehrung: $d'_{so} = 30$ mm $\tilde{O}()^*$ \tilde{a} \tilde


Punkt	X	У	$m_{r,Ed}$	$m_{s,Ed}$	$m_{rs,Ed}$	m_{Ed}	$a_{s,so}$	Lkn
		[m]				[kNm/m]	Ž&{ Ð()á	
F01	755.16	10030	-86.78	-5.29	-23.74	-29.03	0.26	1
R01	755.49	10031	-51.06	-1.02	-33.34	-34.36	1.06	1
R02	766.16	10030	-0.04	-22.08	29.87	-51.95	3.79	2
R03	763.49	10029	-11.99	-41.60	18.60	-60.20	5.09	2
R04	754.78	10028	13.57	-23.86	-45.70	-69.55	6.59	1
R05	750.40	10024	0.15	-27.65	-19.62	-47.27	3.06	1
R06	750.40	10029	0.13	-23.15	16.70	-39.85	1.90	1

MicroFe 2022.052

Auftrags-Nr. Position martens+puller Ingenieurgesellschaft mbH

2023 300 D-3.2 ÜVPEÜPÄÄÜd& @ ¾ ÁÜ>å

Seite: 3-90

Querkraft Pl-As-Iso

Querkraftbemessung Plattenbereiche

PL-2

Querkraftbemessung der Platte (Isolinien)

Querkraftbemessung nach DIN EN 1992-1-1

Beton C 30/37, Betonstahl B 500SA

Õ^• c^ā,•\4¦} `} * ÁÛ `æ: ãc

Druckstrebenneigung wurde vom Programm optimiert.

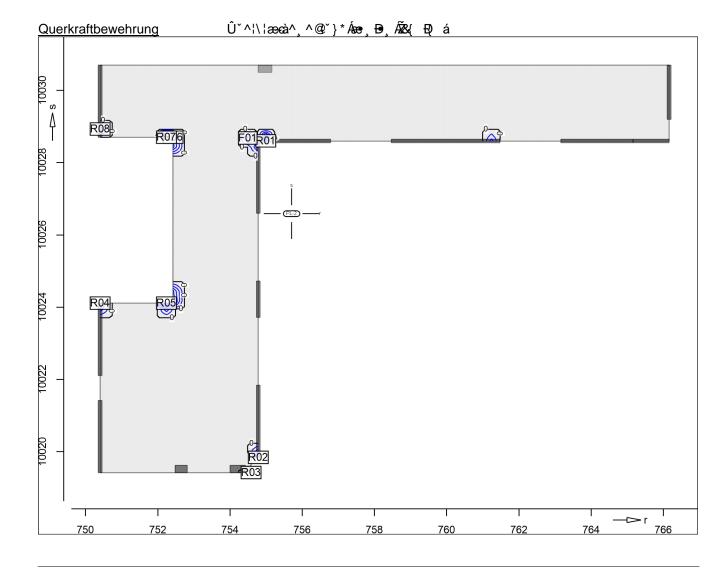
Mindestbewehrung (9.3.2) wurde nicht ermittelt.

Dicke konstant h = 20.00 cm

Kombinationen

Tæi*^à^}å^ÁS[{àãjæaãj}^}Ájæ&@ÁÖOÞÁÖÞÁFJJ€

Ew Einwirkungsname


Lkn Lastkombinationsnummer

ç[¦@\¦•&@\}å^Áç^\ê}å^\|&&@\AÔaj¸ã\`}*

Öâ^ÁÓ^¢^āfāt `} * Á^ā; : ^|} ^! Ášæ cê||^Áa; } ^! @da Áeiner Einwirkung wird mit diesem

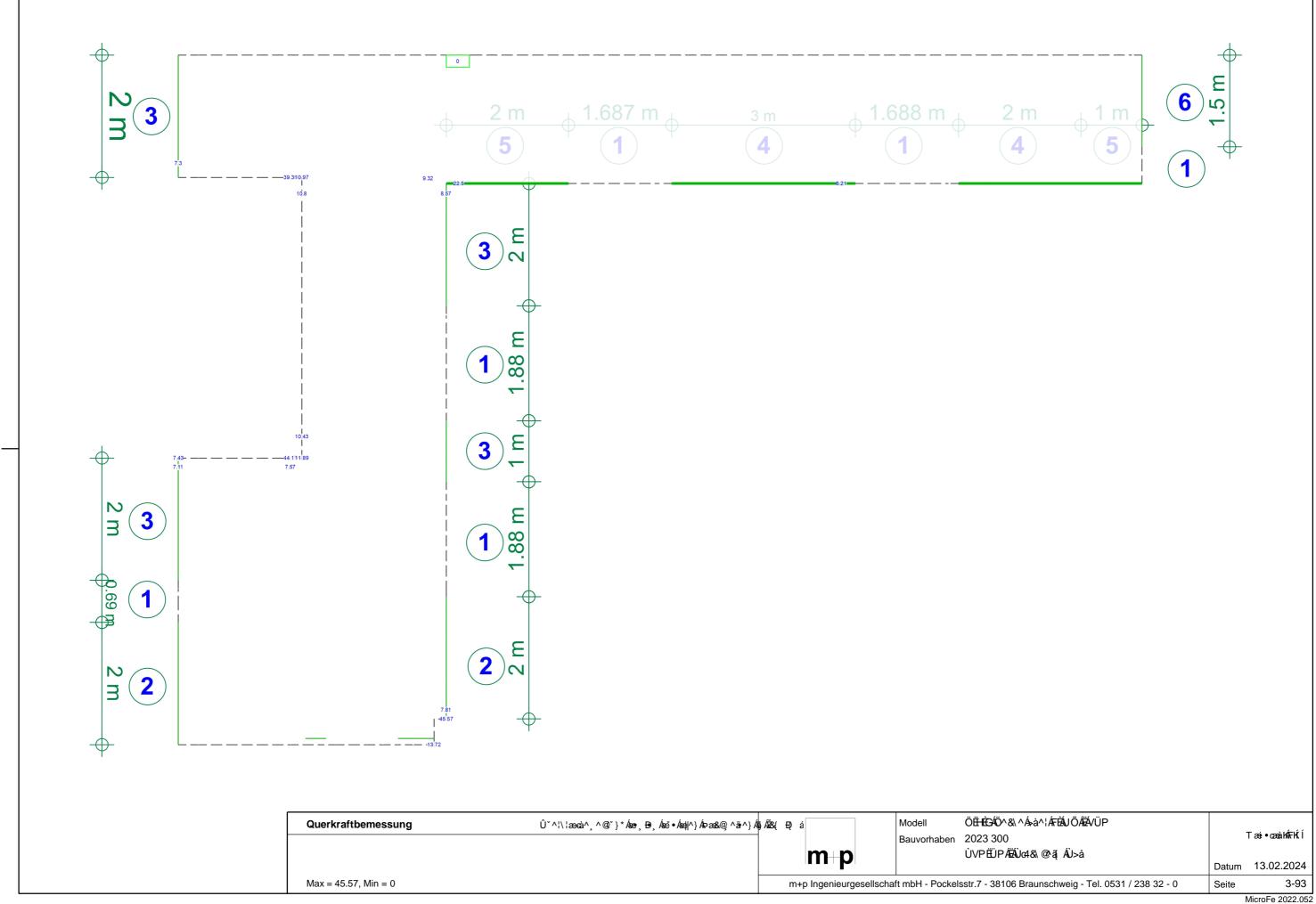
Ausgabeformat nicht dokumentiert.

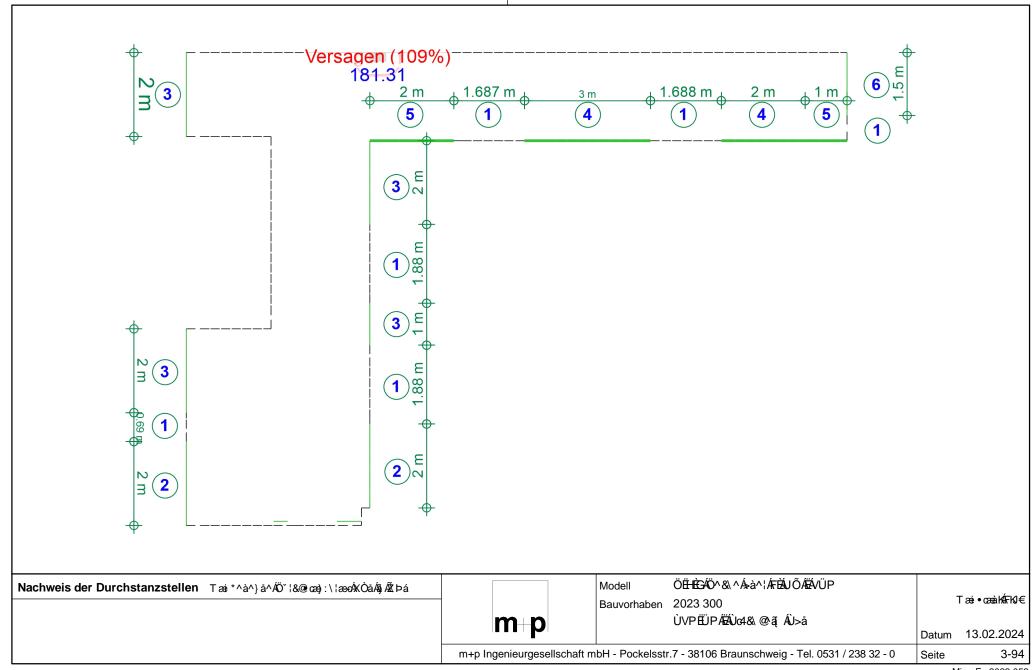
Ew	Gk	Qk.N
Lkn	Grundkombination	
1-2	1.35	1.50 !

2023 300 D-3.2 Seite: 3-91

Q [| | 3 a 2 } • č - ^ } ÁMÁCHĚ €Á&{ EQ

Punkt	X	У		vEd	vEd,res	vRd,c	vRd,max	asw/sw	Summe	Lkn
		[m]					[kN/m]		Ž&{ Ð; á	
F01	754.49	10029	r	-127.7	127.7	92.2 m	401.6	9.32	9.32	1
			s	-3.0		92.2 m	401.6	0.00		
R01	754.99	10029	r	208.5	232.4	92.2 m	616.5	16.45	22.50	1
			s	102.5		92.2 m	497.3	6.04		
R02	754.78	10020	r	-241.1	292.2	92.2 m	572.1	29.71	45.57	1
			s	165.2		92.2 m	492.2	15.86		
R03	754.58	10019	r	-27.3	155.9	92.2 m	401.6	0.00	13.72	1
			s	153.5		92.2 m	468.4	13.72		
R04	750.40	10024	r	78.1	128.2	92.2 m	401.6	0.00	7.43	1
			s	101.7		92.2 m	401.6	7.43		
R05	752.24	10024	r	320.3	322.1	103.4	603.6	44.17	44.17	1
			s	-34.4		92.2 m	401.6	0.00		
R06	752.42	10029	r	138.4	139.0	116.8	428.4	10.97	10.97	2
			s	-13.4		92.2 m	401.6	0.00		
R07	752.24	10029	r	251.8	273.1	95.6	578.1	31.67	39.39	1
			s	-105.7		92.2 m	401.6	7.72		
R08	750.40	10029	r	100.0	105.7	92.2 m	401.6	7.30	7.30	1
			s	-34.1		92.2 m	497.3	0.00		
m: Tãå^∙	•c, ^¦oÁ,æ&@AÖOD•AÒ)ÞÁFJJŒFËFÉÁC	DIÈC ÈCE	àDÁ (æi*^à^}å						


Max = 322.12, Min = 0, Step = 50

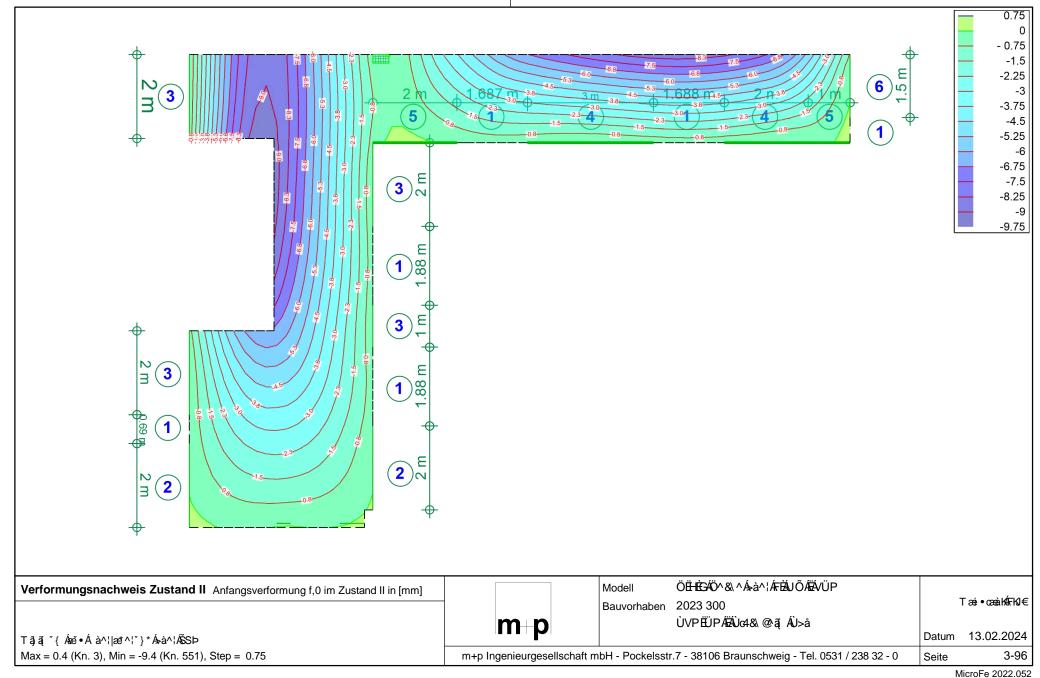

MicroFe 2022.052

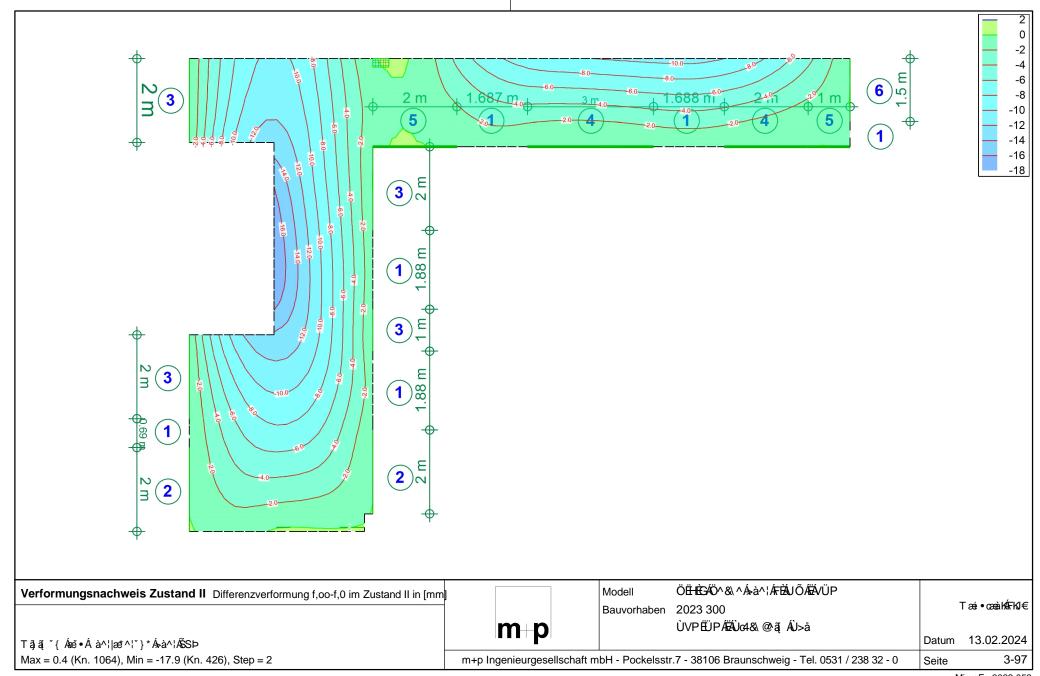
3-92

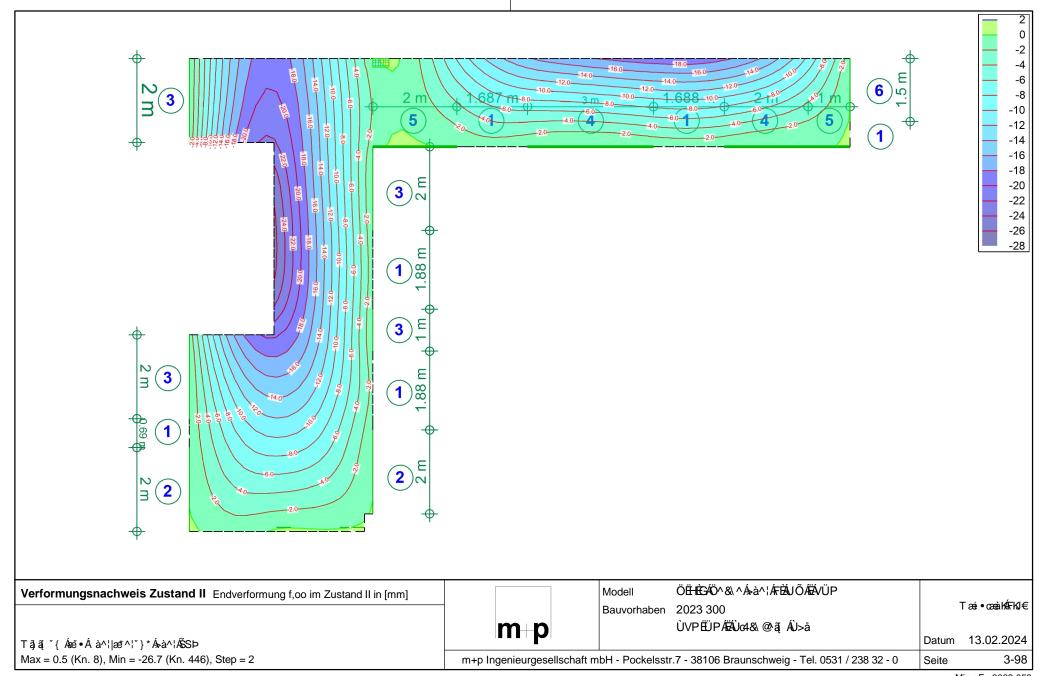
Datum 13.02.2024

m+p Ingenieurgesellschaft mbH - Pockelsstr.7 - 38106 Braunschweig - Tel. 0531 / 238 32 - 0

Auftrags-Nr. Position




Seite: 3-95


2023 300

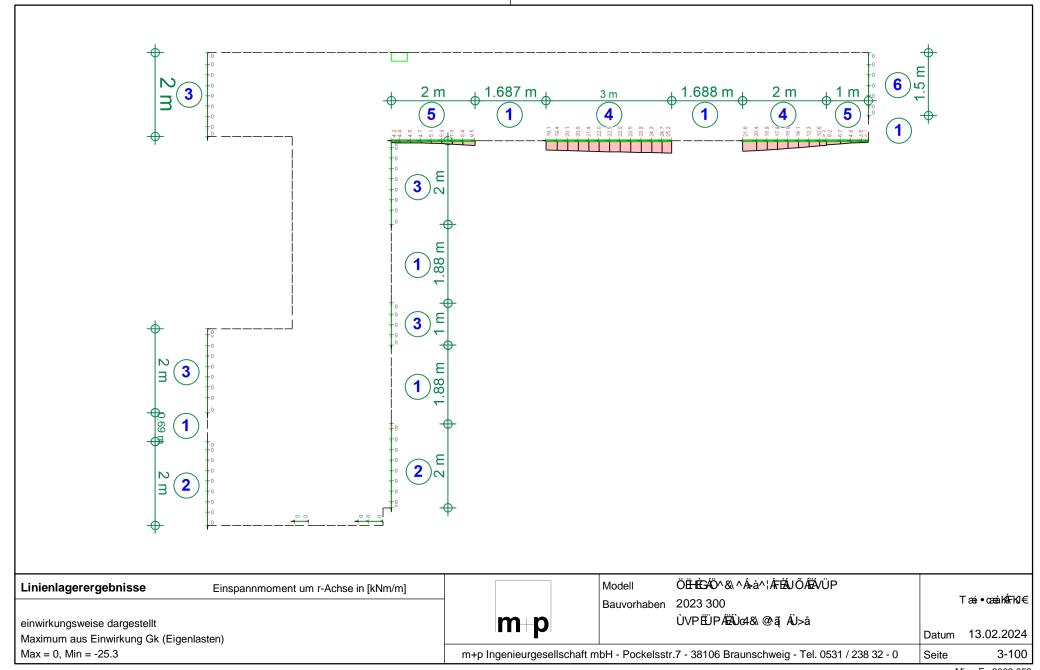
D-3.2

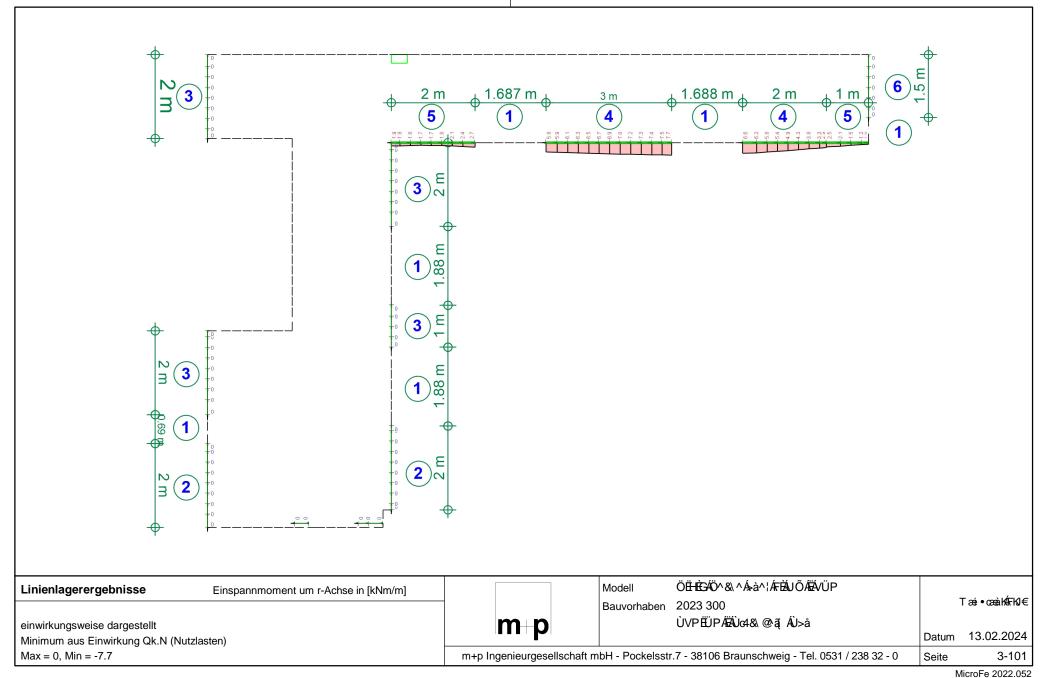
Nachweise (GZG)

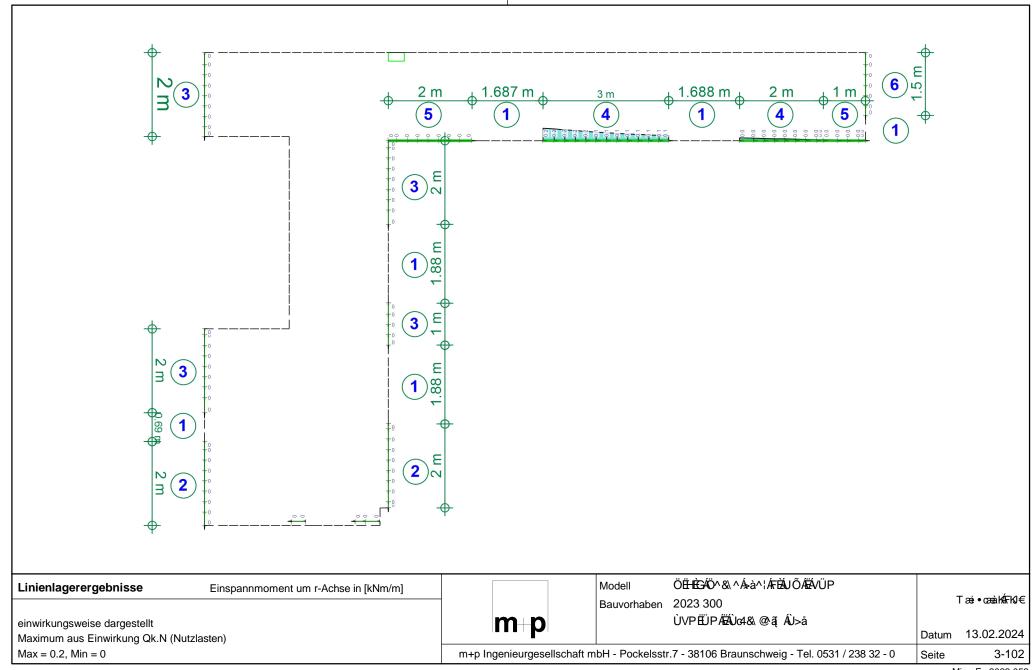
Auftrags-Nr. Position

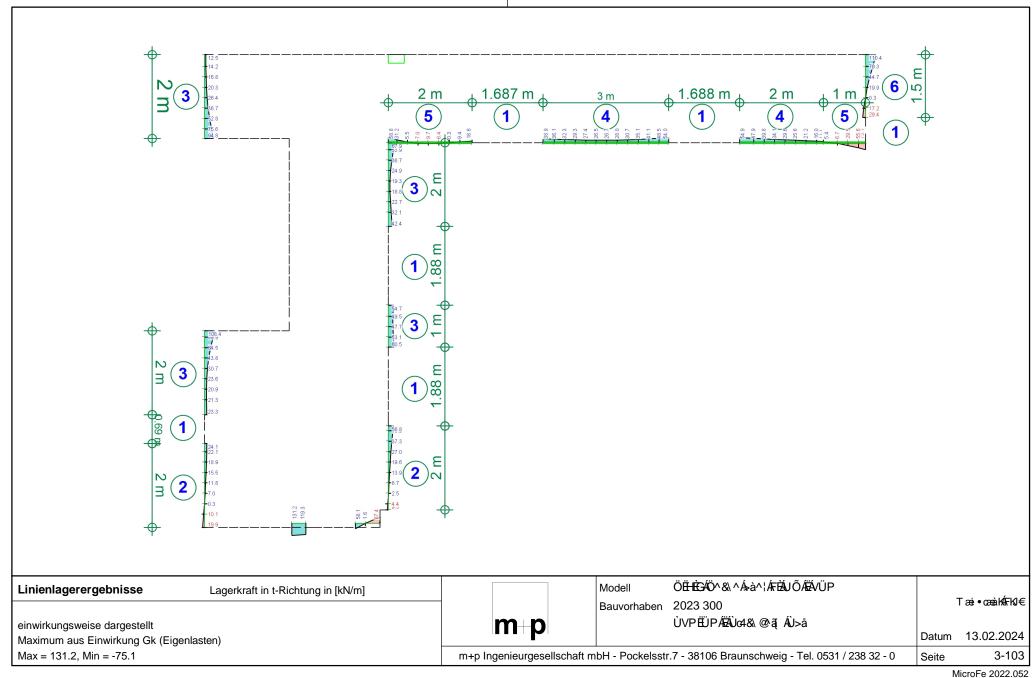
martens+puller
Ingenieurgesellschaft mbH

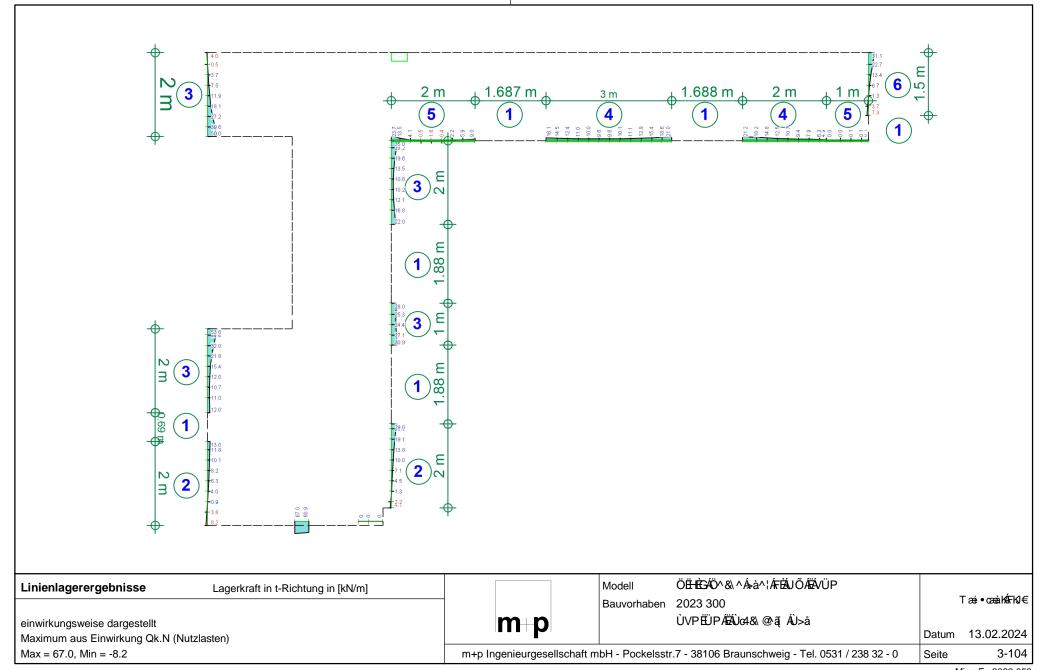
ÙVPËJPÄÄJC4&\@{\(\) @{\(\) \

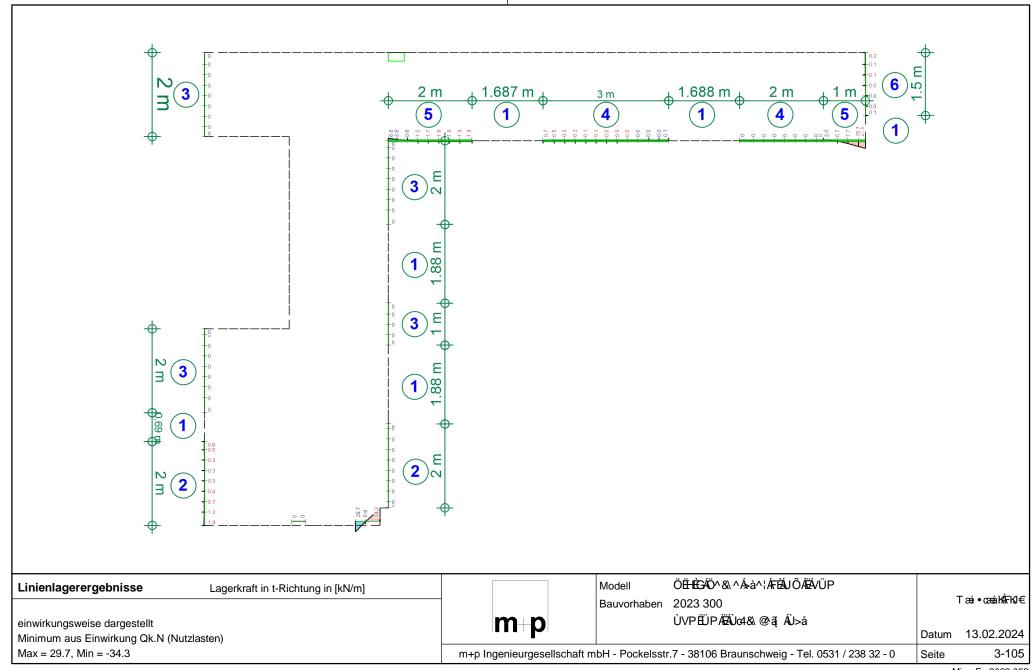

Seite: 3-99

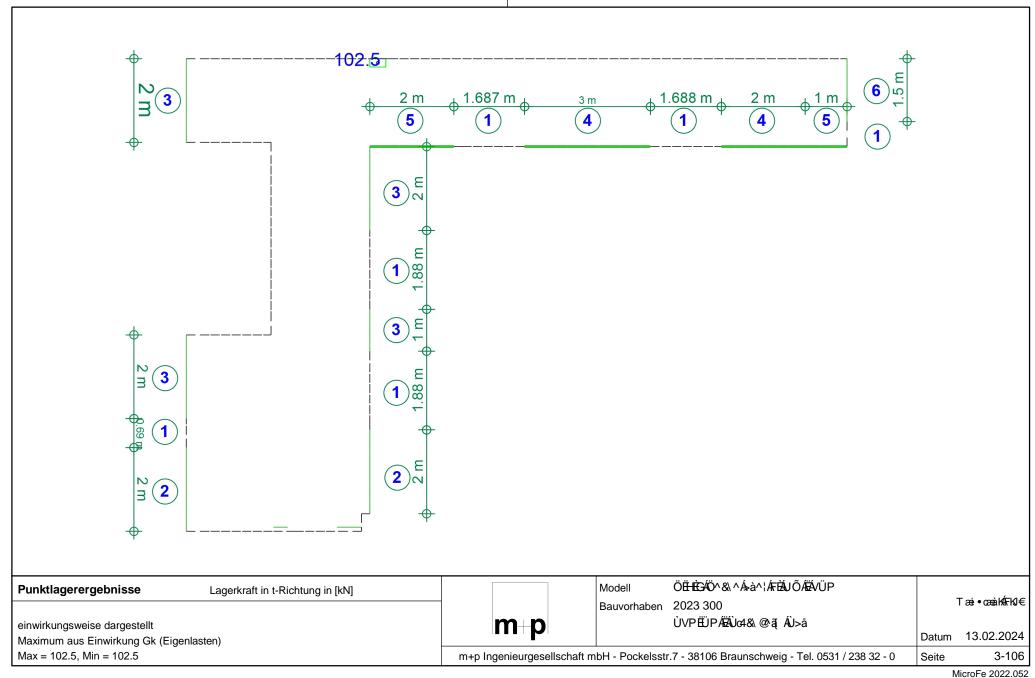

2023 300

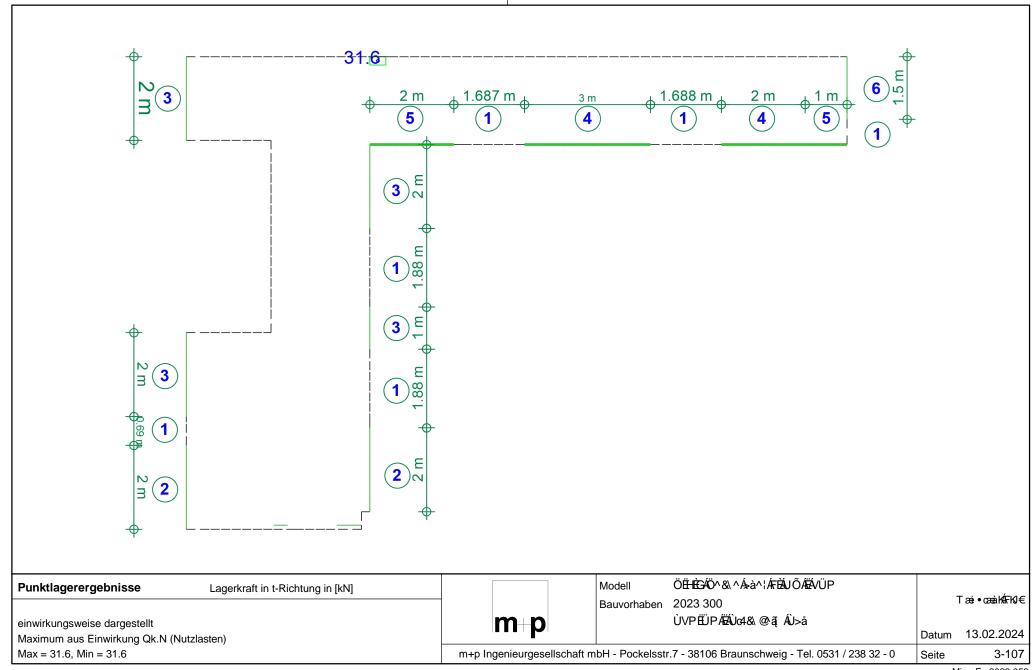

D-3.2


5 i ZU[Yf_f} ZhY


Priewel version zozz - copyright zoz I - IIID AEC Software Griddin







ÙVPËJPÆÄJC4& @ã ÁJ>å

2023 300

D-3.2

Thermische Trennung Deckenplatte

(1) Kein thermisches Trennelement

oder

Isokorb XT Typ Z-R0-X120-H200-5.0 o.glw. (>bertrêgt keine Krêfte)

eq = 0.056 W/mK

(2) Isokorb XT Typ Q-VV8-REI120-X120-H200-6.0 o.glw.

Beanspruchung $g_{k,max} = 56.8 \text{ kN/m}$ $g_{k,min} = -19,9 \text{ kN/m}$

 $q_{k,max} = 29,0 \text{ kN/m}$ $q_{k,min} = -4.7 \text{ kN/m}$

V_{ed,max} MÁFÍÉH ÁÁÍ Î É Á ÞÐ ÁÉÁFÉ ÁÁGJÉEÁ ÞÐ ÁMÁI 20,2 kN/m

 $V_{ed,min} MAFÊHÍ ÁÁGFJÊJÁ ÞÐ DÁÉÁFÉÍ ÁÁG4,7 kN/m) = -33,9 kN/m$

Keine Biegebeanspruchung.

Y ê|{ ^åê{ { ^|^{ ^}} c Isokorb XT Typ Q-VV8-REI120-X120-H200-6.0 o.glw.

Betonfestigkeit C30/37

eq = 0,150 W/mK

 $V_{Rd} = +/- 137,1 \text{ kN/m}$

Nachweis $V_{ed} = 120,2 \text{ kN/m} < 137,1 \text{ kN/m} = V_{Rd}$

Elemente Ò∄: ^|^|^{ ^} dê} * ^ÁFÊ€€Á

(3) Isokorb XT Typ Q-V11-REI120-X120-H200-6.0 o.glw.

Beanspruchung $g_{k,max} = 108,2 \text{ kN/m}$

 $q_{k,max} = 53,5 \text{ kN/m}$

V_{ed,max} MÁFÊHÍ ÁÁF€Ì ÉCÁ ÞÐ ÆÁFÉÍ ÁÁÍ HÉÍ Á ÞÐ ÁMÁ226,2 kN/m

Keine Biegebeanspruchung.

Y ê|{ ^åê{ { ^|^{{ ^}}} c Isokorb XT Typ Q-V11-REI120-X120-H200-6.0 o.glw.

Betonfestigkeit C30/37

eq = 0.187 W/mK

 $V_{Rd} = 252,1 \text{ kN/m}$

Nachweis $V_{ed} = 226,2 \text{ kN/m} < 252,1 \text{ kN/m} = V_{Rd}$

Elemente Òa; ^|^|^{ ^} dê} * ^ ÁFÊ€€Á;

Position Auftrags-Nr. ÙVPËJPÆÄJc4& @ã ÁJ>å 2023 300 D-3.2

(4) Isokorb XT Typ K-M9-V2-REI120-X120-H200-6.0 o.glw.

Beanspruchung $g_{k,max} = 54,7 \text{ kN/m}$

 $q_{k,max} = 21,2 \text{ kN/m}$

 $m_{gk,max} = -25,6 \text{ kNm}$ $m_{qk,max} = -7.8 \text{ kNm}$

V_{ed,max} MÁFÍÉH ÁÁÍ I ÉÍ Á ÞÐ ÆÁFÍÉ ÁÁÐFÍÐÁ ÞÐ ÁMÁI 05,6 kN/m

 $M_{ed} M \hat{A} = M \hat$

Y ê|{ ^åê{ { ^|^{ ^}} c Isokorb XT Typ K-M9-V2-REI120-X120-H200-6.0 o.glw.

Betonfestigkeit C30/37

eq = 0.238 W/mK

 $V_{Rd} = 125,4 \text{ kN/m}$

 $M_{Rd} = -69,3 \text{ kN/m}$

Nachweise $V_{ed} = 105,6 \text{ kN/m} < 125,4 \text{ kN/m} = V_{Rd}$

 $M_{ed} = -46,3 \text{ kN/m} < -69,3 \text{ kN/m} = M_{Rd}$

Òa: ^|^|^{ ^} dê} * ^ÁFÊ€€Á Elemente

(5) Isokorb XT Typ D-MM3-VV4-REI120-X120-H200-6.0 o.glw.

Beanspruchung $g_{k,max} = 59,0 \text{ kN/m}$ $g_{k,min} = -75,6 \text{ kN/m}$

 $q_{k,max} = 23,7 \text{ kN/m}$ $q_{k,min} = -21.8 \text{ kN/m}$

 $m_{qk,max} = -10,6 \text{ kNm}$ $m_{qk,max} = -3.2 \text{ kNm}$

V_{ed.max} MÁFÍÈH ÁÁ JÊ€Á ÞÐ ÆÁFÍË ÁÁÐHĒ Á ÞÐ ÁMÁ 15,2 kN/m $V_{ed.min} MAFÊHÍ ÁÁGÏÍ Í ÂÍ Á ÞÐ DÆÁFÃÍ ÁÁG21,8 kN/m) = -134,8 kN/m$

M_{ed} MÁFÍÈÁ ÁÁÇF€ÍĒ Á ÞÐ DÁÉÁFÍĒ ÁÁÇ3,2 kN/m) = -19,1 kNm

Y ê|{ ^åê{ { ^|^{ ^}} c Isokorb XT Typ D-MM3-VV4-REI120-X120-H200-6.0 o.glw.

Betonfestigkeit C30/37

eq = 0.230 W/mK

 $V_{Rd} = +/- 156,6 \text{ kN/m}$

 $M_{Rd} = -34,6 \text{ kN/m}$

Nachweise $V_{ed} = -134.8 \text{ kN/m} < -156.6 \text{ kN/m} = V_{Rd}$

Auftrags-Nr.	Position	martens+puller
2023 300	D-3.2	 ÙVPËÜPÆÄJG4&\@ã ÁÛ>å

 $M_{ed} = -19,1 \text{ kN/m} < -34,6 \text{ kN/m} = M_{Rd}$

Òā: ^|^|^{ ^} dê} * ^ÁFÊ€€Á Elemente

(6) Isokorb XT Typ Q-VV10-REI120-X120-H200-6.0 o.glw.

 $g_{k,max} = 111,0 \text{ kN/m}$ $g_{k,min}$ = -29,7 kN/m Beanspruchung

 $q_{k,max} = 31,3 \text{ kN/m}$ $q_{k,min} = -7.4 \text{ kN/m}$

V_{ed,max} MÁFÉH ÁÁFFFÆÁÞÐ ÆÁFÉ ÁÁGJÉ ÁÞÐ ÁMÁ194,4 kN/m

Keine Biegebeanspruchung.

Y ê|{ ^åê{ { ^|^{{ ^}}} c Isokorb XT Typ Q-VV10-REI120-X120-H200-6.0 o.glw.

Betonfestigkeit C30/37

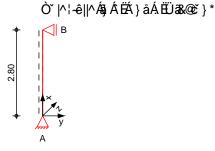
eq = 0.207 W/mK

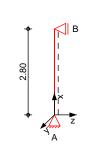
 $V_{Rd} = +/- 225,7 \text{ kN/m}$

Nachweis $V_{ed} = 194,4 \text{ kN/m} < 225,7 \text{ kN/m} = V_{Rd}$

Elemente Òā: ^|^|^{ ^} dê} * ^ÁFÊ€€Á

2023 300

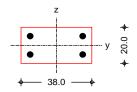

ST-3.1


ÙVPËÜPÆÄÛ¢4&\@^ãį ÁÛ>å

Pos. ST-3.1

GhV"!Ghi mY

System M 1:120


Abmessungen Mat./Querschnitt

Geschoss	1	Material	b _y /b _z
	[m]		[cm]
1. OG	2.80	C 25/30	38/20

Auflager

Lager	X	$K_{T,z}$	$K_{R,y}$	$K_{T,y}$	$K_{R,z}$
_	[m]	[kN/m]	[kNm/rad]	[kN/m]	[kNm/rad]
В	2.80	fest	frei	fest	frei
Α	0.00	fest	frei	fest	frei

M 1:20

Abschnitt 1

Einwirkungen

Einwirkungen nach DIN EN 1990:2010-12

Gk

Eigenlasten

Qk.N

ٜ; åð ^ÁÒð; ð\`}*^}

Nutzlasten

Sang^*[| að ÁOÐÁÖÁY [@ HÁ } å ÁOÐ -^ } c@andror | ê ~ { ^

fw

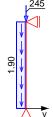
Seite: 3-111

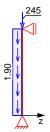
Ò¦|ê ° c^| ° } * ^}

Lastansatz ung>nstig (fw)

angesetzt.

Belastungen


Belastungen auf das System


Grafik

Belastungsgrafiken (einwirkungsbezogen)

Einwirkungen

Auftrags-Nr.	Position	martens+puller Ingenieurgesellschaft mbH
2023 300	ST-3.1	ÙVPËÜPÄÄÜd&\@`ã, ÁÛ>å

Streckenlasten in x-Richtung	Ges.	Komm.	a [m]	s [m]	q _u [kN/m]		q₀ [kN/m]
Einw. <i>Gk</i>	1. OG	Eigengew	0.00	2.80			1.90
<u>Punktlasten</u>	Einzellaste	en					
in x-Richtung	Ges.	Komm.	a		F_x	e_y	ez
			[m]		[kN]	[cm]	[cm]
Einw. <i>Gk</i>	1. OG		2.80		245.00	0.0	0.0
Einw. Qk.N	1. OG		2.80		70.00	0.0	0.0

<u>Imperfektionen</u>

Grafik

Figur 7 wz[cm]

Figur 11 w_z[cm]

Seite: 3-112

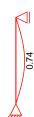


Tabelle Figur 7

1. OG

Figur 11

1. OG

Х	Wyu	\mathbf{W}_{Zu}	Wyk	W_{zk}
[m]	[cm]	[cm]	[cm]	[cm]
2.80	0.00	0.00	0.00	0.00
1.40	0.00	0.70 *	0.00	0.05 *
0.00	0.00 *	0.00 *	0.00 *	0.00 *
X	Wyu	$\mathbf{W}_{\mathbf{Z}\mathbf{u}}$	Wyk	W_{zk}
[m]	[cm]	[cm]	[cm]	[cm]
2.80	0.00	0.00	0.00	0.00
1.70	0.00	0.49 *	0.00	0.00
1.40	0.00	0.45	0.00	0.00
0.00	0.00 *	0.00 *	0.00 *	0.00 *

Ungewollte Ausmitte affin zur Biegelinie bzw. affin zur Knickfigur bei Kombinationen ohne] |æ} { êi ð ^ÁX^|-{|{ `} * Á^}\|^&@Á`|ÂUcc^} æ&@^È

1 tollion lation of	55] pag (5. a.	''' ' [' ['] ' '] ' ' '	cace in the care in the	
Figur	Richtung		X	 e i
[-]	[-]	[-]	[m]	[cm]
7	Z	1.00	1.38	0.70
11	7	0.69	1 67	0.49

Kombinationen

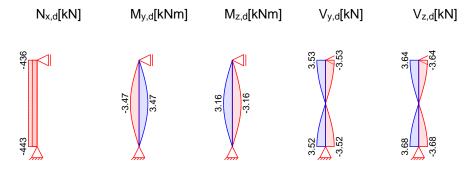
Kombinationsbildung nach DIN EN 1990 Darstellung der mai gebenden Kombinationen

•œ} åð Ð[¦>à^¦* È Brand

(* <u>*</u>EW) 7 7 1.35*Gk +1.50*Qk.N 19 1.00*Gk +0.30*Qk.N 11

Ó^{ \(\vec{\textbf{E}}\) &@ \(\vec{a}\) \ nach Th. II. Ordnung

nichtlineare Berechnung nach Th. II. Ordnung

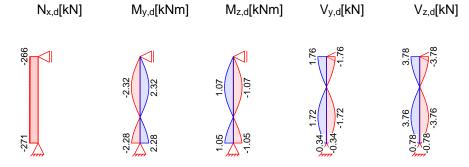

<u>Grafik</u>

Nicht-Linear

Ù&@ ãct | 4i ^} ÁÇN{ @-||^} å^D

2023 300 ST-3.1 ÙVPËÜPĀĀŪd& @ ą ÁÛ>å

<u>Tabelle</u> Ù&@ ãc⁺¦4i ^} ÁÇW{ ⊗||^} å^D


	X	$N_{x,d,min}$	Ek	$M_{y,d,min}$	Ek	$V_{z,d,min}$	Ek
		$N_{x,d,max}$		$M_{y,d,max}$		$V_{z,d,max}$	
	[m]	[kN]		[kNm]		[kN]	
1. OG	2.80	-435.75	5	0.00	1	-3.64	7
		-245.00	9	0.00	1	3.64	8
	1.40	-439.34	5	-3.47	8	-0.02	7
		-247.66	9	3.47	7	0.02	8
	0.00	-442.93	5	0.00	1	-3.68	8
		-250.32	9	0.00	1	3.68	7

	Х	$M_{z,d,min}$	Ek	$M_{z,d,max}$	Ek	$V_{y,d,min}$	Ek	$V_{y,d,max}$	Ek
	[m]	[kNm]		[kNm]		[kN]		[kN]	
1. OG	2.80	0.00	1	0.00	1	-3.53	5	3.53	6
	1.40	-3.16	5	3.16	6	-0.02	5	0.02	6
	0.00	0.00	1	0.00	1	-3.52	6	3.52	5

Brandfall Nicht-Linear

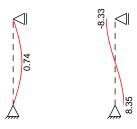
nichtlineare Berechnung nach Th. II. Ordnung

<u>Grafik</u> Ù&@ ãc⁺¦4i ^} ÁÇV{ @-||^} å^D

Tabelle

Ù&@ ãct 4i ^} ÁQW @||^} å^D

	X	$N_{x,d,min}$ $N_{x,d,max}$	Ek	M _{y,d,min} M _{y,d,max}	Ek	$\begin{matrix} V_{z,d,min} \\ V_{z,d,max} \end{matrix}$	Ek
	[m]	[kN]		[kNm]		[kN]	
1. OG	2.80	-266.00	17	0.00	13	-3.78	19
		-245.00	13	0.00	13	3.78	20
	1.80	-267.90	17	-2.32	20	-0.11	20
		-246.90	13	2.32	19	0.11	19
	0.00	-271.32	17	-2.28	19	-0.78	20
		-250 32	13	2 28	20	0.78	19


2023 300 ST-3.1 ÚVPËÜPĀĀÚc4&\@ā ÂÚ>å Seite: 3-114

	x [m]	M _{z,d,min} [kNm]	Ek	M _{z,d,max} [kNm]	Ek	V _{y,d,min} [kN]	Ek	V _{y,d,max} [kN]	Ek
1. OG	2.80	0.00	13	0.00	13	-1.76	17	1.76	18
	1.80	-1.07	17	1.07	18	-0.05	18	0.05	17
	0.00	-1.05	18	1.05	17	-0.34	18	0.34	17

Bem.-verformungen nach Th. II. Ordnung

Nicht-Linear nichtlineare Berechnung nach Th. II. Ordnung

Komb. 7 $w_{z,d}[cm]$ $y_{,d}[mrad]$

<u>Tabelle</u> X^¦-{ '{ `} *^} ÁÇ æ *^à^} å^D

	Gesch.	Х	$W_{z,d}$	y,d	$W_{y,d}$	z,d
		[m]	[cm]	[mrad]	[cm]	[mrad]
Komb. 7	1. OG	2.80	0.00	-8.33 *	0.00	0.00
		1.40	0.74 *	-0.02	0.00	0.00
		0.00	0.00	8 35 *	0.00	0.00

<u>Brandfall</u>

Nicht-Linear nichtlineare Berechnung nach Th. II. Ordnung

Komb. 19 $w_{z,d}[cm]$ $y_{,d}[mrad]$

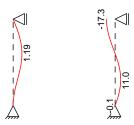


Tabelle $X^{-}_{\{ \} ^* \}} \hat{A}_{\mathbb{Q}} = x^{\hat{a} * \hat{a} } \hat{A}_{\mathbb{Q}}$

	Gesch.	Х	$W_{z,d}$	y,d	$W_{y,d}$	z,d
		[m]	[cm]	[mrad]	[cm]	[mrad]
Komb. 19	1. OG	2.80	0.00	-17.25 *	0.00	0.00
		1.70	1.19 *	-0.35	0.00	0.00
		0.80	0.55	10.96 *	0.00	0.00
		0.00	0.00	-0.10	0.00	0.00

Auftrags-Nr. Position ÙVPËJPÆÄJc4& @ã ÁJ>å 2023 300 ST-3.1

Mat./Querschnitt

Material- und Querschnittswerte

Querschnitte

Q	Тур	Bewehr	b/D	h/Di	Cmin	С
		anordnung	[cm]	[cm]	[mm]	[mm]
1	Recht	Ò&\•œ̂à^	38.0	20.0	20	15
Q	Expositions	klassen			C _{nom}	C∨
					[mm]	[mm]
1	XC1				35	35

Seite: 3-115

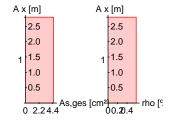
Materialien

Q	Beton	Betonstahl	min	max		
			[%]	[%]	[-]	ŽÞÐ() á
1	C 25/30	B 500SA	0.30	4.50	2.50	25.0

Bemessung (GZT)

*^{ êi ÁÖ OÞÁÐ ÞÁFJJ GËFËFÐÁN HÈÐÁN ÈÐÁN ÈÐÁN ÈÐÁN È

Ó¦ &@ &@ ãc* ¦4i ^} Komb. 7


nach nichtlinearer Theorie

X	Nu	Муu	Mzu	S	С	
[m]	[kN]	[kNm]	[kNm]	Žáá	Žšá	
2.80	1257.6	0.0	0.0	-2.00	-2.00	0.35
1.40	1135.6	9.0	0.0	-1.22	-3.02	0.39
0.00	1257.6	0.0	0.0	-2.00	-2.00	0.35

Erforderliche Bewehrung

von x	bis x	Q	Тур	Bew.Art	ď'	As,ges	
[m]	[m]				[cm]	Ž8{ á	[%]
0.00	2.80	1	R	9 W gh VY	4.9	4.52	0.60

Erf. Bewehrung M 1:120

Brandfall

- *^{ êi Ánd|*^{ ^a}_^{ ^a}_^{ ^a}_^{ ^a}_^{ ^a}_^{ ^a}_^{ ^a}_^{ ^a}_^{ ^a}_^{ ^a}_^{ ^a}_^{ ^a}_^{ ^a}_^{ ^a}_{ ^a
- Feuchte des Betons 3.0%
- Wêrme>bertragungskoeffizient 25 W/m K
 thermische Leitfêhigkeit des Betons: obere Grenze
 Emissionswert der Betonoberflêche 0.7
 Festigkeitsred. Bewehrung f>r Klasse N

- Bewehrung kaltverformt
- quarzhaltige Betonzuschlêge
- St>tze am Fui eingespannt

Steifigkeiten im Brandfall

Q	t_{req}	Seiten	EA	Ely	Elz
	[min]	[-]	[kN]	ŽÞ{ á	ŽÞ{ á
1	90	r/l/o/u	316966.77	497.21	2432.11

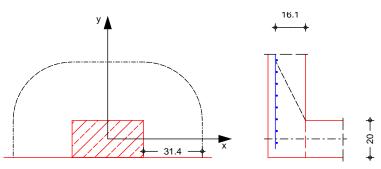
Temperaturprofil Bewehrung

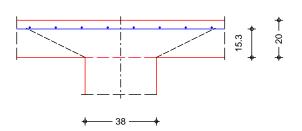
Auftrags-Nr.	Position		ΗΡ	Ingenieurgesel				
2023 300	ST-3.1	ÙV	PËÜPÆÛ	lo4&\@`ãį ÁÙ	>å		S	eite: 3-116
	Q	Υ	Z	R	u.	E	s, /Es	fy, /fy
		[cm]	[cm]	[cm]	Žá		[-]	[-]
	1	-14.10	-5.10		558		0.31	0.51
		14.10	-5.10		558		0.31	0.51
		14.10	5.10		558		0.31	0.51
		-14.10	5.10		558		0.31	0.51
<u>Ó¦`&@&@</u> ãæ*¦4i^}	nach nicht Komb. 19	linearer The	eorie					
	X	N	u	Myu	M_{zu}			
	[m]	[kN] [I	kNm]	[kNm]			
	2.80	785.8		0.0	0.0			0.34
	0.00	688.9	9	-5.8	0.0			0.39
Erforderliche	von x	bis x	Q Typ	Bew.Art		d'	As,ges	
Bewehrung	[m]	[m]				cm]	Ž&{ á	[%]
	0.00	2.80	1 R	9 W_gh} \	/ Y	4.9	4.52	0.60
Erf. Bewehrung M 1:120								
	A x [m]	A x [m]						
	2.5	2.5						
	-2.0	2.0						
	1 1.5	1 1.5						
	1.0	1.0						
	-0.5	0.5						
	0 2.24.4	s,ges [cm ²] 00. 2 0.4	rho [9					
Nachweise (GZT)	Þæ&@^ã/	`Á§(ÁÕ¦^}::	ĭ∙oæ)åÁå	^¦ÁV¦æ*-ê@a	t∖^ãoÁ,æ&.@é	ÖOÞÁÒÞÁF	JJŒËË	
Querkraftbemessung	X	V _{Ed,y}	VRd,c	$V_{Rd,max,y}$	Nx		z	erf asw
		V _{Ed,z}	V _{Rd,c}	VRd,max,z			_	
	[m]	[kN]	[kN]	[kN]	[kN]	Ž∕á	[cm]	Ž&{ Ð()á
Komb. 7	2.80	<u> </u>						3.16 ^M
		3.64	132.98	94.48	435.75	18.4	7.80	
Komb. 7	0.00							3.16 ^M
		3.68	133.91	94.48	442.93	18.4	7.80	
	м: Mindestqu	uerkraftbew. nach	n Abs. NDP Z	'u 9.2.2(5)				
Bewehrungswahl				_	_			
	von x	bis x	Q Typ	В	ewLage		n	ds
	[m]	[m]	4 D		E.L.			[mm]
	0.00	2.80	1 Rech	iteck je	Ecke		1	» % &
Vorhandene	von x	bis x	Q Typ		Cnom	n	As,ges	
Bewehrung	[m]	[m]	α . , ρ		[mm]	••	Ž&{ á	[%]
	0.00	2.80	1 Rech	iteck	35	4	4.52	0.60
	-							
Querschnitt 1								
M 1:20								
		Längsstäb Querkraftb	e: 4 bewehrung: Ø)12)8				
	C II	II I Dotondeel	// / / / / / / / / / / / / / / / / / /					

Auftrags-Nr.	Position		n		ens+puller				
2023 300	ST-3.1	-3.1 ÙVPËÜPĀĀÛ¢4&\@ā; ÁÛ>å						Seite: 3-117	
Vorhandene Querkraftbewehrung	von x [m]	bis x [m]		Тур	d _s [mm]	s [cm]	Schnitt	A _{sw} Ž&{EQá	
	0.00	2.80	1	Rechteck	8	14	2	7.18	
OE +æ*^!\ ê-&^									
OE- æt^ *¦4i^}Áæ(Á Ùo>c^}\[]~	Einw			F _{x,k} [kN]	M _{y,k} [kNm]	M _{z,k} [kNm]	F _{y,k} [kN]	F _{z,k} [kN]	
	Gk Qk.N			0.0 0.0	0.0 0.0	0.0	0.0 0.0	0.0 0.0	
OE - aet^ * 4i^} Ánae(Á Ùo>c^}~i	Einw			F _{x,k} [kN]	M _{y,k} [kNm]	M _{z,k} [kNm]	F _{y,k} [kN]	F _{z,k} [kN]	
	Gk Qk.N			250.3 70.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	
Anteile aus Th. II Ordnung				M _{y,k} [kNm]	M [kNı	z,k m]	F _{y,k} [kN]	F _{z,k} [kN]	
	Gk Qk.N			0.0 0.0).0).0	0.0 0.0	0.0	
Zusammenfassung	Zusammen	fassung	g der	Nachweise					
Nachweise (GZT)	Nachweise	im Gre	nzzu	stand der Trag	fêhigkeit				
	Nachweis							[-]	
	Ùœàããêc Ó¦`&@&@; Querkraftbe Brand Bewehrung	emessu					OK OK OK OK	0.39	
Nachweise (Brand)	Brandfall in	n Grenz	zust	and der Tragfêl	nigkeit				
	Nachweis							[-]	
	Ó¦`&@&@;	nc* 4i ^}	}				OK	0.39	

2023 300

ÙVPËÜPÄÄÜ¢4&\@ã ÁÙ>å


Seite: 3-118


Pos. DST-3.1

GHJA `VYhcb!8 i fW ghJbnbUW k Y]g FUbXgh mY

System M 1:20

Üæ)å•∽c^ÊÄÖ^&\^}]|ææc^Á;@,^Á\$~}`}*^}

Deckenplatte

Dicke
vorh. Biegebew.
OE&@ æà• œ̂} å^
{ acc/\^A caea &@Ap c @4@

Betondeckung

Seite	Expositionsklasse(n)	Cmin,dur	c_{dev}	Cnom
		[mm]	[mm]	[mm]
oben	XC3	20	15	35
unten	XC1	10	10	20
Breite		C _x =	38.00	cm

Ü^&@^&\•c>c^

P4@		
Abstand zu	m freien	Rand

Belastungen

Einwirkung	$F_z[kN]$	$M_x[kNm]$	$M_y[kNm]$
Ed.1	192.55	0.00	0.00

Zusammenstellungen

aus Pos. 'D-3.1', Ort 'DS-1' (Seite 3-2)

Kombinationen

Kombinationsbildung nach DIN EN 1990 Darstellung der mai gebenden Kombinationen

•œ} åð Ð[|>à^|* È

Bemessung (GZT)

nach DIN EN 1992-1-1, 6.4 und DIBt Ò' |[] êã &@ Á/^&@ ÉX' |æ•'} * ÁÖVOÉE GEE Í I ÁF GEF Ï D

Beton C 30/37

Betonstahl B 500SA

Auftrags-Nr. Position

DST-3.1

DVPEUPÆQu4& @4 ÅU>å

Seite: 3-119

Bemessungswert Querkraft	$V_{Ed} =$	192.55	kN
Šæ•c^¦@4@)*•-æ\d; Á⊳¦Áæĕ•{ãncāt^Ášæ•c^}			
nach 6.4.3(6), Bild 6.21N	=	1.40	-
^å`: 2N¦o^¦ÄŠæeo^¦@4@{}*•~aàq[¦Á⇒¦Áˈ _{out} nach			
ETA-12/0454 (12/17), GI(A5)	red =	1.10	-
char. Vorwert	$C_{Rk,c} =$	0.18	-
Beiwert Einfluss Plattendicke	k =	2.00	-
ãodÈÉSê}*•à^¸^@°}*•*¦æå	ı =	0.21	%
erf. Breite Durchstanzbew.	$I_{s,req} =$	30.85	cm
Breite Bereich Durchstanzbew.	I _s =	38.50	cm
char. Vorwert Beiwert Einfluss Plattendicke ʿãdĦŠŝê}*•à^¸^@*}*•*¦æå erf. Breite Durchstanzbew.		0.18 2.00 0.21 30.85	

Nachweis Rund-Abst. u VEd VRd,c VRd,max schnitt [cm] [m] ŽÞÐ) { á **Ž**ÞÐ(á **Ž**Þ₽){ á Ucrit 0.972 > 0.542 31.4 1.77 1.063 0.972 m U_{out} 54.4 2.49 0.542 0.542

min as anzusetzende m_{Ed} seite tung [kNm/m] Ž&{ Đ() á **Breite** oben 0.250 48.14 7.49 $b_y = 0.15 I_y$ Х 0.125 24.07 je m Breite 3.38 У 0.00 0.00 0.000 unten Х 0.125 24.07 3.38 je m Breite У

Kollapsbewehrung NCI Zu 9.4.1(3)

zur Vermeidung fortschreitenden Versagens ist im Bereich der

Šæ• c^ā, |^ãc`} * • √|ê&@ Áæ): `[¦å}^}

Bemessungsw. Querkraft ($_{F}$ =1.0) $V_{Ed} = 137.54$ kN min. untere Bewehrung min $A_{su} = 2.75$ &{

Randbewehrung 6.4.2(5)

|ê| * • Á\$1^ • Á\1^ 2\} Á\()|aec^\} | aa) å^ •

Bewehrungswahl

POŠØÒÞÁPÖÓÁÖ>à^||^ã c^Á; æ&@ÁÖÓÓc

Ò`¦[]êã&@^Á/^&@}ĒÁZ`|æ••`}*ÁÒVOEËFGÐEIÍIÁÇFGÐFÏD

HDB Systemelemente

*^¸ê@c innen: æi^}K 6 * HDB-10/145-2/220 (55/110/55)

Δnkerdurchmesser

6 * HDB-10/145-2/220 (55/110/55) d_A = 10 mm

Ankerdurchmesser	
Û`^¦•&@)㜕+ ê&@^Áxô^ÁOE;\^¦	
OF \ ^ @4 @^	
Øætq¦ÁÓ^¦>&l•ÉÁrcædÉÁp°c@l@	

 $A_{s_i} = 0.79$ &($h_A = 145$ mm = 1.00 -

OE; \^\aa): aa@PAOE; \^\aa`o cê} a^

Bereich	I	m	n	Sr	zul s _r	St	zul s _t
	[cm]	[-]	[-]	[cm]	[cm]	[cm]	[cm]
С	16.5	6	2	11.0	11.8	21.6	26.7
D	22.0	6	2	11.0	11.8	38.9	55.0

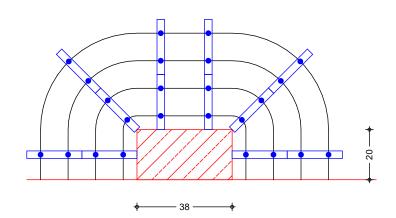
Durchstanzwiderstand $V_{Rd,sy} = 409.77$ kN

Auftrags-Nr.

Position

Seite: 3-120

2023 300


DST-3.1

ÙVPËÜPĀÄÛc4&\@ã ÁÛ>å

Verlegeplan M 1:10

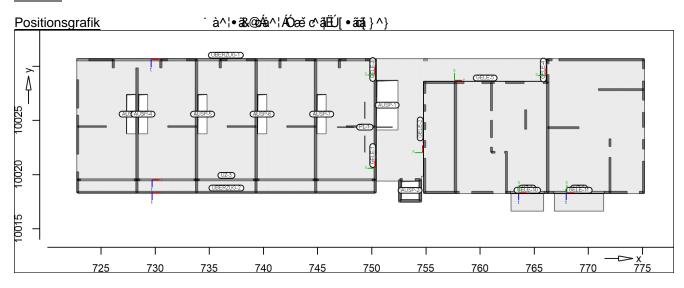
M 1:15

Auftrags-Nr. Position

2023 300 ÜVPËÜPÆÄŪd& @ ą̃ ÅŪ>å Seite: 4-1

4 - Erdgeschoss

Auftrags-Nr. Position


2023 300 D-4.1 ÚVP ËÜP ĀĀŪ d& @ ą̃ ĀŪ>å Seite: 4-2

Pos. D-4.1 8 YW_YbgmghYa ~ VYf 9;

System

Positionsplan Positionsplan

Bauteile Bauteil-Positionen

<u>Platten</u> Platten-Positionen

Stahlbeton Position Winkel Art Material Dicke Ž∕á Šê} * • Quer [cm] PL-1 C 30/37 Q 0.0 20.0 iso B 500MA B 500SA

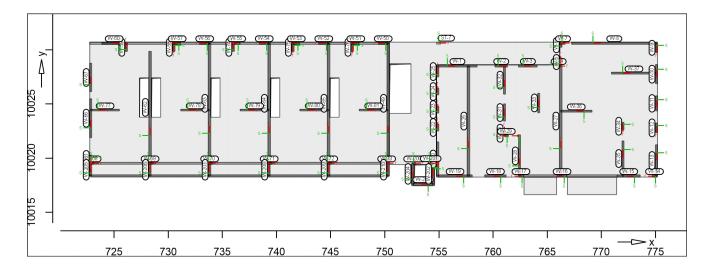
Expositionsklasse *^{ êi ÁÖOÞÁFJJŒËËÉVæàÀÈ

Position	Seite	KI	Kommentar
PL-1	oben	XC3	{ êi ði ^ÁØ^`&@^
		WF	Pê`~ātÁjå^¦Ájê}*^¦^ÁZ^ãdÁ
			feuchter Beton
	unten	XC1	d[&\^}Á(å^¦Áncê}åãfÁæ∙
		WO	Weitgehend trockener Beton

<u>Koordinaten</u>	Position	X	у
		[m]	[m]
	PL-1	722.74	10018.35
		722.74	10030.70
		775.19	10030.70
		775.19	10018.25
		771.41	10018.25
		771.41	10016.63
		766.87	10016.63
		766.87	10018.25
		765.87	10018.25
		765.87	10016.63
		762.86	10016.63
		762.86	10018.25
		754.78	10018.25
		754.78	10019.84

Auftrags-Nr.	Position		sellschaft mbH	
2023 300	D-4.1	ÙVPËÜPÄÄÜ¢4&\@@{	Ú >å	Seite: 4-3
	Position		X	у
			[m]	[m]
			754.60	10019.84
			754.60	10017.46
			752.46	10017.46
			752.46 750.40	10019.40
			750.40 750.40	10019.40 10018.35
<u>Aussparungen</u>	Position		X	у
	ALIOD 4		[m]	[m]
	AUSP-1		752.42 752.42	10024.11
			752.42	10028.70
			750.40	10028.70
	ALIOD 0		750.40	10024.11
	AUSP-2		754.36	10017.70
			754.36	10019.40
			752.70	10019.40
	41100.0		752.70	10017.70
	AUSP-3		727.35	10027.40
			727.35	10023.75
			728.20	10023.75
			728.20	10027.40
	AUSP-4		728.44	10027.40
			728.44	10023.75
			729.30	10023.75
			729.30	10027.40
	AUSP-5		733.94	10027.40
			733.94	10023.75
			734.80	10023.75
			734.80	10027.40
	AUSP-6		739.44	10027.40
			739.44	10023.75
			740.30	10023.75
			740.30	10027.40
	AUSP-7		744.94	10027.40
			744.94	10023.75
			745.80	10023.75
			745.80	10027.40
Ø ê&@\}æ •&@>••^	Position	K _{R,r}	K _{R,s}	K _{T,t}
	05154 051	[kNm/rad/m]	[kNm/rad/m]	[kN/m/m]
	GELE-1GEL		fest +/-	250000
	GELE-10, GE 11	LE- +/- 10000	fest +/-	250000
<u>Koordinaten</u>	Position		x [m]	y [m]
	GELE-1		750.40	10019.42
	OLLL-1		750.40 750.40	10019.42
	GELE-2		754.78	10024.11
	JLLL-Z		754.78 754.78	10019.64
	GELE-3		750.40	10028.70
	OLLL-5		750.40 750.40	10020.70
	GELE-4		750.40 766.16	10030.70
	GLLL-4		766.16 766.16	10026.60
	05155		754.78	10030.70
	(== == ==			THE PARTY OF THE
	GELE-5			
	GELE-5 GELE-10		766.16 762.86	10028.60 10018.25

Auftrags-Nr.	Position	m-p	martens Ingenieurgesel				
2023 300	D-4.1	ÙVPËJPÆÄÙ¢4	&\@^a(AÛ	l>å		;	Seite: 4-4
	Position					x	у
						[m]	[m]
	GELE-11				765. 766.		10018.25 10018.25
	0222 11				771.		10018.25
<u>W} </u>	Unterzug-Po	sitionen					
<u>Stahlbeton</u>	Position	Šê}	* ^ [m]	Šê} * •	Betonstahl Ó>*^		Beton
	UZ-1			500SA	B 500SA	С	25/30 Q
	UZ-2	4		500SA	B 500SA		<i>25/30</i> Q
	UZ-3			500SA	B 500SA		<i>25/30</i> Q
	· ÓÒÜZWÕË			500SA	B 500SA		30/37 Q
	. ÓÒÜZWÕË Q: Õ^•₡³ ३• \4¦}`		.46 B	500SA	B 500SA	C	30/37 Q
Abminderung	Position	- 1 X 11 - W 11 - M	F _D	$F_{S,s}$	F _{S,t} F		,s F _{B,t}
	WZŒŒWZŒŒ OOÜZWÕË	ÓÜZWÕŒÃ	0.00	0.00	0.00 1.0	0.0	0.00
	F _D : O2a(a); F _{S,s} : O2a(a); F _{S,t} : O2a(a); F _T : O2a(a); F _{B,s} : O2a(a);	\$\frac{1}{\}^* \cdot \array \a	0° ãã \^ãoÁs Ái 0° ãã \^ãoÁs Ái •• c°ãã \^ão ¢ãã \^ãoÁ{Á	Ü&&@c`}* .EO&@^			
Querschnitt	Position		Exz. [cm]			b _w [cm]	h [cm]
	UZ-1, UZ-2		UZ	•		20.0	50.0
	UZ-3	A/ / \	UŻ			20.0	40.0
		ÉÁ Ó ÖÜZWŐ ÉG	, Ç	100.	0 20.0	20.0	109.0
	UZ: Unterzug · ÓK · à^¦: **						
<u>Expositionsklasse</u>	•	ÒÞÁFJJŒËËÉVæàÈÁ	È		_		
	Position	Seite N ÓOÜZWÕËFÉA ÓOU	IZWŨËC	KI I	Kommentar		
	ν <u>ν.α-αν</u> ν.α- ιν.	umlauf		XC1	d[&\^}A[å^¦A	(cê) åð <i>Á</i>	æ•
Koordinaten	Position				. , .	x	
rtooramatori	1 Ooliion				ı	[m]	у [m]
	UZ-1				762.	80	10018.35
	 				765.		10018.35
	UZ-2				766.		10018.35
	UZ-3				771. 722.		10018.35 10019.52
	02 0				750.		10019.52
	· ÓÒÜZWÕË				722.		10030.60
					750.		10030.60
	ÓÒÜZWÕË	3			722.		10018.35
					750.	30	10018.35
<u>Auflager</u>	Auflager-Pos	sitionen					
<u>Positionsgrafik</u>	`à^¦∙ &@⁄ %^	¦ÁOE †æ*^¦ËÚ[•ãaa[}^	}				



2023 300

D-4.1

ÙVPËÜPĀĀÚc4& @ā, ÁÚ>å

Seite: 4-5

<u>Ù</u> cc ^} æ*^¦	Ùc>c^} æ*^¦ËÚ[•ããá;}^}					
<u>Stahlbeton</u>	Position	Šê}*^ [m]		Materia	I b _(r) [cm]	
	ST-7	3.00		C 25/30 C	38.0	
	Q: Õ^• ơ ð • \ 4¦}			B 500SA	1	
<u>Federsteifigkeiten</u>	Position	K _{R,r} [kNm/rad]		K _{R,s} [kNm/rad]		K _{T,t} [kN/m]
	ST-7	frei		frei	+/-	785333
<u>Koordinaten</u>	Position			Ž⁄á	x [m]	у [m]
	ST-7		(54.97	10030.60
<u>Wandlager</u>	Wandlager-Positionen					
Stahlbeton	Position	P4@ [m]	Šê} * ^ [m]		Material	Dicke [cm]
	W-200	3.00	0.24		C 25/30 Q	24.0
	W-201	3.00	0.48		B 500MA C 25/30 Q B 500MA	24.0
	W-202	3.00	1.94		C 25/30 Q	24.0
	W-203	3.00	1.90		B 500MA C 25/30 Q B 500MA	24.0
	W-204	3.00	1.94		C 25/30 Q	24.0
	W-205W-210	3.00	1.17		B 500MA C 25/30 Q B 500MA	20.0
	Q: $\tilde{O}^{\bullet} e^{\bullet} \tilde{a} \bullet \langle 4 \}^{*} \}^{*} \hat{AU}^{*} ad: \tilde{ac}$				D JUUIVIA	
Mauerwerk	Position	P4@ [m]	Šê} * ^ [m]		Material	Dicke [cm]
	W-1	3.00	3.64	KS	S-P 20 DM	20.0
	W-2	3.00	1.17		S-P 20 DM	
	W-3	3.00	1.73		S-P 20 DM	
	W-4	3.00	0.41		S-P 20 DM	
	W-5	3.00	0.73		S-P 20 DM	
	W-6	3.00	0.36	KS	S-P 20 DM	
	W-7	3.00	0.39	KS	S-P 20 DM	20.0

martens+puller
Ingenieurgesellschaft mbH

Auftrags-Nr. Position

D-4.1

2023 300

ÙVPËÜPĀĀÚc4& @ā, ÁÚ>å

Seite:	4-6

	Position	P4@	Šê} * ^	Material	Dicke
		[m]	[m]		[cm]
	W-8	3.00	7.80	KS-P 20 DM	20.0
	W-9	3.00	0.85	KS-P 20 DM	20.0
	W-10	3.00	1.75	KS-P 20 DM	20.0
	W-11 W-12	3.00 3.00	1.36 0.88	KS-P 20 DM KS-P 20 DM	20.0 20.0
	W-12 W-13	3.00	2.87	KS-P 20 DM	20.0
	W-13 W-14	3.00	0.37	KS-P 20 DM	20.0
	W-15	3.00	2.13	KS-P 20 DM	20.0
	W-16	3.00	0.88	KS-P 20 DM	20.0
	W-17	3.00	0.45	KS-P 20 DM	20.0
	W-18	3.00	1.99	KS-P 20 DM	20.0
	W-19	3.00	3.20	KS-P 20 DM	20.0
	W-20	3.00	3.15	KS-P 20 DM	20.0
	W-22W-24	3.00	0.65	KS-P 20 DM	20.0
	W-25	3.00	1.02	KS-P 20 DM	20.0
	W-26, W-27	3.00	10.15	KS-P 20 DM	24.0
	W-28	3.00	3.89	KS-P 20 DM	17.5
	W-29 W-30	3.00	0.35	KS-P 20 DM	17.5
	w-30 W-31	3.00 3.00	0.46 1.59	KS-P 20 DM KS-P 20 DM	17.5 17.5
	W-32	3.00	2.61	KS-P 20 DM	17.5
	W-33	3.00	1.80	KS-P 20 DM	17.5
	W-34	3.00	0.69	KS-P 20 DM	17.5
	W-35	3.00	3.24	KS-P 20 DM	17.5
	W-36	3.00	2.89	KS-P 20 DM	17.5
	W-37	3.00	4.17	KS-P 20 DM	17.5
	W-49	3.00	11.08	KS-P 20 DM	20.0
	W-50	3.00	0.89	KS-P 20 DM	20.0
	W-51	3.00	0.62	KS-P 20 DM	20.0
	W-52	3.00	0.91	KS-P 20 DM	20.0
	W-53	3.00	0.62	KS-P 20 DM	20.0
	W-54	3.00	0.91	KS-P 20 DM	20.0
	W-55	3.00	0.62	KS-P 20 DM	20.0
	W-56	3.00	0.91	KS-P 20 DM	20.0
	W-57	3.00	0.62 0.76	KS-P 20 DM KS-P 20 DM	20.0 20.0
	W-58, W-59 W-60	3.00 3.00	2.24	KS-P 20 DM KS-P 20 DM	20.0
	W-61	3.00	0.73	KS-P 20 DM	20.0
	W-62	3.00	10.32	KS-P 20 DM	24.0
	W-63W-65	3.00	11.08	KS-P 20 DM	24.0
	W-66	3.00	3.61	KS-P 20 DM	20.0
	W-67	3.00	2.63	KS-P 20 DM	20.0
	W-68	3.00	0.26	KS-P 20 DM	20.0
	W-69W-72	3.00	0.52	KS-P 20 DM	20.0
	W-73	3.00	0.26	KS-P 20 DM	20.0
	W-74W-76	3.00	0.76	KS-P 20 DM	20.0
	W-77	3.00	2.66	KS-P 20 DM	15.0
	W-78W-80	3.00	2.67	KS-P 20 DM	15.0
	W-81	3.00	2.65	KS-P 20 DM	15.0
<u>Federsteifigkeiten</u>	Position	$K_{R,r}$		$K_{R,s}$	$K_{T,t}$
	14/4 14/00 14/	[kNm/rad/m]			[kN/m/m]
	W-1W-20, W- 22W-25	frei		frei +/-	665387
	W-26, W-27	frei		frei +/-	798464
	W-28W-37	frei		frei +/-	582214
	W-49W-61	frei		frei +/-	665387

Position Auftrags-Nr. ÙVPËÜPÄÄÜ¢4&\@ã ÁÛ>å 2023 300 D-4.1 Seite: 4-7 $\textbf{K}_{\text{R},\text{s}}$ Position $K_{R,r}$ $K_{T,t}$ [kNm/rad/m] [kNm/rad/m] [kN/m/m] +/-W-62..W-65 frei frei 798464 W-66..W-76 +/frei frei 665387 W-77..W-81 +/-499040 frei frei +/-2480000 W-200..W-204 frei frei +/-W-205..W-210 2066667 frei frei Koordinaten Position Х У [m] [m] W-1 754.88 10028.50 10028.50 758.53 W-2 10028.50 760.16 10028.50 761.34 W-3 10028.50 762.35 10028.50 764.07 W-4 765.85 10028.50 10028.50 766.26 W-5 10028.50 766.26 766.26 10029.23 W-6 766.26 10030.24 766.26 10030.60 W-7 766.26 10030.60 766.65 10030.60 W-8 767.29 10030.60 775.09 10030.60 W-9 775.09 10030.60 775.09 10029.75 W-10 775.09 10028.62 775.09 10026.87 W-11 775.09 10025.74 775.09 10024.37 W-12 10023.24 775.09 775.09 10022.35 W-13 775.09 10021.22 775.09 10018.35 W-14 775.09 10018.35 10018.35 774.72 W-15 773.59 10018.35 771.46 10018.35 W-16 766.80 10018.35 765.93 10018.35 W-17 762.80 10018.35 762.35 10018.35 10018.35 W-18 761.21 10018.35 759.22 W-19 758.09 10018.35 10018.35 754.88 W-20 10018.35 754.88 10021.50 754.88

10022.51

10023.15

10024.16 10024.81

10025.82

10026.47

10027.48

10028.50

10018.35

754.88 754.88

754.88

754.88

754.88

754.88

754.88

754.88

757.74

W-22

W-23

W-24

W-25

W-26

Auftrags-Nr. Position | I | I | I | Ingenieurgesellschaft mbH | 2023 300 | D-4.1 | ÛVPËJPÆÄVæl&\@aį ÂJ>å | Seite: 4-8

Position	x [m]	y [m]
	757.74	10028.50
W-27	766.24	10028.35
VV-Z1	766.24	10018.50
W-28	762.46	10028.35
VV-20	762.46 762.46	10018.33
	762.48 762.28	10022.07
W-29	761.39	10022.07
VV-29	761.05	10022.07
W-30	761.05	10022.07
VV-30	761.05 761.05	10022.57
W-31	761.05	10022.33
W-31	761.05 761.05	10025.00
W-32	761.05	10025.89
W-32	761.05	10023.50
W-33	761.03	10024.19
W-33	764.22	10025.99
W-34	772.01	10023.29
W-34	772.01	10023.29
W-35	772.01	10022.00
W-33	772.01	10021.39
W-36	772.01	10018.33
W-30	766.24	10024.33
W-37	770.92	10027.83
W 37	775.09	10027.83
W-49	750.30	10027.03
W 40	750.30	10030.60
W-50	750.30	10030.60
W 00	749.41	10030.60
W-51	747.63	10030.60
	747.02	10030.60
W-52	744.82	10030.60
-	743.91	10030.60
W-53	742.13	10030.60
	741.52	10030.60
W-54	739.32	10030.60
	738.41	10030.60
W-55	736.63	10030.60
	736.02	10030.60
W-56	733.82	10030.60
	732.91	10030.60
W-57	731.13	10030.60
	730.52	10030.60
W-58	730.52	10030.60
	730.52	10029.84
W-59	726.13	10029.84
	726.13	10030.60
W-60	726.13	10030.60
	723.89	10030.60
W-61	722.84	10020.25
	722.84	10019.52
W-62	728.32	10019.52
	728.32	10029.84
W-63	733.82	10019.52
	733.82	10030.60
W-64	739.32	10019.52
	739.32	10030.60
W-65	744.82	10019.52

Auftrags-Nr.

Position

2023 300 D-4.1

ÙVPËÜPĀĀÚd& @ā ÁÚ>å

Seite: 4-9

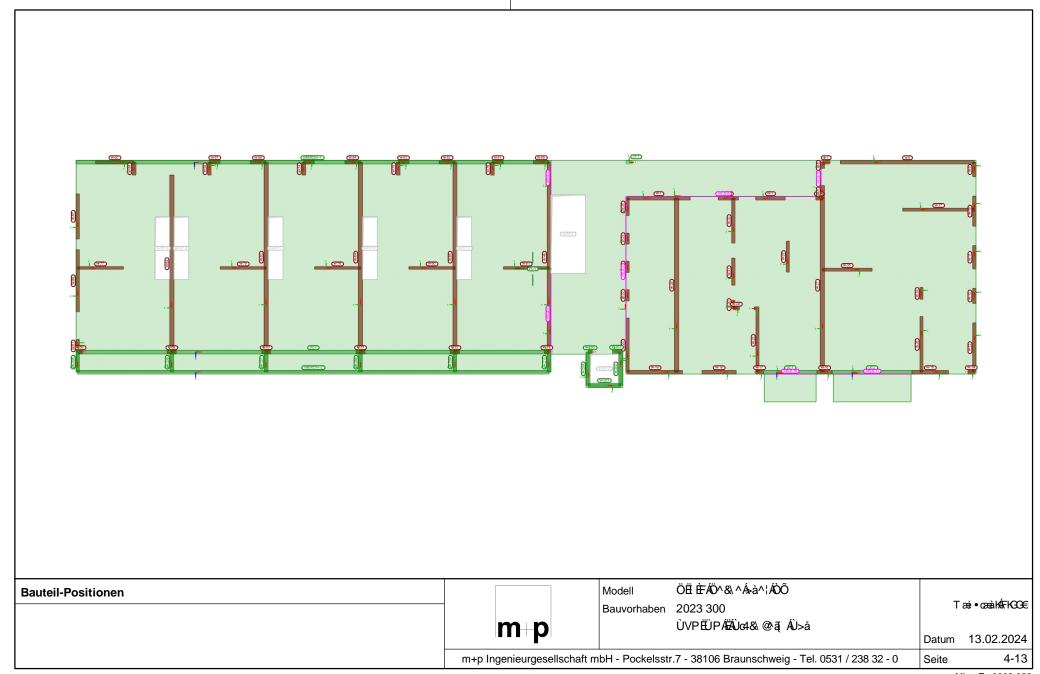
Position	х	у
	[m]	[m]
	744.82	10030.60
W-66	722.84	10021.88
	722.84	10025.49
W-67	722.84	10026.13
	722.84	10028.75
W-68	722.84	10019.52
W 00	723.10	10019.52
W-69	728.06	10019.52
W-70	728.58 733.56	10019.52 10019.52
VV-7 O	733.30	10019.52
W-71	734.06	10019.52
VV 7 1	739.58	10019.52
W-72	744.56	10019.52
	745.08	10019.52
W-73	750.04	10019.52
	750.30	10019.52
W-74	736.02	10029.84
	736.02	10030.60
W-75	741.52	10030.60
	741.52	10029.84
W-76	747.02	10030.60
	747.02	10029.84
W-77	722.84	10024.43
	725.50	10024.43
W-78	731.15	10024.43
M 70	733.82	10024.43
W-79	736.65	10024.43
W-80	739.32 742.15	10024.43 10024.43
VV-80	744.82	10024.43
W-81	747.65	10024.43
***************************************	750.30	10024.43
W-200	752.58	10019.52
200	752.82	10019.52
W-201	754.00	10019.52
	754.48	10019.52
W-202	754.48	10019.52
	754.48	10017.58
W-203	754.48	10017.58
	752.58	10017.58
W-204	752.58	10017.58
W 005	752.58	10019.52
W-205	722.84	10018.35
W 200	722.84	10019.52
W-206	728.32 728.32	10018.35 10019.52
W-207	733.82	10019.32
VV-201	733.82	10019.52
W-208	739.32	10019.32
230	739.32	10019.52
W-209	744.82	10018.35
	744.82	10019.52
W-210	750.30	10018.35
	750.30	10019.52

2023 300	D-4.1 UVPE	JPAEAUα4&∖@a(AL	J>a		Seite: 4-10
<u>Material</u>	Materialkennwerte				
Stahlbeton DIN EN 1992-1-1	Position	Materia	l Wicht	e E _{cm}	$\begin{array}{c} f_{ck} \\ f_{ctm} \end{array}$
DIN EN 1002 1 1			ŽÞÐ		
	ST-7, UZ-1UZ-3, W- 200W-210	C 25/30 C			25.00
	ÚŠĒŘÍÓÖÜZWÕĒŘ · ÓÖÜZWÕĒG	C 30/37 C	25.0	12900 0 33000	2.60 30.00
	Q: $\tilde{O}^{\bullet} c^{\bullet} \tilde{q} \bullet (4!)^{*} * \hat{A} \hat{D}^{*} c \hat{a} : \tilde{a} c$			13750	2.90
Betonstahl DIN EN 1992-1-1	Position	Materia		G	f_{yk} $f_{tk,cal}$
			ŽÞÐ		Ž Þ-₽(á
	PL-1, W-200W-210	B 500MA	78.5	0 200000 77000	500.00 525.00
	PL-1, ST-7, UZ-1UZ- HÉÁ ÓÖÜZWŐÉFÉÁ 'ÓÖÜZWŐÉG	B 500SA	78.5		500.00
				77000	525.00
Mauerwerk	Position	Materia			f_k
DIN EN 1996-1-1			Dicht ŽÞÐ	á ŽÞÐ[{á	Ž⊅Đ(á
	W-1W-20, W-22W- 37, W-49W-81	KS-P 20 DM	<u>Ž</u> *Đà{ I 20.0		10.51
	07, W 43W 01		2.0	0 3992	
Auswertung	Geometrische Auswertur	ng der Positionen			
<u>Ø</u> ê&@}	Ø ê&@}~4 { ðt^ÁÓæĕc^ð#Ë	J[•ãaā, }^}			
<u>Stahlbeton</u>	Position		Dicke [cm]	Ø ê&@ Ž á	Volumen Ž(á
	PL-1		20.0	633.81	126.76
<u>W</u>	Unterzug-Positionen				
Stahlbeton	Position	$b_{(t)}$	h _(s)	Mantelfl.	Volumen
	UZ-1	[cm] 20.00	[cm] 30.00	[m²] 3.13	[m ³] 0.19
	UZ-2	20.00	30.00	4.65	0.19
	UZ-3	20.00	20.00	21.97	1.10
	· ÓÒÜZWÕË	20.00	89.00	60.08	4.91
	ÓÖÜZWÕËG	20.00	89.00	59.86	4.89
<u>Ùoc ^} æ* ^ </u>	Ùoc^} Á&^¦ÁÙoc^^} æ*^¦	ËÚ[•ãaã[}^}			
Stahlbeton	Position	b _(r) [cm]	h _(s) [cm]	Mantelfl. [m²]	Volumen [m³]
	ST-7	38.0	20.0	3.48	0.23
Wandlager	Yê}å^Áå^¦Á/æ)å æ*^¦ËÚ	[•ããa[}^}			
<u>Stahlbeton</u>	Position	Dicke	P4@	Ø ê&@\ [m2]	Volumen
	W-200	[cm] 24.0	[cm] 300.0	[m²] 0.71	[m ³] 0.17
	W-201	24.0	300.0	1.45	0.35

Seite: 4-11

Auftrags-Nr.	Position	martens+puller
2023 300	D-4.1	ÙVPËÜPÄÄÜ¢4&\@aįÁÜ>å

		•			
	Position	Dicke	P4@	Ø ê&@	Volumen
		[cm]	[cm]	[m ²]	[m ³]
	W-202	24.0	300.0	5.82	1.40
	W-203	24.0	300.0	5.70	1.37
	W-204	24.0	300.0	5.82	1.40
	W-205W-210	20.0	300.0	3.51	0.70
<u>Mauerwerk</u>	Position	Dicke	P4@	Ø ê&@	Volumen
		[cm]	[cm]	[m²]	[m ³]
	W-1	20.0	300.0	10.93	2.19
	W-2	20.0	300.0	3.52	0.70
	W-3	20.0	300.0	5.18	1.04
	W-4	20.0	300.0	1.23	0.25
	W-5	20.0	300.0	2.19	0.44
	W-6	20.0	300.0	1.08	0.22
	W-7	20.0	300.0	1.18	0.24
	W-8	20.0	300.0	23.41	4.68
	W-9	20.0	300.0	2.54	0.51
	W-10	20.0	300.0	5.24	1.05
	W-11	20.0	300.0	4.09	0.82
	W-12	20.0	300.0	2.65	0.53
	W-13	20.0	300.0	8.61	1.72
	W-14	20.0	300.0	1.11	0.22
	W-15	20.0	300.0	6.39	1.28
	W-16	20.0	300.0	2.64	0.53
	W-17	20.0	300.0	1.34	0.27
	W-18	20.0	300.0	5.97	1.19
	W-19	20.0	300.0	9.61	1.92
	W-20	20.0	300.0	9.44	1.89
	W-22W-24	20.0	300.0	1.94	0.39
	W-25	20.0	300.0	3.07	0.61
	W-26, W-27	24.0	300.0	30.45	7.31
	W-28	17.5	300.0	11.68	2.04
	W-29	17.5	300.0	1.04	0.18
	W-30	17.5	300.0	1.39	0.24
	W-31	17.5	300.0	4.77	0.83
	W-32	17.5	300.0	7.83	1.37
	W-33	17.5	300.0	5.40	0.95
	W-34	17.5	300.0	2.07	0.36
	W-35	17.5	300.0	9.72	1.70
	W-36	17.5	300.0	8.65	1.51
	W-37	17.5	300.0	12.51	2.19
	W-49	20.0	300.0	33.24	6.65
	W-50	20.0	300.0	2.68	0.54
	W-51	20.0	300.0	1.85	0.37
	W-52	20.0	300.0	2.74	0.55
	W-53	20.0	300.0	1.85	0.37
	W-54 W-55	20.0 20.0	300.0	2.74 1.85	0.55
	vv-55 W-56	20.0	300.0 300.0	2.74	0.37
	W-57	20.0	300.0		0.55
	w-57 W-58, W-59	20.0	300.0	1.85 2.27	0.37 0.45
	w-56, w-59 W-60	20.0	300.0	2.27 6.72	1.34
	W-61	20.0	300.0	6.72 2.19	0.44
	W-62	20.0 24.0	300.0	30.97	7.43
	w-62W-65	24.0 24.0	300.0	33.24	7.43 7.98
	W-66	24.0	300.0	33.24 10.82	2.16
	vv-66 W-67	20.0	300.0	7.88	1.58
	vv-67 W-68	20.0	300.0	7.88 0.78	0.16
	VV-00	20.0	300.0	0.76	0.16

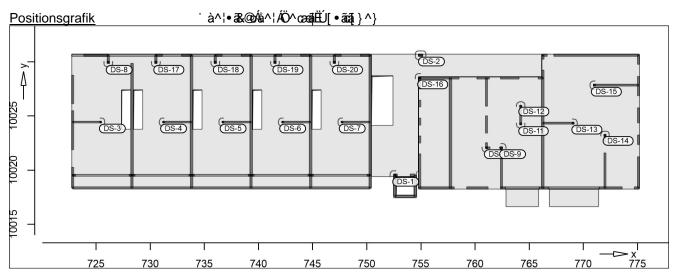

Auftrags-Nr. Position

2023 300 D-4.1 ÙVPËÜPĀĀĴŒ4&\ @ ą ÂĴ>å

Position	Dicke	P4@	Ø ê&@	Volumen
	[cm]	[cm]	[m ²]	[m ³]
W-69W-72	20.0	300.0	1.56	0.31
W-73	20.0	300.0	0.78	0.16
W-74W-76	20.0	300.0	2.27	0.45
W-77	15.0	300.0	7.97	1.19
W-78W-80	15.0	300.0	8.02	1.20
W-81	15.0	300.0	7.96	1.19

Seite: 4-12

IIID-VIBWELVEISIOLI ZOZZ - COPYTIGITI ZOZ L'TITO ACC SOTTWATE GITTON


Seite: 4-14

Auftrags-Nr. Position

ÙVPËÜPĀĀÚd& @ā ÁÚ>å 2023 300 D-4.1

Detailplan Detailplan

Details Detail-Positionen

<u>Durchstanzstellen</u>	Position	Lel von	MinBew	Rundsch	beta
	DS-1	unten	ja	nein	1.20
	DS-2	unten	ja	nein	1.50
	DS-3	unten	ja	nein	1.35
	DS-4	unten	ja	nein	1.35
	DS-5	unten	ja	nein	1.35
	DS-6	unten	ja	nein	1.35
	DS-7	unten	ja	nein	1.35
	DS-8	unten	ja	nein	1.35
	DS-9	unten	ja	nein	1.20
	DS-10	unten	ja	nein	1.20
	DS-11	unten	ja	nein	1.35
	DS-12	unten	ja	nein	1.35
	DS-13	unten	ja	nein	1.35
	DS-14	unten	ja	nein	1.35
	DS-15	unten	ja	nein	1.35
	DS-16	unten	ja	nein	1.20
	DS-17	unten	ja	nein	1.35
	DS-18	unten	ja	nein	1.35
	DS-19	unten	ja	nein	1.35
	DS-20	unten	ja	nein	1.35
	unten: MinBew: Rundsch:	Lasteinleitung erfolgt von unten Mindestbewehrung nach NCI Zu 9.4.3(2)? Rundschnitt am Rand erweitern?	,		
Geometrie	Õ^[{ ^d	ā^Ása^¦ÁŠæ•c^ā, ^āc`}*•~ ê&@			
	Position	Тур	Winkel	b(r)/D	h(s)

Õ^[{ ^dã^Ás^¦ÁŠæ• c^ā, ^ãč}*• √ê&@							
Position	Тур		Winkel	b(r)/D	h(s)		
			Ž∕á	[cm]	[cm]		
DS-2	Re		0.00	38.0	20.0		
Re: Rechteck							
Position	Тур	Winkel2	Winkel	Breite	Šê}*^		
		Žá	Žá	[cm]	[cm]		
DS-1	Wk	270.00	0.00	24.0	24.0		
DS-3	We		180.00	15.0	15.0		
DS-4	We		0.00	15.0	15.0		
DS-5	We		0.00	15.0	15.0		
DS-6	We		0.00	15.0	15.0		

Position

Auftrags-Nr.

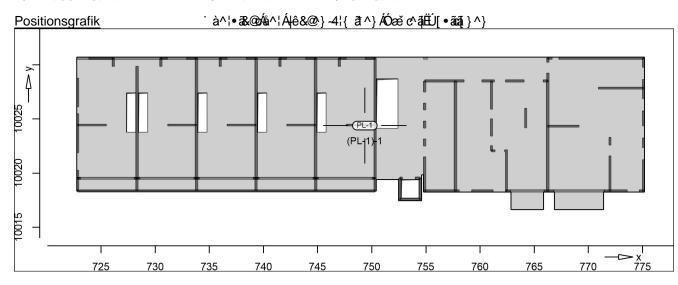
Koordinaten

martens+puller

2023 300 D-4.1 ÙVPËUPĀĀŪd& @ ą̃ ÂŪ>å Seite: 4-15

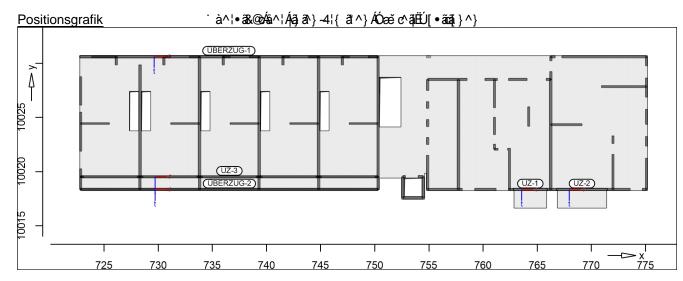
D-4.	I	UVFLUFALAUG	on wa Auza			Seile. 4-15
	Position	Тур	Winkel2 Ž⁄a	Winkel Ž⁄á	Breite [cm]	Šê} * ^ [cm]
	DS-7	We		0.00	15.0	15.0
	DS-8	We		90.00	20.0	20.0
	DS-9	Wk	180.00	270.00	17.5	17.5
	DS-10	Wk	0.00	90.00	17.5	17.5
	DS-11	We		90.00	17.5	17.5
	DS-12	We		270.00	17.5	17.5
	DS-13	We		180.00	17.5	17.5
	DS-14	We		270.00	17.5	17.5
	DS-15	We		0.00	17.5	17.5
	DS-16	Wk	0.00	270.00	20.0	20.0
	DS-17	We		90.00	20.0	20.0
	DS-18	We		90.00	20.0	20.0
	DS-19	We		90.00	20.0	20.0
	DS-20	We		90.00	20.0	20.0
	We: Wandende Wk: Wandecke					
	Position				X	Y
	DC 4				[m]	[m]
	DS-1				752.58	10019.52
	DS-2				754.97 705.50	10030.60
	DS-3 DS-4				25.50	10024.43
					'31.15	10024.43
	DS-5 DS-6				'36.65 '42.15	10024.43 10024.43
	DS-6 DS-7					
					47.65	10024.43
	DS-8 DS-9				'26.13 '62.46	10029.84 10022.07
	DS-9 DS-10				62.46 61.05	10022.07
	DS-10 DS-11				61.05 '64.22	10022.07
	DS-11 DS-12				64.22 '64.22	10024.19
	DS-12 DS-13				69.12	10023.99
	DS-13 DS-14				72.01	10024.33
	DS-14 DS-15				72.01	10023.29
	DS-16				70.32 '54.88	10027.03
	DS-10 DS-17				30.52	10020.30
	DS-17 DS-18				36.02	10029.84
	DS-16 DS-19				30.02 '41.52	10029.84
	DS-19 DS-20				47.02	10029.84
	D3-20			,	47.02	10029.04

Belastungen



2023 300 D-4.1

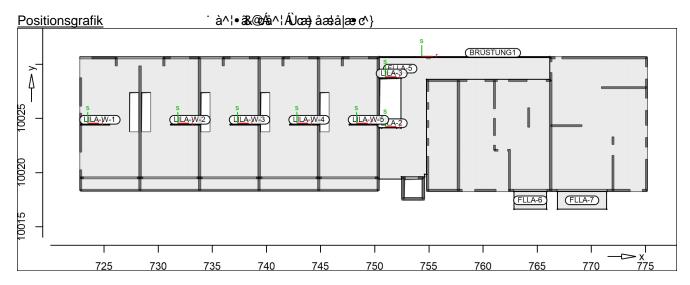
Seite: 4-16


Lastplan Lasten des FE-Modells

<u>Bauteillasten</u> Bauteilbezogene Lasten

<u>Eigengewicht</u>	Position	EW	Lastfall	Art	g [kN/m²]
	PL-1 PGr: Gravitations	Gk slast; positive Laste	LF-1 n wirken senkrecht nach	PGr n unten	5.00
<u>Ù[}•cā*^Árcê}åã*^Æsæe</u> c	Position	EW	Lastfall	Art	g [kN/m²]
	PL-1	Gk	LF-1	PGr	1.80
	PGr: Gravitations	slast; positive Laste	n wirken senkrecht nach	unten	
<u>Nutzlast</u>	Position	EW	Lastfall je Las	tfeld Art	p [kN/m²]
	PL-1	Qk.N	(PL-1)-1	PGr	2.70
	PGr: Gravitation:	slast: positive Laste	n wirken senkrecht nach	n unten	

Streckenpositionen Šājā $^{+}$ 4 $^{+}$ { ā $^{+}$ 6 $^{-}$ 6 $^{-}$ 6 $^{-}$ 6 $^{-}$ 8 $^{-}$ 8 $^{-}$ 8 $^{-}$ 9 $^{-}$ 8 $^{-}$ 9 $^{$



<u>Eigengewicht</u>	Position	EW	Lastfall	Art	g
					[kN/m]
	UZ-1, UZ-2	Gk	LF-1	PGr	1.50
	UZ-3	Gk	LF-1	PGr	1.00
	· ÓÒÜZWÕ ĒĒĀ · ÓÒÜZWÕ ĒG	Gk	LF-1	PGr	4.45

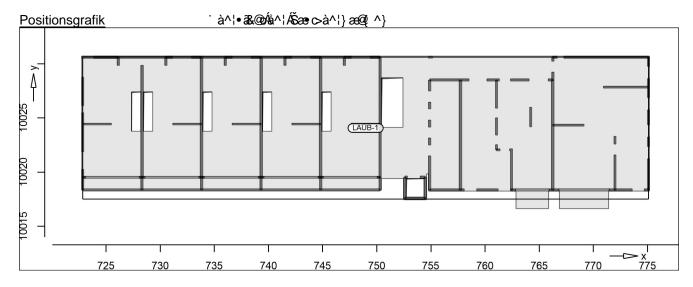
PGr: Gravitationslast; positive Lasten wirken senkrecht nach unten

Standardlasten im FE-Modell

<u>Linienlasten</u>	Position	EW	Lastfall	Art	p _A ,m _A [kN/m	p _E ,m _E],[kNm/m]
	ÓÜ' ÙVWÞÕF	Ó¦>•č}	*Á@ÁMÁFÉG€Á			
		Gk	LF-1	pGr	6.00	6.00
	LILA-2	Treppe	•			
		Gk	LF-1	pGr	25.00	25.00
		Qk.N	LF-2	pGr	12.00	12.00
	LILA-3	Treppe	•			
		Gk	LF-1	pGr	25.00	25.00
		Qk.N	LF-2	pGr	12.00	12.00
	LILA-W-1	Ausste				
		Qk.W	LF-4	pGr	50.00	-50.00
		Qk.W	LF-5	pGr	-50.00	50.00
	LILA-W-2	Ausste	ifungslast			
		Qk.W	LF-4	pGr	50.00	-50.00
		Qk.W	LF-5	pGr	-50.00	50.00
	LILA-W-3	Ausste	ifungslast			
		Qk.W	LF-4	pGr	50.00	-50.00
		Qk.W	LF-5	pGr	-50.00	50.00
	LILA-W-4	Ausste	ifungslast			
		Qk.W	LF-4	pGr	50.00	-50.00
		Qk.W	LF-5	pGr	-50.00	50.00
	LILA-W-5	Ausste				
		Qk.W	LF-4	pGr	50.00	-50.00
		Qk.W	LF-5	pGr	-50.00	50.00
	pGr: Gravitationslas	t; positive Laste	n wirken senkrecht nach	unten		

<u>Õ|^&&@|ê&@}|æec^}</u>

Auftrags-Nr. Position IIII Ingenieurgesellschaft mbH


2023 300 D-4.1 ÜVPÜPÄÄJd4& @ ā ÂJ>å Seite: 4-18

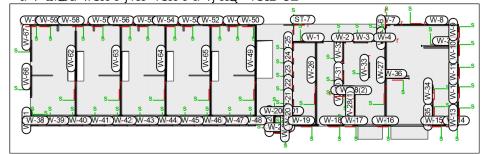
Position	EW	Lastfall	Art	p [kN/m²]
FLLA-5	Differe	nzlast Balkon		
	Gk	LF-1	PGr	1.00
	Qk.N	LF-2	PGr	1.30
FLLA-6	Differe	nzlast Balkon		
	Gk	LF-1	PGr	1.00
	Qk.N	LF-2	PGr	1.30
FLLA-7	Differe	nzlast Balkon		
	Gk	LF-1	PGr	1.00
	Qk.N	LF-2	PGr	1.30
DO:- 0::!4-4!	-14,145, 14	and the first of the second control of the second	L	

PGr: Gravitationslast; positive Lasten wirken senkrecht nach unten

Šæ•c>à^¦}æ@;^}

Šæ•c>à^¦}æ@(^Áæĕ•ÁTã&¦[Ø^ЁT[å^||^}

ŠŒ ÓË


Šærcà^{} æ@{ ^ÁSઁærcà^{** æà^ŒÆĕ•ÁT[å^||ÁÖÖËHÈC

Öâl·ÁŠæ càn'}æ@ ^Án'-[|*oÁnā, ā\`}*•d^`È Einwirkungen mit Lastgruppen werden weiterhin |æ cæld^`Á-àn'-][{ { ^}È

Einwirkungen mit Lastgruppen werden weiternin |ær cæng c^ Asa^i} [{ { ^}} E Öær Ásær æð; c^ðr Áse • Ár œ̂} åðt ^} Ásær c^} Ás^iÁÚc>c ^} Éðund Wandlager werden à^{>&\ • & ®æðt dÈ

Positionsgrafik

`à^¦•3&@Ás^¦ÁŠæ•c^}Ásĕ•ÁŠæ•c>à^¦}æ@;^ÁšŒ ÓËF

Punktlasten

Position	EW	Lastfall	Art	Р
				[kN]
ST-7	Gk	#1 gk	PGr	246.00
	Qk.N	#1 gk.n	PGr	62.24

PGr: Gravitationslast; positive Lasten wirken senkrecht nach unten

2023 300 D-4.1

ÙVPËÜPÄÄÛ¢4&\@`ãį ÁÛ>å

Seite: 4-19

<u>Linienlasten</u>

Position	EW	Lastfall	Art	ра	PE
10/ 4	01-	#41ada	0	60.00	[kN/m]
W-1	Gk	#1 gk	pGr	63.26	139.25
W-2	Qk.N	#1 qk.n	pGr	19.16	39.74
VV-Z	Gk	#1 gk	pGr	305.39	146.29
W 0	Qk.N	#1 qk.n	pGr	98.06	42.13
W-3	Gk	#1 gk	pGr	106.08	213.14
W-4	Qk.N	#1 qk.n	pGr	29.95	71.48
VV-4	Gk	#1 gk #1 gk	pGr	45.72	63.59
W-5	Qk.N Gk	#1 qk.n	pGr	14.13	19.81
VV-5	Gk Qk.N	#1 gk #1 gk	pGr	84.97	93.89
W-6	Gk.N	#1 qk.n #1 gk	pGr pGr	27.76 178.40	31.19 188.46
VV-O	Qk.N		pGr	46.51	46.98
W-7	Gk.N	#1 qk.n	pGr	183.48	95.93
VV-7	Qk.N	#1 gk #1 qk.n	pGr	43.95	21.32
W-8	Gk	#1 qk.11 #1 gk	pGr	54.49	38.02
VV-O	Qk.N	#1 gk #1 qk.n	pGr	11.48	3.09
W-9	Gk.N		pGr	43.43	48.90
VV-9	Qk.N	#1 gk #1 gk p	pGr	43.43 4.51	
W-10	Gk.N	#1 qk.n			6.41
VV-10	Qk.N	#1 gk #1 gk p	pGr pGr	16.95	
W-11	Gk.N	#1 qk.n		-5.96 96.15	13.19 97.39
VV-11	Qk.N	#1 gk #1 gk p	pGr pGr	26.52	27.03
W-12	Gk.N	#1 qk.n #1 gk	pGr	95.06	78.42
VV-12	Qk.N		pGr	25.14	18.32
W-13	Gk.N	#1 qk.n		64.89	36.95
VV-13	Qk.N	#1 gk #1 qk.n	pGr pGr	14.14	2.62
W-14	Gk	#1 qk.11 #1 gk	pGr	43.17	48.62
VV-14	Qk.N	#1 gk #1 qk.n	pGr	43.17	6.63
W-15	Gk	#1 qk.11 #1 gk	pGr	-6.47	163.97
VV-13	Qk.N	#1 gk #1 qk.n	pGr	-15.04	53.92
W-16	Gk	#1 qk.ii #1 gk	pGr	244.47	91.91
VV-10	Qk.N	#1 gk #1 qk.n	pGr	87.18	25.99
W-17	Gk	#1 qk.ii #1 gk	pGr	130.98	86.14
V V - 1 /	Qk.N	#1 gk #1 qk.n	pGr	41.68	21.44
W-18	Gk	#1 gk	pGr	61.96	66.71
VV 10	Qk.N	#1 qk.n	pGr	12.62	14.92
W-19	Gk	#1 gk	pGr	41.02	44.51
VV 10	Qk.N	#1 qk.n	pGr	6.19	3.19
W-20	Gk	#1 gk	pGr	31.11	87.40
** 20	Qk.N	#1 qk.n	pGr	-2.45	22.91
W-21	Gk	#1 gk	pGr	228.63	242.18
	Qk.N	#1 qk.n	pGr	75.50	81.13
W-22	Gk	#1 gk	pGr	164.98	177.14
	Qk.N	#1 qk.n	pGr	53.61	59.06
W-23	Gk	#1 gk	pGr	340.22	288.14
0	Qk.N	#1 qk.n	pGr	120.90	94.05
W-24	Gk	#1 gk	pGr	199.19	205.92
	Qk.N	#1 qk.n	pGr	67.30	71.17
W-25	Gk	#1 gk	pGr	214.78	114.04
	Qk.N	#1 qk.n	pGr	66.41	37.64
W-26	Gk	#1 gk	pGr	95.31	65.98
-	Qk.N	#1 qk.n	pGr	27.21	18.30
W-27	Gk	#1 gk	pGr	101.13	70.05
	Qk.N	#1 qk.n	pGr	27.00	21.10
W-28(1)	Gk	#1 gk	pGr	67.76	99.65
` '	Qk.N	#1 qk.n	pGr	15.87	35.54
		1.1			

Position

2023 300 D-4.1

Seite: 4-20

Position	EW	Lastfall	Art	PΑ	n-
1 OSITION	LVV	Lastiali	Ait	PA	pe [kN/m]
W-28(2)	Gk	#1 gk	pGr	117.50	115.77
	Qk.N	#1 qk.n	pGr	42.03	41.40
W-29	Gk	#1 gk	pGr	121.04	132.80
144.00	Qk.N	#1 qk.n	pGr	43.84	48.54
W-30	Gk	#1 gk #1 als a	pGr	133.03	128.26
W-31	Qk.N Gk	#1 qk.n #1 gk	pGr pGr	48.63 114.48	46.60 105.84
VV-31	Qk.N	#1 gk #1 qk.n	pGr	40.20	37.91
W-32	Gk	#1 gk	pGr	46.96	60.99
•=	Qk.N	#1 qk.n	pGr	19.80	17.02
W-33	Gk	#1 gk	pGr	125.13	57.43
	Qk.N	#1 qk.n	pGr	43.74	20.54
W-34	Gk	#1 gk	pGr	380.06	277.07
	Qk.N	#1 qk.n	pGr	154.04	111.55
W-35	Gk	#1 gk	pGr	140.01	65.80
	Qk.N	#1 qk.n	pGr	52.51	14.70
W-36	Gk	#1 gk	pGr	271.55	-15.06
144.07	Qk.N	#1 qk.n	pGr	107.77	-14.85
W-37	Gk	#1 gk	pGr	214.66	21.84
W 00	Qk.N	#1 qk.n	pGr	84.53	-1.21
W-38	Gk Qk.N	#1 gk #1 gk	pGr	181.15	177.79
W-39	Gk.N	#1 qk.n #1 gk	pGr pGr	28.76 144.89	35.28 181.75
VV-39	Qk.N	#1 gk #1 qk.n	pGr	35.39	37.68
W-40	Gk.N	#1 qk.ii #1 gk	pGr	452.69	424.10
VV- 4 0	Qk.N	#1 gk #1 qk.n	pGr	95.02	97.93
W-41	Gk	#1 gk	pGr	98.46	127.43
** 11	Qk.N	#1 qk.n	pGr	31.41	38.39
W-42	Gk	#1 gk	pGr	257.75	212.07
	Qk.N	#1 qk.n	pGr	65.21	51.93
W-43	Gk	#1 gk	pGr	67.62	137.52
	Qk.N	#1 qk.n	pGr	20.53	37.11
W-44	Gk	#1 gk	pGr	247.48	194.73
	Qk.N	#1 qk.n	pGr	56.98	45.74
W-45	Gk	#1 gk	pGr	66.05	128.30
	Qk.N	#1 qk.n	pGr	21.14	34.21
W-46	Gk	#1 gk	pGr	247.47	212.44
10/ 47	Qk.N	#1 qk.n	pGr	56.73	51.10
W-47	Gk	#1 gk #1 gk	pGr	81.71	198.60
W-48	Qk.N Gk	#1 qk.n	pGr pGr	25.86 223.77	59.08 197.92
VV-40	Qk.N	#1 gk #1 qk.n	pGr	58.06	30.00
W-49	Gk	#1 qk.ii #1 gk	pGr	141.46	115.94
VV 45	Qk.N	#1 qk.n	pGr	26.62	35.16
W-50	Gk	#1 gk	pGr	105.52	158.11
	Qk.N	#1 qk.n	pGr	16.25	36.28
W-51	Gk	#1 gk	pGr	202.23	199.36
	Qk.N	#1 qk.n	pGr	49.89	49.08
W-52	Gk	#1 gk	pGr	76.41	44.52
	Qk.N	#1 qk.n	pGr	16.13	2.80
W-53	Gk	#1 gk	pGr	114.39	122.20
	Qk.N	#1 qk.n	pGr	25.96	28.32
W-54	Gk	#1 gk	pGr	62.27	64.80
	Qk.N	#1 qk.n	pGr	12.98	8.65
W-55	Gk	#1 gk	pGr	130.20	136.78
	Qk.N	#1 qk.n	pGr	30.83	32.86

Seite: 4-21

Auftrags-Nr. Position ÙVPËÜPĀÄÛc4&\@ã ÁÛ>å 2023 300 D-4.1

Position	EW	Lastfall	Art	рА	PE
14/ 50	01	#41.1		05.00	[kN/m]
W-56	Gk	#1 gk	pGr	65.93	63.29
\\\ = 7	Qk.N	#1 qk.n	pGr	13.91	8.47
W-57	Gk	#1 gk	pGr	121.50	126.81
W 50	Qk.N	#1 qk.n	pGr	27.69	29.12
W-58	Gk	#1 gk	pGr	46.40	65.85
111 = 0	Qk.N	#1 qk.n	pGr	6.28	13.65
W-59	Gk	#1 gk	pGr	197.39	200.11
	Qk.N	#1 qk.n	pGr	51.19	51.86
W-60	Gk	#1 gk	pGr	106.82	51.30
	Qk.N	#1 qk.n	pGr	22.44	4.69
W-61	Gk	#1 gk	pGr	144.50	189.25
	Qk.N	#1 qk.n	pGr	23.34	25.02
W-62	Gk	#1 gk	pGr	66.40	208.24
	Qk.N	#1 qk.n	pGr	23.21	48.40
W-63	Gk	#1 gk	pGr	208.89	126.77
	Qk.N	#1 qk.n	pGr	49.93	27.16
W-64	Gk	#1 gk	pGr	203.39	132.24
	Qk.N	#1 qk.n	pGr	47.18	29.99
W-65	Gk	#1 gk	pGr	215.08	143.22
	Qk.N	#1 qk.n	pGr	50.96	33.22
W-66	Gk	#1 gk	pGr	115.42	98.36
	Qk.N	#1 qk.n	pGr	21.54	19.01
W-67	Gk	#1 gk	pGr	130.96	44.28
	Qk.N	#1 qk.n	pGr	25.65	5.11
W-200	Gk	#1 gk	pGr	457.55	443.27
	Qk.N	#1 qk.n	pGr	179.04	173.46
W-201	Gk	#1 gk	pGr	226.25	175.08
	Qk.N	#1 qk.n	pGr	69.04	41.74
W-202	Gk	#1 gk	pGr	50.98	71.78
	Qk.N	#1 qk.n	pGr	-16.80	6.15
W-203	Gk	#1 gk	pGr	68.12	55.27
	Qk.N	#1 qk.n	pGr	3.97	-2.57
W-204	Gk	#1 gk	pGr	6.23	196.53
0 .	Qk.N	#1 qk.n	pGr	-25.14	49.90
pGr: Gravitations		n wirken senkrecht na		20	.0.00

Einwirkungen

DIN EN 1990 Einwirkungen nach DIN EN 1990

S> : ^	Beschreibung
	Typisierung
Gk	Eigenlasten
	Ùœ^} åāt^ÁÒā; ā\`}*^}
Qk.N	Nutzlasten
	Sæe^*[¦ãNÁOÐÆÖY[@]ËÁ}åÁOE-^}c@expo•¦ê*{^
Qk.W	Wind
	Windlasten

Šæe cê∥^ Šærcê||^Á\} åÁå^\^} ÁZ*[¦å}*)*Á.*Áå^} ÁÒā,¸āl*}*^}

LF-1, #1|gk LF-2, (PL-1)-1, #1|qk.n Gk Qk.N Qk.W LF-4, LF-5

Bemessung (GZT+GZG)

Biegung Pl-As-erf-Iso Plattenbiegebemessung nach DIN EN 1992-1-1

 $\underline{PL-1} \qquad \qquad \acute{O}^{\ } ^{\ } \stackrel{\star}{A} \stackrel{\star}{A} \stackrel{\star}{A} \stackrel{\star}{A} \stackrel{\star}{A} \stackrel{\star}{U} \stackrel{\star}{\partial} \stackrel{\star}{\partial} \stackrel{\star}{A} \stackrel{\star}{U} \stackrel{\star}{\partial}$

Mat./Querschnitt Beton C 30/37

Õ^• c^ā,•\4¦} `} *ÁÛ`æ: ãc Betonstahl *B 500MA*

Dicke konstant h = 20.00 cm

Expositionsklasse *^{ êi ÁÖQÞÁÖÞÁFJJGËËEÉVæàEÁÈ

Position Kommentar Seite ΚI XC3 { êi at ^ Áz ^ × & @ ^ PL-1 oben Pê ~ at / fi a ^ l / fie } * ^ l ^ / ÁZ ^ a a Á WF feuchter Beton XC1 d[&\^} A a^\A cê} a A æ• unten WO Weitgehend trockener Beton

Bewehrung Vorgaben zur Bewehrungsdefinition

Betondeckung $C_{min,u}/C_{min,o} =$ 10 / 20 mm&def,uD &def,o =10 / 15 mm 20 / 35 $c_{nom,u}/c_{nom,o} =$ mm Bewehrungsabstand $d'_{ru/su} =$ 30 / 30 mm $d'_{ro/so} =$ 30 / 30 mm Bewehrungsrichtung 0.0 / $W_{ru/su} =$ 90.0 Wro/so = 0.0 / 90.0

Tænc^ÉAÙcêà^ Grundbewehrung Seite d'r d's $a_{sg,r}$ a_{sg,s} <Ž{{aĐŽ&{á [mm] Ž&{ Đ() á [mm] ₽)á Unten 2.27 30 30 2.27 Oben 30 2.27 30 2.27

Nachweisparameter nach DIN EN 1992-1-1

Tā å^•cà^. ^@`} * ÁÇIÈDÈÈDÁ `¦å^Áà^!>& • 3&@ā cÈ

Kombinationen Tæi *^à^} å^ÁS[{ àã; ææã; }^} Á; æ&@ÓOΦÂÖÞÁFJJ€

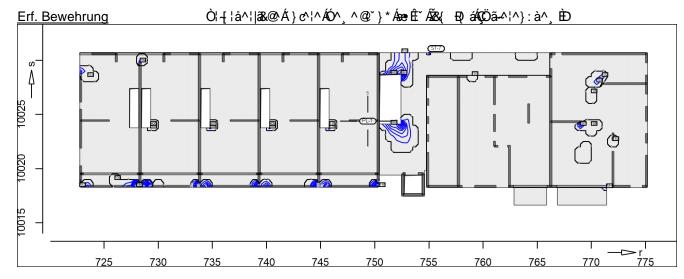
Ew Einwirkungsname

Lkn Lastkombinationsnummer

! ç[¦@¦|•&@}å^Áç^¦ê}å^||ã&@ÁÒā¸ã\`}*

Ausgabeformat nicht dokumentiert.

Ew	Gk	Qk.N	Qk.W	
Lkn	Grundkombination			
1-12	1.35	1.50 !	0.90	


D-4.1

ÙVPËÜPÄÄÛ¢4&\@@ã ÁÛ>å

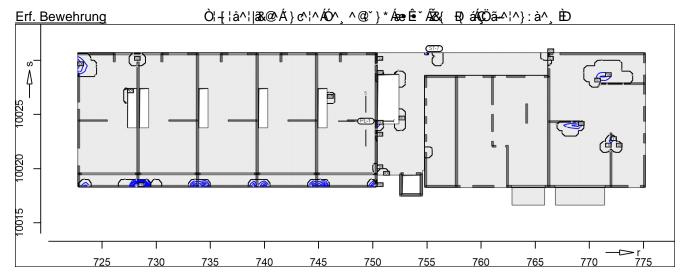
Seite: 4-23

as,r,unten

Šê}*•à^, ^@`}*Á§ÁËÜæ&@`}*ÁŞÁ}¢^¦^¦ÁŠæ*^

Q[|ã,ã^}•č.^}ÁMÁ€ÈİÍÁ&{ Ð

Achsabstand erf. Bewehrung: $d'_{ru} = 30 \text{ mm}$ Achsabstand vorh. Bewehrung: $d'_{ru} = 30 \text{ mm}$ \tilde{O}_{i}^{*} \hat{a}_{i}^{*} | Punkt | x | у | $m_{r,Ed}$ | m _{s,Ed} | m _{rs,Ed} | m_{Ed} | a _{s,ru} | Lkn |
|-------|--------|-------|------------|-------------------|--------------------|----------|-------------------|-----|
| | | [m] | | | | [kNm/m] | Ž&{ Địá | |
| ST-7 | | | 30.43 | 61.40 | -5.18 | 35.61 | 2.35 | 1 |
| F01 | 759.00 | 10029 | 17.28 | -25.69 | -10.60 | 21.65 | 0.33 | 2 |
| F02 | 771.00 | 10029 | 16.84 | 34.82 | -11.08 | 27.92 | 1.23 | 7 |
| F03 | 723.50 | 10029 | 11.81 | -3.44 | 12.90 | 24.71 | 0.77 | 2 |
| F04 | 770.50 | 10028 | 21.29 | 17.38 | -8.43 | 29.72 | 1.49 | 2 |
| F05 | 770.00 | 10027 | 15.69 | 0.32 | 4.52 | 20.21 | 0.13 | 8 |
| F06 | 770.00 | 10024 | 12.76 | -0.72 | -8.75 | 21.51 | 0.31 | 8 |
| F07 | 769.00 | 10024 | 23.37 | 42.41 | -11.63 | 34.99 | 2.26 | 7 |
| F08 | 726.00 | 10019 | 10.03 | -10.71 | 10.58 | 20.47 | 0.16 | 8 |
| F09 | 728.32 | 10030 | 23.80 | 19.15 | -3.54 | 27.34 | 1.15 | 9 |
| F10 | 772.01 | 10023 | 21.13 | 39.65 | -1.10 | 22.23 | 0.41 | 6 |
| R01 | 752.42 | 10029 | 46.39 | 0.65 | -20.50 | 66.88 | 7.24 | 2 |
| R02 | 751.50 | 10029 | 33.30 | 3.72 | 8.03 | 41.33 | 3.22 | 2 |
| R03 | 751.50 | 10024 | 36.98 | 3.77 | -8.11 | 45.09 | 3.80 | 3 |
| R04 | 729.30 | 10024 | 17.08 | -8.87 | -7.76 | 23.86 | 0.65 | 4 |
| R05 | 729.30 | 10024 | 7.71 | -7.26 | 12.28 | 19.99 | 0.10 | 4 |
| R06 | 734.80 | 10024 | 22.82 | -6.39 | -5.19 | 27.04 | 1.11 | 5 |
| R07 | 734.80 | 10024 | 9.47 | -6.92 | 13.26 | 22.73 | 0.48 | 4 |
| R08 | 740.30 | 10024 | 22.25 | -6.56 | -5.36 | 26.63 | 1.05 | 4 |
| R09 | 740.30 | 10024 | 9.28 | -6.94 | 13.12 | 22.41 | 0.44 | 5 |
| R10 | 745.80 | 10024 | 22.89 | -7.02 | -5.67 | 27.48 | 1.17 | 5 |
| R11 | 745.80 | 10024 | 9.56 | -7.28 | 13.16 | 22.72 | 0.48 | 5 |
| R12 | 722.74 | 10018 | 3.51 | -30.87 | 43.70 | 47.21 | 4.13 | 6 |
| R13 | 752.50 | 10031 | 30.72 | 1.08 | -1.38 | 32.09 | 1.84 | 2 |
| R14 | 771.41 | 10018 | 24.50 | -27.45 | 8.10 | 26.89 | 1.08 | 2 |
| R15 | 750.40 | 10018 | 2.46 | -36.73 | -75.09 | 77.55 | 8.97 | 7 |
| R16 | 728.00 | 10018 | 8.18 | 41.23 | 83.34 | 91.52 | 11.30 | 8 |


D-4.1

ÙVPËÜPÄÄÛ¢4&\@@ã ÁÛ>å

Seite: 4-24

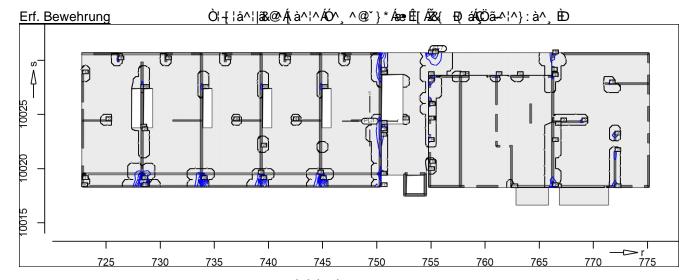
as,s,unten

Šê}*•à^¸^@*}*Á§ÁÉÜæ&@*}*Á§Á}¢^!^!AŠæ*^

Q[|ã,ã\}•č.^}ÁMÁCÈ€É&{ E)

Achsabstand erf. Bewehrung: $d'_{su} = 30 \text{ mm}$ Achsabstand vorh. Bewehrung: $d'_{su} = 30 \text{ mm}$ \tilde{O}_{i}^{*} } \tilde{a}^{*} \tilde{a}^{*} * \tilde{b}

Punkt	Х	У	$m_{r,Ed}$	$m_{s,Ed}$	$m_{rs,Ed}$	m_{Ed}	$a_{s,su}$	Lkn
		[m]				[kNm/m]	Ž&{ Ð()á	
ST-7			30.43	61.40	-5.18	66.58	7.19	1
F01	766.16	10030	-16.54	17.76	17.37	35.13	2.28	2
F02	750.40	10030	-33.52	11.34	17.53	20.51	0.17	2
F03	750.40	10023	-21.84	0.16	-21.37	21.06	0.24	6
F04	750.40	10020	-21.14	12.50	-19.85	31.14	1.70	3
F05	728.00	10030	0.10	20.01	-4.57	24.58	0.75	8
F06	771.50	10029	6.63	41.85	-6.32	48.17	4.28	9
F07	770.50	10028	19.90	19.65	-8.09	27.74	1.21	9
F08	769.00	10024	23.37	42.41	-11.63	54.03	5.20	7
F09	772.50	10022	-5.77	14.39	5.76	20.14	0.12	6
F10	771.50	10022	-4.54	15.58	-6.80	22.38	0.43	9
F11	772.01	10023	21.13	39.65	-1.10	40.75	3.13	7
R01	752.42	10025	-6.93	13.11	18.83	31.94	1.82	2
R02	750.40	10029	-117.63	45.10	3.33	45.19	3.82	2
R03	750.40	10024	-79.79	44.67	-13.54	46.97	4.09	3
R04	727.35	10027	-3.06	9.46	11.52	20.98	0.23	10
R05	745.80	10027	0.79	11.96	-7.49	19.45	0.02	4
R06	722.74	10030	3.00	56.01	11.94	67.95	7.41	8
R07	766.16	10031	-27.35	22.35	14.96	30.53	1.61	3
R08	751.00	10019	-4.25	10.23	10.02	20.24	0.13	8
R09	750.40	10018	2.46	-36.73	-75.09	38.36	2.77	7
R10	728.32	10018	-66.66	-324.62	22.94	-347.56	24.85	8


D-4.1

ÙVPËÜPÄÄÛ¢4&\@@ã ÁÛ>å

Seite: 4-25

as,r,oben

Šê}*•à^¸^@^`}*Á§ÁËÜ&&@`}*ÁŞÁ¸à\à^¦^¦AŠæ*^

Q[|ã,ã\}•č.^}ÁMÁQÈ€€Á&{ Ð

Achsabstand erf. Bewehrung: $d'_{ro} = 30 \text{ mm}$ Achsabstand vorh. Bewehrung: $d'_{ro} = 30 \text{ mm}$ $\tilde{O}()^*$ a^* a^* a^* a^* a^* a^* a^* a^*

Punkt	х	V	m	m	m	m_{Ed}	a	Lkn
i ulikt	^	y [m]	$m_{r,Ed}$	$m_{s,Ed}$	$m_{rs,Ed}$	[kNm/m]	a _{s,ro} Ž&{ Ð(á	LKII
F01	766.16	10029	-20.03	-15.21	20.49	-40.53	3.10	3
F02	763.00	10029	-19.22	-41.54	14.49	-33.71	2.08	3
F03	761.04	10029	-33.58	-50.36	3.76	-37.34	2.61	5
F04	758.00	10029	-23.82	-40.46	-11.99	-35.81	2.38	2
F05	754.78	10029	-41.56	-23.06	-12.56	-54.12	5.21	
F06	754.78	10023	-22.11	-19.55	15.51	-37.63	2.66	2
F07	750.40	10023	-31.77	-13.30	-9.28	-41.05	3.18	2 2 3
F08	750.40	10019	-57.89	-16.61	-21.04	-78.94	9.20	2
F09	754.78	10031	-69.77	-13.51	-4.94	-74.72	8.50	2
F10	755.16	10031	-71.54	-12.25	-10.54	-82.09	9.72	2 5
F11	750.40	10029	-57.43	11.65	14.42	-71.85	8.04	5
F12	757.69	10029	-13.93	-32.72	-7.16	-21.09	0.25	3
F13	754.78	10026	-28.80	-4.27	3.97	-32.77	1.94	11
F14	754.78	10023	-19.42	-1.68	7.32	-26.75	1.06	2
F15	750.40	10024	-37.47	-2.60	-25.71	-63.18	6.64	3
F16	754.88	10021	-26.98	-24.85	6.13	-33.11	1.99	2
F17	754.88	10025	-31.02	-10.88	1.61	-32.63	1.92	11
F18	771.50	10028	-34.88	-54.89	-0.91	-35.80	2.38	12
F19	754.78	10028	-32.91	-11.90	1.75	-34.66	2.21	11
F20	767.00	10024	-12.41	-27.86	9.56	-21.98	0.38	8
F21	754.78	10025	-23.63	0.77	2.32	-25.95	0.95	11
F22	725.00	10024	-20.88	-40.41	-1.19	-22.07	0.39	12
F23	766.50	10024	-14.10	-2.02	9.88	-23.98	0.66	8
F24	728.32	10024	-24.95	-3.11	-0.66	-25.61	0.90	4
F25	766.24	10023	-29.26	-5.03	1.93	-31.18	1.71	12
F26	739.32	10022	-18.54	-3.03	-1.60	-20.14	0.12	5
F27	744.82	10019	-110.84	-92.48	-5.79	-116.62	15.70	8
F28	739.32	10019	-98.41	-81.65	-5.04	-103.45	13.35	2
F29	733.82	10019	-111.99	-93.50	-7.65	-119.64	16.25	8
F30	728.32	10019	-158.15	-133.75	-6.49	-164.65	25.28	3
F31	722.84	10019	-18.37	-54.78	4.91	-23.28	0.56	6
F32	766.16	10029	-26.17	-18.76	7.06	-33.23	2.00	3

R08

R09

R10

R11

R12

R13

R14

R15

R16

R17

R18

739.44

744.94

722.74

755.16

772.00

766.50

762.47

754.78

750.40

750.40

728.32

10027

10027

10018

10031

10018

10018

10018

10020

10019

10018

10018

-27.19

-27.35

-62.48

-43.63

-58.57

-14.96

-18.58

-40.76

-66.66

2.46

3.51

Auftrags-Nr. Position Imarter S+puller Ingenieurgesellschaft mbH								
2023 30	00	D-4.1		ÙVPËÜPÆ	Ù04&\@ā, ÁÙ>	å	;	Seite: 4-26
Punkt	х	y [m]	$m_{r,Ed}$	$m_{\text{s},\text{Ed}}$	$m_{\text{rs},\text{Ed}}$	m _{Ed} [kNm/m]	a _{s,ro} Ž&{ Ð) á	Lkn
F33	766.24	10028	-29.82	-13.31	10.94	-40.76	3.14	2
F34	766.24	10018	-68.09	-25.52	-10.83	-78.92	9.19	2
F35	739.06	10020	-23.93	-15.20	-10.08	-34.02	2.12	3
F36	744.56	10020	-26.46	-16.82	-11.35	-37.81	2.68	12
F37	772.01	10022	-36.40	-18.85	-0.57	-36.96	2.55	8
F38	772.01	10023	-45.31	-46.98	-1.82	-47.14	4.12	8
F39	768.95	10024	-28.48	-68.03	-9.32	-37.80	2.68	8
F40	736.80	10024	-19.49	-32.26	0.88	-20.36	0.15	
F41	742.30	10024	-19.34	-32.09	0.93	-20.27	0.13	8 2 2 2 2
F42	754.88	10026	-37.36	-15.73	3.83	-41.18	3.20	2
F43	722.84	10029	-7.26	-19.77	27.02	-34.28	2.16	2
F44	726.13	10030	-30.96	-33.78	-5.54	-36.49	2.48	2
F45	736.02	10030	-22.71	-27.51	2.32	-25.03	0.82	12
F46	730.52	10030	-31.09	-36.55	2.40	-33.49	2.04	12
F47	741.52	10030	-22.68	-27.37	2.37	-25.05	0.82	3
F48	747.02	10030	-24.66	-30.43	1.79	-26.45	1.02	12
F49	766.26	10031	-43.58	-27.61	9.60	-53.18	5.06	3
R01	752.42	10025	-6.94	13.09	18.84	-25.79	0.92	3 5
R02	750.40	10029	-118.12	44.67	3.02	-118.32	16.01	5
R03	750.40	10024	-80.73	43.57	-12.95	-84.58	10.13	2
R04	728.20	10024	-18.80	5.22	-5.31	-24.11	0.68	4
R05	728.20	10027	-33.10	7.03	-0.29	-33.12	1.99	4
R06	728.44	10027	-35.28	6.81	-1.76	-35.74	2.37	10
R07	733.94	10027	-27.17	5.80	-11.08	-38.24	2.75	4

5.74

5.97

-30.87

-3.03

4.26

-11.14

-37.35

-23.68

-36.73

-324.62

-5.65

-11.01

-10.99

43.70

-12.93

-12.45

5.47

14.42

21.64

-37.81

-75.09

22.94

-38.20

-38.35

-40.20

-75.41

-56.08

-64.04

-29.39

-40.23

-78.57

-72.63

-89.60

2.74

2.77

3.05

8.62

5.52

6.78

1.45

3.05

9.14

8.16

10.97

5

4

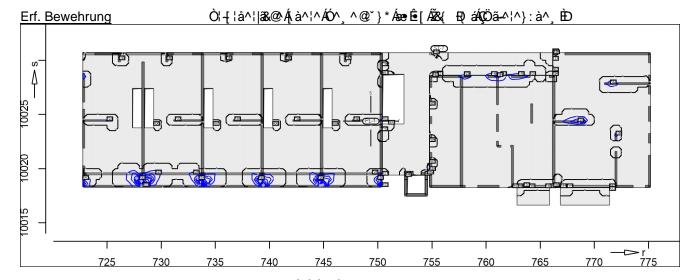
6

2

11

7

8


D-4.1

ÙVPËÜPÄÄÛ¢4&\@@ã ÁÛ>å

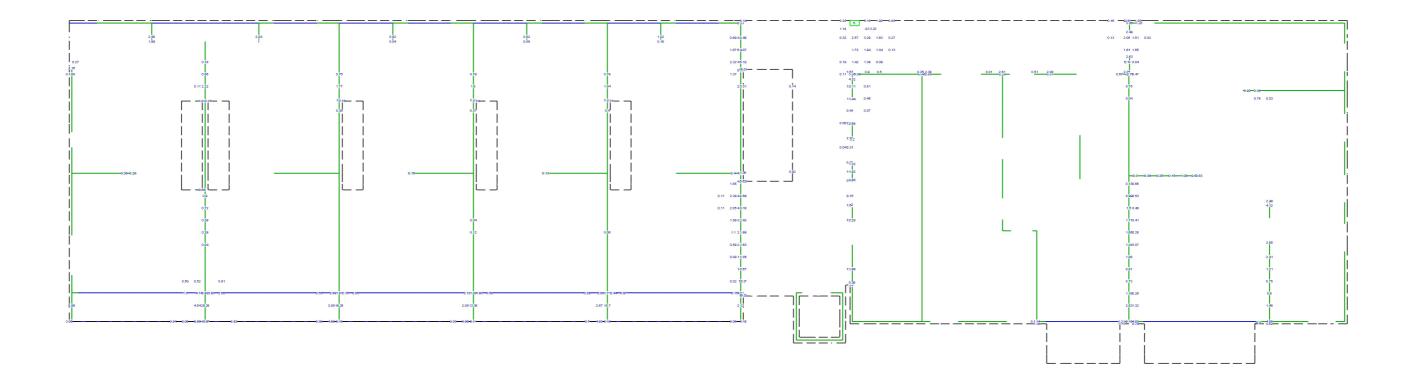
Seite: 4-27

as,s,oben

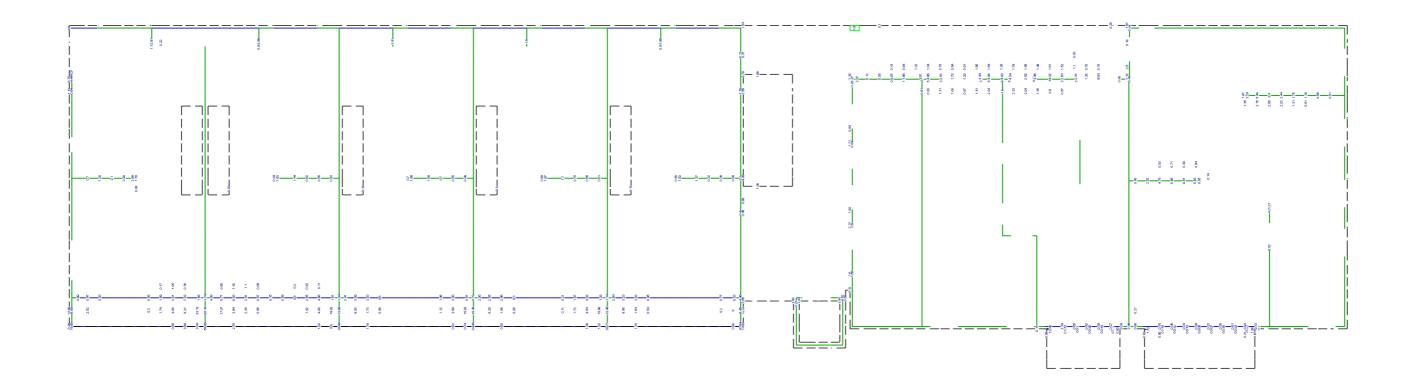
Šê}*•à^¸^@`}*Á§Á;ËÜæ&@č}*Á§Á;à^¦^¦ÆŠæ*^

Q[|ã,ã\}•č.~\}ÁMÁ\ÈE€Á&{ Ð

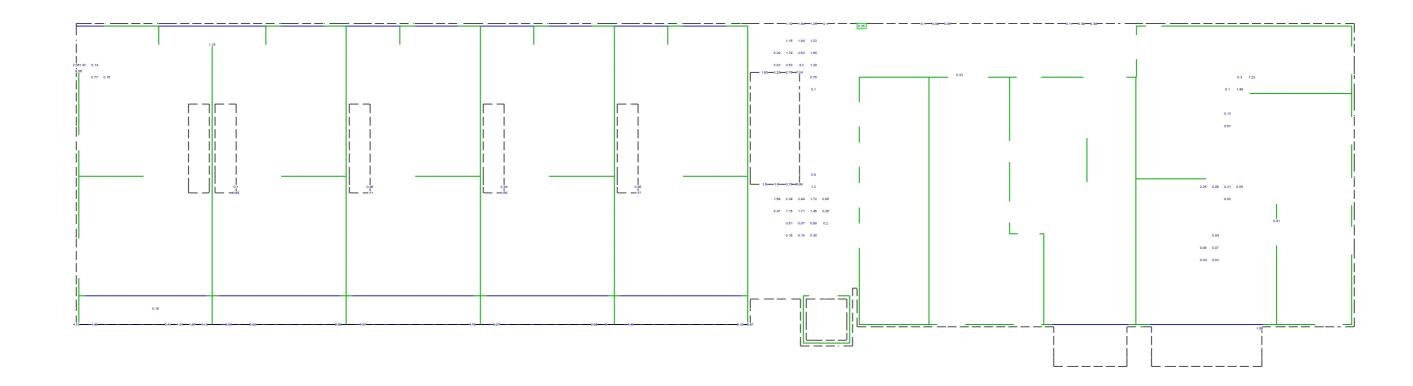
Achsabstand erf. Bewehrung: $d'_{so} = 30 \text{ mm}$ Achsabstand vorh. Bewehrung: $d'_{so} = 30 \text{ mm}$ $\tilde{O}()^* \hat{a}_s - \hat{a}_s + \hat{b}_s = \hat{a}_s + \hat{b}_s + \hat{b}_s = \hat{a}_s + \hat{b}_s +$

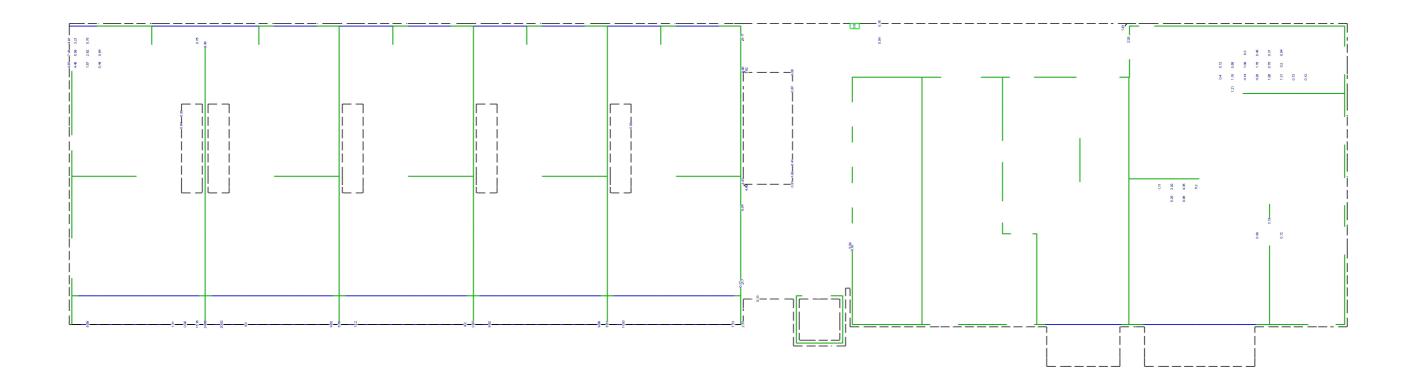

			, ,	, .				
Punkt	Х	у [m]	$m_{r,Ed}$	$m_{s,Ed}$	$m_{rs,Ed}$	MEd	a _{s,so} Žec Doá	Lkn
F01	750.40	[m] 10030	-41.13	-16.19	5.73	[kNm/m] -21.91	Ž&{ Địá 0.37	2
F02	766.16	10030	-19.55	-15.77	20.81	-36.58	2.50	5
F03	764.06	10029	-5.83	-26.87	12.78	-39.65	2.96	5
F04	763.00	10029	-19.22	-41.54	14.49	-56.03	5.51	3
F05	754.78	10023	-29.33	-22.21	8.98	-31.20	1.71	2
F06	754.78	10020	-29.55	-19.55	15.51	-35.07	2.27	2
F07	754.78	10023	-21.72	-30.66	6.58	-37.24	2.60	2 2
F08	750.40	10021	-29.28	-16.95	-8.53	-25.47	0.88	3
F09	764.00	10024	0.88	-21.32	-0.36	-21.47	0.30	5
F10	755.16	10010	-71.54	-12.25	-10.54	-22.80	0.49	2
F11	750.40	10031	-36.62	-0.91	24.38	-25.29	0.85	2
F12	761.37	10030	-13.87	-44.23	3.67	-47.90	4.24	3
F13	750.40	10023	-38.29	-4.28	-24.78	-29.06	1.40	11
F14	767.50	10024	5.99	-25.35	-3.51	-27.41	1.16	2
F15	765.50	10018	-1.38	-23.35	-3.51 -4.15	-27.50	1.17	11
F16	758.00	10018	-19.86	-48.62	- 4 .13	-54.02	5.19	3
F17	766.16	10028	-20.63	-46.02 -5.72	-3.40 14.97	-20.68	0.19	3
F18	763.00	10030	-20.03 -8.55	-42.08	5.70	-20.08 -47.78	4.22	3
F19	760.50	10029	-7.14	-42.08 -46.87	-3.16	-50.03	4.57	11
F20	758.00	10029	-7.14 -7.91	-46.67 -38.41	-5.10 -5.43	-43.84	3.61	3
F21	755.50	10029	-23.61	-18.16	-5.43 -1.99	-43.64 -20.15	0.12	2
F21	755.50	10029	-34.88	-18.16 -54.89	-0.91	-55.81	5.48	12
F23	768.50	10028	-26.50	-81.05	0.38	-81.43	9.61	12
F23 F24	700.50	10024	-20.88	-40.41	-1.19	-61.43 -41.59	3.26	12
F24 F25	749.50	10024	-20.88 -0.72	-40.41 -16.82	-7.93	-41.59 -24.74	0.77	7
	749.50	10020	-0.72 -11.76	-10.62 -40.51	-7.93 -11.36	-24.74 -51.87	4.86	9
F26								9
F27 F28	729.50	10020	-8.21	-53.38 67.77	5.91	-59.29	6.03	7
F20 F29	750.00	10019	2.72	-67.77	-9.97	-77.74 124.11	9.00	
	744.50	10019	-25.77	-122.17	-11.94	-134.11	18.98	8
F30	739.00	10019	-23.17	-107.50	-10.37	-117.87	15.93	2
F31	733.50	10019	-25.94	-123.88	-14.54	-138.42	19.82	8
F32	728.00	10019	-34.17	-178.37	-17.60	-195.97	33.13	3

Auftrags-Nr. Position 2023 300 D-4.1


ÙVPËÜPĀÄÛ¢4&\@`ā[ÁÛ>å

Seite: 4-28


Punkt	Х	У	$m_{r,Ed}$	$m_{s,Ed}$	$m_{\text{rs},\text{Ed}}$	m_{Ed}	$a_{s,so}$	Lkn
		[m]				[kNm/m]	Ž&{ Đ(á	
F33	763.50	10018	0.78	-24.03	3.62	-27.65	1.19	2
F34	766.16	10029	-26.17	-18.76	7.06	-25.81	0.93	3
F35	766.24	10018	-68.09	-25.52	-10.83	-36.36	2.46	2
F36	772.01	10023	-45.31	-46.98	-1.82	-48.80	4.38	8
F37	731.30	10024	-17.17	-29.21	1.42	-30.63	1.63	2
F38	736.80	10024	-19.49	-32.26	0.88	-33.13	1.99	8
F39	742.30	10024	-19.34	-32.09	0.93	-33.02	1.97	2
F40	747.80	10024	-19.09	-31.78	0.17	-31.95	1.82	8 5
F41	761.05	10028	-30.17	-61.19	3.11	-64.30	6.82	
F42	755.08	10028	-40.62	-30.75	-8.28	-39.03	2.87	2 2
F43	726.13	10030	-30.96	-33.78	-5.54	-39.31	2.91	
F44	736.02	10030	-22.71	-27.51	2.32	-29.83	1.51	12
F45	730.52	10030	-31.09	-36.55	2.40	-38.95	2.86	12
F46	741.52	10030	-22.68	-27.37	2.37	-29.74	1.50	3
F47	747.02	10030	-24.66	-30.43	1.79	-32.22	1.86	12
F48	766.26	10031	-43.58	-27.61	9.60	-37.20	2.59	3
F49	752.58	10019	-7.43	-39.91	-1.32	-41.24	3.21	2
R01	750.40	10029	-28.71	-6.17	-32.35	-38.52	2.79	5
R02	750.40	10024	-5.83	-25.62	22.96	-48.59	4.35	3
R03	751.00	10024	12.50	-11.64	-17.97	-29.60	1.48	3
R04	754.36	10019	-6.73	-19.84	9.32	-29.17	1.41	2
R05	752.70	10019	-1.87	-21.80	-7.54	-29.34	1.44	11
R06	729.30	10024	7.71	-7.26	12.28	-19.54	0.03	5
R07	734.80	10024	9.47	-6.92	13.26	-20.18	0.12	4
R08	740.30	10024	9.28	-6.94	13.12	-20.06	0.10	5
R09	745.80	10024	9.50	-7.33	13.17	-20.50	0.17	4
R10	722.74	10019	0.16	-94.97	-5.80	-100.76	12.88	8
R11	766.16	10031	-40.63	-24.66	7.66	-32.32	1.87	3
R12	771.41	10018	-6.63	-21.52	-18.99	-40.52	3.10	11
R13	771.41	10018	-3.96	-17.05	6.94	-24.00	0.67	2
R14	766.87	10018	14.92	-28.03	-6.96	-31.27	1.72	5
R15	765.87	10018	9.12	-24.98	2.65	-25.75	0.92	5
R16	762.86	10018	6.51	-27.09	-2.35	-27.93	1.24	2
R17	762.47	10018	-13.83	-5.56	14.57	-20.13	0.11	2
R18	754.78	10020	-18.58	-37.35	21.64	-58.99	5.98	2
R19	754.60	10020	-1.32	-19.12	4.37	-23.49	0.59	2
R20	752.46	10019	-0.99	-26.54	3.75	-30.29	1.58	11
R21	750.40	10019	-40.73	-23.66	-37.82	-61.48	6.37	2
R22	750.40	10013	2.46	-36.73	-75.09	-111.82	14.83	7
R23	728.32	10018	-66.66	-324.62	22.94	-347.56	58.06	8
1123	120.02	10010	-00.00	-JZ+.UZ	44.3 4	-J -1 .JU	30.00	0


: `} W YbVYa Yggi b[Erforderliche Bewehrung as,erf (Differenzbew.)		Modell	ÖÜ ÌFÁÖ^&\ ^Á-à^\ÁÒÕ	т	æi•oæàkÁFKFÍÍ
Vorhandene Bew. as,vorh = 2.27 (Grund+Zulagen)			Bauvorhaben		'	at Catalian In II
Beton C 30/37	aus allen Nachweisen	m-p		ÙVPËÜPÄÄÄÜ¢4&\@`ãĮ ÁÜ>å		
BewAbstand d' = 30 mm	¦EÜa&@č}*Án;à^}ÁnjÃ&{ EQá				Datum	13.02.2024
Bauteildicke h = 20.00 cm	Max = 25.28 (Kn. 371), Min = 0 (Kn. 11)	m+p Ingenieurgesellscha	ft mbH - Pockel	lsstr.7 - 38106 Braunschweig - Tel. 0531 / 238 32 - 0	Seite	4-29

:`}WYYbVYa Yggi b[Erforderliche Bewehrung as,erf (Differenzbew.)	Modell	ÖË ÈÁÖ^&\^Á-à^¦ÁÒÕ		æi•cæàkÁFKFÍÍ	
Vorhandene Bew. as,vorh = 2.27 (Grund+Zulagen)			Bauvorhaben		'	æ • Cæanwarntii
Beton C 30/37	aus allen Nachweisen	m+p		ÙVPËÜPÆÄÜ¢4&\@`ãį ÁÛ>å	_	40.00.0004
BewAbstand d' = 30 mm	•ËÜä&@č}*Áįà^}Á§AŽ&{ Ð(á				Datum	13.02.2024
Bauteildicke h = 20.00 cm	Max = 58.06 (Kn. 71), Min = 0 (Kn. 11)	m+p Ingenieurgesellscha	ft mbH - Pockel	sstr.7 - 38106 Braunschweig - Tel. 0531 / 238 32 - 0	Seite	4-30

: `} WY YbVYa Yggi b[Erforderliche Bewehrung as,erf (Differenzbew.)		Modell	ÖÜ È ÄÖ^&\ ^Á-à^\ÁÒÕ	т	æi•cæàkÁFKFÍÍ
Vorhandene Bew. as,vorh = 2.27 (Grund+Zulagen)			Bauvorhaben		'	at • Casanarni I
Beton C 30/37	aus allen Nachweisen	m-p		ÙVPËÜPÄÄÄÜ¢4&\@`ã(AÛ)>å		
BewAbstand d' = 30 mm	¦EÜa&@č}*Á}c^}Áş,Ã&{ Ð(á				Datum	13.02.2024
Bauteildicke h = 20.00 cm	Max = 11.3 (Kn. 288), Min = 0 (Kn. 11)	m+p Ingenieurgesellscha	ft mbH - Pockel	sstr.7 - 38106 Braunschweig - Tel. 0531 / 238 32 - 0	Seite	4-31

	:`}W/YbVYaYggib[Erforderliche Bewehrung as,erf (Differenzbew.)		Modell	ÖÜ ÈÄÖ^&\^Ásà^\ÁÒÕ	_	æi•cæàkÁFKFÍÍ
1	Vorhandene Bew. as,vorh = 2.27 (Grund+Zulagen)			Bauvorhaben		'	at • Casanarni I
1	Beton C 30/37	aus allen Nachweisen	m-p		ÙVPËÜPÄÄÄÜ¢1&\@`ã[ÁÛ>å		
1	BewAbstand d' = 30 mm	•ËÜa&@č}*Á}c^}ÁşÃg&{ Ð;á				Datum	13.02.2024
	Bauteildicke h = 20.00 cm	Max = 24.85 (Kn. 71), Min = 0 (Kn. 11)	m+p Ingenieurgesellsch	aft mbH - Pocke	lsstr.7 - 38106 Braunschweig - Tel. 0531 / 238 32 - 0	Seite	4-32

Auftrags-Nr.

Position

D-4.1

ÙVPËÜPÄÄÛ¢4&\@ã ÁÛ>å

Seite: 4-33

Querkraft Pl-As-Iso

Querkraftbemessung Plattenbereiche

PL-1

Querkraftbemessung der Platte (Isolinien)

Querkraftbemessung nach DIN EN 1992-1-1

Beton C 30/37, Betonstahl B 500SA

Õ^• c^ā,•\4¦} `} * ÁÛ `æ: ãc

Druckstrebenneigung wurde vom Programm optimiert.

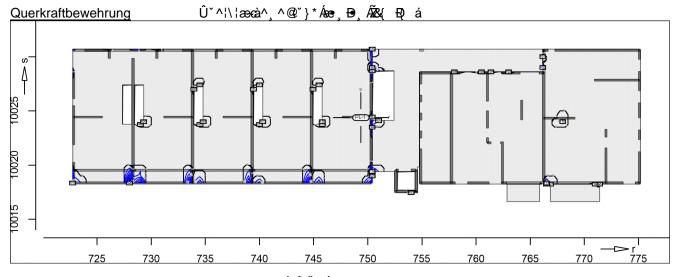
Mindestbewehrung (9.3.2) wurde nicht ermittelt.

Dicke konstant h = 20.00 cm

Kombinationen

Tæi*^à^}å^ÁS[{àãjæaãj}^}Ájæ&@ÄÖOÞÁÖÞÁFJJ€

Einwirkungsname Ew


Lastkombinationsnummer Lkn

ç[| @ | | • & @ } a ^ Aç ^ | ê } a ^ | | a & @ A Da , a \ ` } *

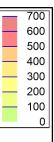
Öâ ÁÓ c đãt } * Á j : ^|} ^ L Šæ cê || Á j } ^ L @ da Áeiner Einwirkung wird mit diesem

Ausgabeformat nicht dokumentiert.

Ew	Gk	Qk.N	Qk.W
Lkn	Grundkombination		
1-8	1.35	1.50 !	0.90

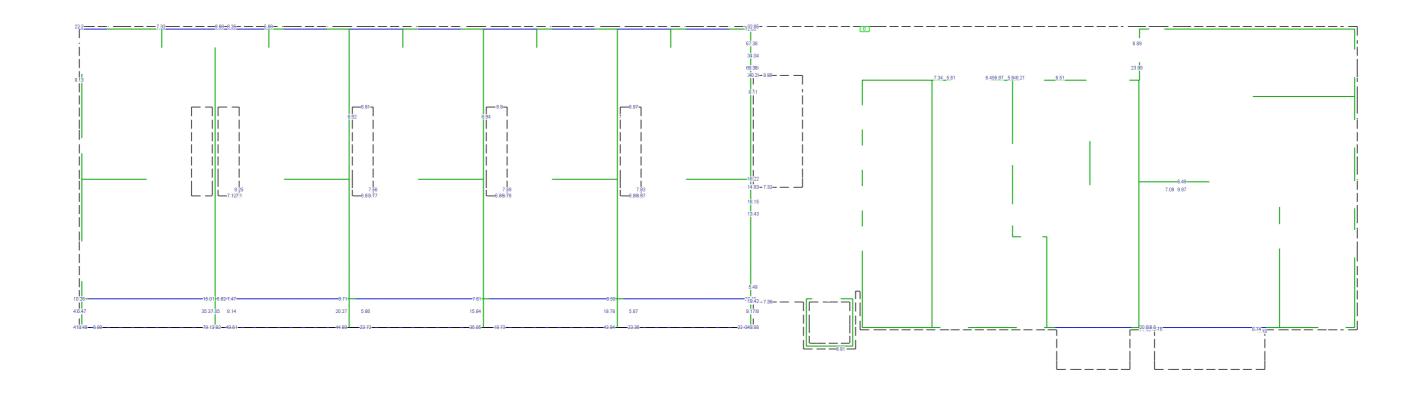
Q [|ā,ā^}•c~^}ÁMÄ,Ě,€Á& Ð

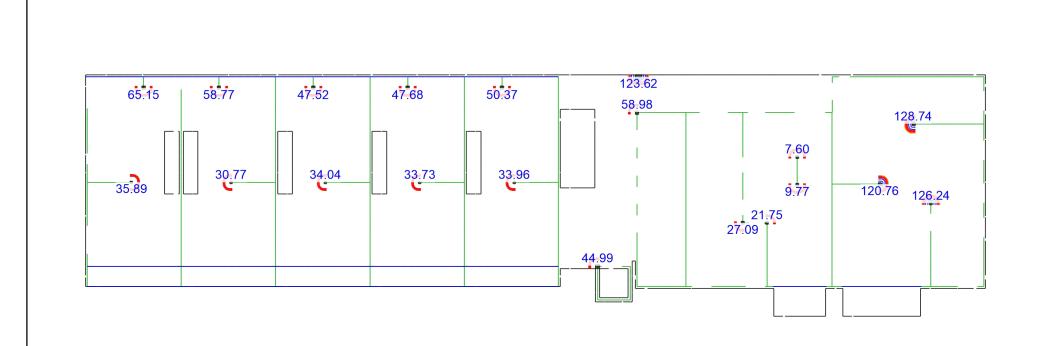
Punkt	Х	у	vEd	vEd,res	vRd,c	vRd,max	asw/sw	Summe	Lkn
		[m]				[kN/m]		Ž&{ Ð, á	
F01	766.16	10030 r	-75.9	121.2	92.2 m	401.6	0.00	6.89	4
		S	-94.4		92.2 m	401.6	6.89		
F02	766.16	10029 r	-43.6	214.2	92.2 m	401.6	0.00	23.99	4
		S	-209.7		92.2 m	549.3	23.99		
F03	763.00	10029 r	13.5	111.2	92.2 m	497.3	0.00	6.51	1
		S	110.3		92.2 m	497.3	6.51		
F04	761.37	10029 r	105.4	118.8	92.2 m	497.3	6.21	6.21	4
		S	54.8		92.2 m	497.3	0.00		
F05	760.50	10029 r	-48.0	127.5	92.2 m	497.3	0.00	6.97	2
		S	118.1		92.2 m	497.3	6.97		
F06	758.00	10029 r	13.5	125.1	92.2 m	497.3	0.00	7.34	1



Auftrags-Nr.	Position	Ingenieurgesellschaft mbH	
2023 300	D-4.1	ÙVPËÜPÆÄÛø4&\@@{\AÛ>å	Seite: 4-34

Lkn	Summe Ž&{ Ð; á	asw/sw	vRd,max [kN/m]	vRd,c	vEd,res	vEd		у [m]	Х	Punkt
		7.34	497.3	92.2 m		124.4	S			
8	52.65	5.49	497.3	92.2 m	349.3	93.2	r	10029	750.40	F07
		47.16	607.6	92.2 m		336.6	S			
1	16.15	0.00	497.3	92.2 m	188.0	86.8	r	10024	750.40	F08
		16.15	495.0	92.2 m		-166.8	S			
3	6.74	6.74	401.6	92.2 m	93.3	-92.3	r	10018	771.00	F09
		0.00	497.3	92.2 m		-13.7	S			
7	9.97	0.00	401.6	92.2 m	133.0	-2.5	r	10024	768.00	F10
		9.97	410.4	92.2 m		-132.9	S			
3	20.68	11.40	539.1	92.2 m	234.8	174.3	r	10018	766.50	F11
		9.28	497.3	92.2 m		-157.3	S			
1	123.81	42.89	745.0	92.2 m	650.0	-387.8	r	10019	750.40	F12
		80.92	631.4	92.2 m		-521.6	S			
1	40.20	17.02	622.9	108.2	295.4	212.4	r	10029	750.40	R01
		23.18	545.2	92.2 m		-205.3	S			
2	18.22	10.20	414.7	92.2 m	173.4	134.2	r	10024	750.40	R02
		8.01	401.6	92.2 m		-109.7	S			
3	7.32	7.32	401.6	92.2 m	104.7	100.3	r	10024	751.00	R03
		0.00	401.6	92.2 m		-30.0	S			
4	7.12	7.12	401.6	92.2 m	99.5	97.5	r	10024	729.00	R04
		0.00	401.6	92.2 m		20.0	S			
5	8.25	0.00	401.6	92.2 m	119.2	37.9	r	10024	729.30	R05
		8.25	401.6	92.2 m		113.0	S			
4	6.92	6.92	401.6	92.2 m	96.4	94.8	r	10027	733.94	R06
		0.00	401.6	92.2 m		17.3	S			
5	6.97	6.97	401.6	92.2 m	96.1	95.5	r	10024	734.50	R07
		0.00	401.6	92.2 m		11.2	S			
4	7.56	0.00	401.6	92.2 m	109.5	35.6	r	10024	734.80	R08
		7.56	401.6	92.2 m		103.5	S			
4	6.91	6.91	401.6	92.2 m	94.8	94.7	r	10027	734.50	R09
		0.00	401.6	92.2 m		-5.9	S			
4	6.94	6.94	401.6	92.2 m	96.6	95.0	r	10027	739.44	R10
		0.00	401.6	92.2 m		17.1	S			
4	6.85	6.85	401.6	92.2 m	94.5	93.9	r	10024	740.00	R11
		0.00	401.6	92.2 m		11.2	S			
5	7.59	0.00	401.6	92.2 m	109.9	35.6	r	10024	740.30	R12
		7.59	401.6	92.2 m		103.9	S			
5	6.90	6.90	401.6	92.2 m	94.7	94.6	r	10027	740.00	R13
		0.00	401.6	92.2 m		-5.9	S			
5	7.00	7.00	401.6	92.2 m	97.5	95.8	r	10027	744.94	R14
		0.00	401.6	92.2 m		17.8	S			
4	6.97	0.00	401.6	92.2 m	139.3	73.7	r	10024	745.80	R15
		6.97	497.3	92.2 m		118.3	S			
4	7.83	0.00	401.6	92.2 m	113.4	37.0	r	10024	745.80	R16
		7.83	401.6	92.2 m		107.2	S			
5	6.97	6.97	401.6	92.2 m	95.6	95.5	r	10027	745.50	R17
		0.00	401.6	92.2 m		-6.0	S			
6	47.66	30.18	573.6	92.2 m	299.4	243.6	r	10018	722.74	R18
		17.48	507.2	92.2 m		-174.1	S			
3	32.85	32.85	719.8	92.2 m	330.4	319.7	r	10031	750.40	R19
		0.00	401.6	92.2 m		83.4	s			
3	7.13	7.13	401.6	92.2 m	104.1	97.7	r	10018	771.41	R20
		0.00	497.3	92.2 m		-36.1	S			
3	9.16	9.16	401.6	92.2 m	130.3	125.5	r	10018	766.87	R21
		0.00	401.6	92.2 m		35.0	s			
3	17.45	5.96	497.3	92.2 m	202.0	101.0	r	10018	766.50	R22
		11.50	541.1	92.2 m		-174.9	s			


Auftrags	-Nr.	Position	on			sellschaft mbH			
2023 300		D-4.1	D-4.1 ÙVPËÜ		PÁÄÜ04&\@@a[/		Seite: 4-35		
Punkt	х	y [m]	vEd	vEd,res	vRd,c	vRd,max [kN/m]	asw/sw	Summe Ž&{ Ð} á	Lkn
R23	754.00	10017 r s	-4.1 -94.6	94.7	92.2 m 92.2 m	401.6 401.6	0.00 6.91	6.91	3
R24	750.40	10019 r s	-52.4 -268.3	273.4	92.5 92.2 m	497.3 586.0	0.00 34.68	34.68	4
R25	750.40	10019 r	459.5 -132.3	478.1	92.2 m 100.9	626.2 497.3	69.58 7.80	77.38	1
R26 m: Tājå^•	728.00 ç∧lo∮æ&@#ÖΦ#Ö	10018 r \$ 100∫£££££60	-232.8 -357.7 Đà D¼ æi*^à^} å	426.8	98.0 110.5	567.0 612.1	28.20 51.00	79.20	7



Querkraftbemessung	Ó^{ ^••`}*•``^¦\¦æókşÒåÊ^•Áxĕ•ÁV¦æ*-ê@t\^ãø•}æ\$			Modell Bauvorhaben	ÖË Ë ÁÖ^&\^Ásà^¦ÁÒÕ 2023 300 ÙVPËÜPÁÄÄÜ¢!&\@`ã; ÁÜ>å		aai•oaaaìk√aFkFíÍ 13.02.2024
	-		•			Datum	13.02.2024
Max = 649.99, $Min = 0$, $Step = 100$		m+p Ingenieurgesellschaft mbH - Pockelsstr.7 - 38106 Braunschweig - Tel. 0531 / 238 32 - 0			Seite	4-36	

MicroFe 2022.052

Querkraftbemessung	Û`^¦\¦ææà^¸^@`}*Á數иÁæĕ•Áæ∦^}Áræ&@,^ãr^}Á		Modell Bauvorhaben	ÖÜÜFÄÖ^&\^Ásà^¦ÁÕÕ 2023 300 ÙVPÜJPÄÄܤ4&\@A(ÄÜ>å	T Datum	æi•cæàk√aFkFÍÍ 13.02.2024
Max = 123.81, $Min = 0$		m+p Ingenieurgesellschaft mbH - Pockelsstr.7 - 38106 Braunschweig - Tel. 0531 / 238 32 - 0				4-37

Nachweis der Durchstanzstellen Tæi*^à^}å^ÄÖˇ¦&@æaj:\¦æok\Òå/為/凝Þá		Modell Bauvorhaben	ÖË ÈÁÖ^&\^Á>à^¦ÁÒÕ 2023 300 ÙVPËÜPÁÄÄÜ¢4&\@`ā(ÁÜ>å	T	æi•œaùk√aFkGG€ 13.02.2024
	m+p Ingenieurgesellschaft m	Seite	4-38		

Position Auftrags-Nr. 2023 300 D-4.1 Seite: 4-39

Durchstanzstellen-Tab

Nachweis der Durchstanzstellen

DS-1

Durchstanznachweis nach DIN EN 1992-1-1

<u>Angaben</u>

Beton C 30/37, Betonstahl B 500MA

Šæ• c^ā, |^ãč } * • √ê&@K

Wandecke	а	=	24.0	cm
	b	=	24.0	cm
Plattendicke	h_0	=	20.0	cm
Tãod ÈÁn ceasãn & @ Áp `c @ 4 @	d_m	=	17.0	cm
Šê} *•à^, ^@`}*	$a_{s,m}$	=	2.74	&(I D)
Šê}*•à^¸^@`}*•*¦æå	l,vorh	=	0.16	%
	l,zul	=	1.96	%
Tæi*ÈÄÖˇ¦&@eæ):\¦æec	V_{Ed}	=	45.0	kN
Šæ¢^¦@4@}*•~æ\q[¦		=	1.20	

Nachweis

Keine Durchstanzbewehrung Asw erforderlich.

Ø⊳¦ÁsanÁ, æi*^à^}å^ÁÓ^|æ•č}*••ãčæāā;}Á¸`¦å^ÁsanÁ, ãcd^¦^ÁŠê}*•à^¸^@^`}*Á

asm an der Oberseite à^ l>& • 2&@2 dÈ

ÖāN•^ÁŠê}*•à^. ^@`}*ÁãróÁ§}^!@aþàÁå^•Át^•æ∉c^}Áê`i^!^}ÁÜ`}å•&@jãæ•Á

a): [| å | ^ | Á | å Áæ i ^ | @ a) Ádieses Rundschnitts zu verankern.

Òaj^ÁÛ⇔c^}\[]-ç^\•œî*}*Á, āååAja&@Áa^\>&\•a&@àtdÈ Öa^ÁÖ*¦&@@a}:\¦æoÁXÒåÁj*¦å^Áæ{ÁU⇔c^}aaj•&@;aaoÁausgewertet.

Mindestbewehrung (NCI Zu 9.4.3(2)) wurde à^¦>& • 3&@ at dE

Kombinationen

Tæi*^à^}å^ÁS[{àã|æeā[}^}Á|æ&@ÁÖOD•ÁÖÞÁFJJ€

Einwirkungsname Ew

Lkn Lastkombinationsnummer

c[| @ | | • & @ } a^ Aç^ | ê } a^ | | a& @ AOa _ a \ ` } *

Öðl ÁÓ v ð ð ð ' * Á ð : ^|} ^ ¦ Á ð e cê|| Áð } ^ ¦ @ d à Áeiner Einwirkung wird mit diesem

Ausgabeformat nicht dokumentiert.

Ew	Gk	Qk.N	Qk.W	
Lkn	Grundkombination			
1	1.35	1.50 !	0.90	

Rund- schnitt	Abstand [cm]	u [m]	vEd	vRd,c	vRd,max ŽÞÐ}{ á	minAsw	erfAsw Ž&{ á
Ucrit	34.00	1.01	0.313 m	0.542			•

Auttrags-Nr.	Position	Ingenieurgeseilschaft mbH	
2023 300	D-4.1	ÙVPËÜPÆÄÛ¢4&\@ãį ÁÛ>å	Seite: 4-40

DS-2 Durchstanznachweis nach DIN EN 1992-1-1

<u>Angaben</u> Beton C 30/37, Betonstahl B 500MA

Šæ• c^ā |^āc` } * • √ê&@K

Rechteck	b(r)	=	38.0	cm
	h(s)	=	20.0	cm
Plattendicke	h_0	=	20.0	cm
Tãod ÉÁn cæasãn & @ ÁP `c @ 4 @	d_{m}	=	17.0	cm
Šê}*•à^, ^@*}*	a _{s,m}	=	4.38	&(E)
Šê}*•à^¸^@`}*•*¦æå	l,vorh	=	0.26	%
	l,zul	=	1.96	%
Tæi*ÈÄÖ`¦&@œa);∖¦æec	V_{Ed}	=	123.6	kN
Šæ• c^\@4@}*•~æ\d\		=	1.50	

Durchstanzbewehrung Asw ist erforderlich. **Nachweis**

> Ø>¦ÁsanÁ, æi*^à^}å^ÁÓ^|æ•č}*••ãčæāā;}Á¸`¦å^ÁsanÁ, ãcd^¦^ÁŠê}*•à^¸^@`}*Á asm an der Oberseite à^ l>& • 3&@2 dÈ

ÖāN•^ÁŠê}*•à^、^@^`}*ÁãróÁ§}^¦@aqàÁå^•Át^•æ(c^}Áê`i^¦^}ÁÜ`}å•&@,ãæ•Á

a): `[¦å}^}Á'}åÁsě i ^¦@spàÁdieses Rundschnitts zu verankern.
Òā ^ÁÜ>c ^}\[] -ç^!•œ̂!\`}*Á; ãåÁý æ‰sé\-&&•æådè
ÖæÁÖ`¦&@æà;\¦æóÁXÒåÁ; ¦å^Ásé; ÁÜ>c^}æð; &@; æósausgewertet.

Mindestbewehrung (NCI Zu 9.4.3(2)) wurde à^¦>& • & œ tÈ

Kombinationen Tæi*^à^}å^ÁS[{àãjæaãj}^}Ájæ&@ÄÖO⊅ÁÖÞÁFJJ€

> Ew Einwirkungsname

Lkn Lastkombinationsnummer

ç[| @ | | • & @ } a ^ Aç ^ | ê } a ^ | | a & @ A Da , a \ ` } *

Öðl ÁÓ v ð ð ð ' * Á ð : ^|} ^ ¦ Á ð e cê|| Áð } ^ ¦ @ d à Áeiner Einwirkung wird mit diesem Ausgabeformat nicht dokumentiert.

Ew	Gk	Qk.N	Qk.W
Lkn	Grundkombination		
1	1.35	1.50 !	0.90

Rund-	Abstand	u	vEd	vRd,c	vRd,max	minAsw	erfAsw
schnitt	[cm]	[m]			ŽD-E0{ á		Ž&{ á
U1	8.50	1.05	1.042			0.78	2.46
U2	21.25	1.45	0.754			1.08	1.38
Ucrit	34.00	1.85	0.590 >	0.542			
			m		0.759		
Uout	39.25	2.01	0.542	0.542			

Breite des zu bewehrenden Bereiches Iw = 21.3 cm

 $\acute{O}^{\hat{a}\hat{A}} = (4\hat{a}_{\hat{a}}^{\hat{a}} + 4\hat{a}_{\hat{a}}^{\hat{a}} + 4$ innerhalb des \ | aa &@ | AÜ | | å & & a a A e | ADurchstanzbewehrung erforderlich.

Position Auftrags-Nr. ÙVPËJPÆÄJO4& @ã ÁJ>å 2023 300 D-4.1 Seite: 4-41 **DS-3** Durchstanznachweis nach DIN EN 1992-1-1 **Angaben** Beton C 30/37, Betonstahl B 500MA Šæ• c^ā, |^ãc`} * • √ê&@K Wandende а 15.0 cm b 15.0 cm Plattendicke h_0 20.0 cm Tãnd ÉÁ casaã & @ ÁP c @ 4 @ d_{m} 17.0 cm Šê}*•à^,^@*}* Šê}*•à^,^@*}*•*¦æå a_{s,m} 2.59 & Đ 0.15 % I,vorh 1.96 % l,zul Tæi*ÉÄÖ`¦&@@æ):\¦æc V_{Ed} 35.9 kΝ Šæ• c^¦@4@{}*•~æ\d[¦ 1.35 Keine Durchstanzbewehrung Asw erforderlich. **Nachweis** Ø>¦ÁåaðiÁ, æi*^à^}å^ÁÓ^|æ•č}*••ãčæāi}À, `¦å^ÁåaðiÁ, ãdd^¦^ÁŠê}*•à^, ^@'`}*Á asm an der Oberseite à^ | > & • 3&@2 dE ÖāN•^ÁŠê}*•à^、^@^`}*ÁãróÁ§}^¦@aqàÁå^•Át^•æ(c^}Áê`i^¦^}ÁÜ`}å•&@,ãæ•Á a): `[¦å}^}Á'}åÁsě i ^¦@spàÁdieses Rundschnitts zu verankern.
Òā ^ÁÜ>c ^}\[] -ç^!•œ̂!\`}*Á; ãåÁý æ‰sé\-&&•æådè
ÖæÁÖ`¦&@æà;\¦æóÁXÒåÁ; ¦å^Ásé; ÁÜ>c^}æð; &@; æósausgewertet. Mindestbewehrung (NCI Zu 9.4.3(2)) wurde à^¦>& • & œ tÈ Kombinationen Tæi *^à^}å^ÁS[{àã,æaã,}^}Á,æ&@ÁÖOD•ÁÖÞÁFJJ€

> Ew Einwirkungsname

Lkn Lastkombinationsnummer

c[| @ | | • & @ } a^Ac^| ê } a^| | a& @ AOa _ a\ ` } *

Öðl ÁÓ v ð ð ð ' * Á ð : ^|} ^ ¦ Á ð e cê|| Áð } ^ ¦ @ d à Áeiner Einwirkung wird mit diesem Ausgabeformat nicht dokumentiert.

Ew	Gk	Qk.N	Qk.W	
Lkn	Grundkombination			
1	1.35	1.50 !	0.90	

Rund-	Abstand	u	vEd	vRd,c	vRd,max	minAsw	erfAsw
schnitt	[cm]	[m]			ŽD-E0{ á		Ž&{ á
Ucrit	34.00	1.52	0.188 m	0.542			

Position Auftrags-Nr. ÙVPËJPÆÄJO4& @ã ÁJ>å 2023 300 D-4.1 Seite: 4-42 DS-4 Durchstanznachweis nach DIN EN 1992-1-1 **Angaben** Beton C 30/37, Betonstahl B 500MA Šæ• c^ā, |^ãc`} * • √ê&@K Wandende а 15.0 cm b 15.0 cm Plattendicke h_0 20.0 cm Tãnd ÉÁ casaã & @ ÁP c @ 4 @ d_{m} 17.0 cm

Nachweis

Keine Durchstanzbewehrung Asw erforderlich.

Ø>¦ÁåaðiÁ, æi*^à^}å^ÁÓ^|æ•č}*••ãčæāi}À, `¦å^ÁåaðiÁ, ãdd^¦^ÁŠê}*•à^, ^@'`}*Á asm an der Oberseite à^ | > & • 2& @2 dE

a_{s,m}

I,vorh

l,zul

 V_{Ed}

2.38

0.14

1.96

30.8

1.35

&{ Ð

%

%

kΝ

ÖāN•^ÁŠê}*•à^、^@^`}*ÁãróÁ§}^¦@aqàÁå^•Át^•æ(c^}Áê`i^¦^}ÁÜ`}å•&@,ãæ•Á

a): `[¦å}^}Á'}åÁsě i ^¦@spàÁdieses Rundschnitts zu verankern.
Òā ^ÁÜ>c ^}\[] -ç^!•œ̂!\`}*Á; ãåÁý æ‰sé\-&&•æådè
ÖæÁÖ`¦&@æà;\¦æóÁXÒåÁ; ¦å^Ásé; ÁÜ>c^}æð; &@; æósausgewertet.

Mindestbewehrung (NCI Zu 9.4.3(2)) wurde à^¦>& • & œ tÈ

Kombinationen Tæi*^à^}å^ÁS[{àãjæaãj}^}Ájæ&@ÄÖO⊅ÁÖÞÁFJJ€

Šê}*•à^,^@*}* Šê}*•à^,^@*}*•*¦æå

Tæi*ÉÄÖ`¦&@@æ):\¦æc

Šæ• c^¦@4@{}*•~æ\d[¦

Ew Einwirkungsname

Lkn Lastkombinationsnummer

c[| @ | | • & @ } a^Ac^| ê } a^| | a& @ AOa _ a\ ` } *

Öðl ÁÓ v ð ð ð * Á ð : ^|} ^ ¦ Á ð e cê|| Áð } ^ ; @ dà Áeiner Einwirkung wird mit diesem

Ausgabeformat nicht dokumentiert.

Ew	Gk	Qk.N	Qk.W	
Lkn	Grundkombination			
1	1.35	1.50 !	0.90	

Rund-	Abstand	u	vEd	vRd,c	vRd,max	minAsw	erfAsw
schnitt	[cm]	[m]			ŽD-E0{ á		Ž&{ á
Ucrit	34.00	1.52	0.161 m	0.542			

Auftrags-Nr.	Position	martens+puller Ingenieurgesellschaft mbH	
2023 300	D-4.1	ÙVPËÜPÄÄÜd&\@ã, ÁÙ>å	Seite: 4-43
<u>DS-5</u>	Durchstan	znachweis nach DIN EN 1992-1-1	
<u>Angaben</u>	Beton C 3	0/37, Betonstahl B 500MA	
	Š 4714~	Y) # 100 @14	

Sæ• c^a, ^ac`} *•-\e&@^K				
Wandende	а	=	15.0	cm
	b	=	15.0	cm
Plattendicke	h_0	=	20.0	cm
Tãod, ÉÁrcææãr&.@^Áp~`c.@4.@^	d_{m}	=	17.0	cm
Šê} *•à^, ^@`}*	a s,m	=	2.42	&{ E()
Šê∫*•à^¸^@^`∫*•*¦æå	l,vorh	=	0.14	%
	l,zul	=	1.96	%
Tæi*ËÄÖ`¦&@iæa):\¦æec	V_{Ed}	=	34.0	kN
Šæ• c^¦@4@'}*•~æ\q[¦		=	1.35	

Nachweis Keine Durchstanzbewehrung Asw erforderlich.

> Ø>¦ÁsanÁ, æi*^à^}å^ÁÓ^|æ•č}*••ãčæāā;}Á¸`¦å^ÁsanÁ, ãcd^¦^ÁŠê}*•à^¸^@`}*Á asm an der Oberseite à^ l>& • 3&@2 dÈ

ÖāN•^ÁŠê}*•à^, ^@~`}*ÁārơÁş}^\!@æqàÁå^•Á¹^•æ{ c^\}Áê~i^¦^}ÁÜ~`}å•&@}ãæ•Á

a): `[¦å}^}Á'}åÁsě i ^¦@spàÁdieses Rundschnitts zu verankern.
Òā ^ÁÜ>c ^}\[] -ç^!•œ̂!\`}*Á; ãåÁý æ‰sé\-&&•æådè
ÖæÁÖ`¦&@æà;\¦æóÁXÒåÁ; ¦å^Ásé; ÁÜ>c^}æð; &@; æósausgewertet.

Mindestbewehrung (NCI Zu 9.4.3(2)) wurde à^¦>& • & œ tÈ

Tæi*^à^}å^ÁS[{àãjæeāj}^}Ájæ&@ÁÖΦDAÖÞÁFJJ€ Kombinationen

> Ew Einwirkungsname

Lkn Lastkombinationsnummer

c[| @ | | • & @ } a ^ Ac ^ | ê } a ^ | a & @ AO a _ a \ ` } *

Öð ÁÓ v ð ð ž * Á ð ; ^|} ^ L Šæ cê|| Á þ } ^ L @ D À Á Einer Einwirkung wird mit diesem Ausgabeformat nicht dokumentiert.

Ew	Gk	Qk.N	Qk.W
Lkn	Grundkombination		
1	1 35	1.50 !	0.90

Rund-	Abstand	u	vEd	vRd,c	vRd,max	minAsw	erfAsw
schnitt	[cm]	[m]			Ž⊃Đ({á		Ž&{ á
Licrit	34.00	1 52	0.178 m	0.542			

Position Auftrags-Nr. ÙVPËÜPÄÄÛ¢4&\@`ã ÁÛ>å 2023 300 D-4.1 Seite: 4-44

DS-6 Durchstanznachweis nach DIN EN 1992-1-1

Angaben Beton C 30/37, Betonstahl B 500MA

Šæ• c^āj |^ãč } * • √ê&@K

,, , , -				
Wandende	a	=	15.0	cm
	b	=	15.0	cm
Plattendicke	h_0	=	20.0	cm
Tãod ÈÁn casaãa & @ Áp `c @ 4 @	d_{m}	=	17.0	cm
Šê} *•à^ , ^@ `}*	a _{s,m}	=	2.42	& Đ
Šê} * • à^	l,vorh	=	0.14	%
	l,zul	=	1.96	%
Tæi*ÈÄÖˇ¦&@eæ);:\¦æec	V_{Ed}	=	33.7	kN
Šæ¢^¦@4@}*•æd(¦		=	1.35	

Nachweis Keine Durchstanzbewehrung Asw erforderlich.

Ø>¦ÁsanÁ, æi*^à^}å^ÁÓ^|æ•č}*••ãčæāā;}Á¸`¦å^ÁsanÁ, ãcd^¦^ÁŠê}*•à^¸^@`}*Á

asm an der Oberseite à^ l>& • 3&@2 dÈ

ÖāN•^ÁŠê}*•à^、^@^`}*ÁãróÁ§}^¦@aqàÁå^•Át^•æ(c^}Áê`i^¦^}ÁÜ`}å•&@,ãæ•Á

a): `[¦å}^}Á'}åÁsě i ^¦@spàÁdieses Rundschnitts zu verankern.
Òā ^ÁÜ>c ^}\[] -ç^!•œ̂!\`}*Á; ãåÁý æ‰sé\-&&•æådè
ÖæÁÖ`¦&@æà;\¦æóÁXÒåÁ; ¦å^Ásé; ÁÜ>c^}æð; &@; æósausgewertet.

Mindestbewehrung (NCI Zu 9.4.3(2)) wurde à^¦>& • & œ tÈ

Tæi*^à^}å^Ás[{àãjæaãj}^}Ájæ&®ÁÖOÞÁÖDÞÁFJJ€ Kombinationen

> Ew Einwirkungsname

Lkn Lastkombinationsnummer

ç[| @ | | • & @ } a ^ Aç ^ | ê } a ^ | | a & @ A Da , a \ ` } *

Öðl ÁÓ v ð ð ð ' * Á ð : ^|} ^ ¦ Á ð e cê|| Áð } ^ ¦ @ d à Áeiner Einwirkung wird mit diesem

Ausgabeformat nicht dokumentiert.

Ew	Gk	Qk.N	Qk.W
Lkn	Grundkombination		
1	1.35	1.50 !	0.90

Rund-	Abstand	u	vEd	vRd,c	vRd,max	minAsw	erfAsw
schnitt	[cm]	[m]			ŽD-E0{ á		Ž&{ á
Ucrit	34.00	1.52	0.176 m	0.542			

Position Auftrags-Nr. ÙVPËÜPÄÄÛ¢4&\@`ã ÁÛ>å 2023 300 D-4.1 Seite: 4-45 **DS-7** Durchstanznachweis nach DIN EN 1992-1-1 **Angaben** Beton C 30/37, Betonstahl B 500MA

Šæ• c^ą̃ ^ãč`} * • ⊣ê&@K				
Wandende	а	=	15.0	cm
	b	=	15.0	cm
Plattendicke	h_0	=	20.0	cm
TãodÉAcæeãa&@Áp c@4@	d_{m}	=	17.0	cm
Šê}*•à^¸^@`}*	a _{s,m}	=	2.40	&{ E()
Šê}*•à^¸^@^`}*•*¦æå	l,vorh	=	0.14	%
	l,zul	=	1.96	%
Tæi*ÈÄÖˇ¦&@iæa}:\¦æec	V_{Ed}	=	34.0	kN
Šæ•o^¦@4@}*•~æ\q[¦		=	1.35	

Nachweis Keine Durchstanzbewehrung Asw erforderlich.

> Ø>¦ÁsanÁ, æi*^à^}å^ÁÓ^|æ•č}*••ãčæāā;}Á¸`¦å^ÁsanÁ, ãcd^¦^ÁŠê}*•à^¸^@`}*Á asm an der Oberseite à^ l>& • 3&@2 dÈ

ÖāN•^ÁŠê}*•à^、^@^`}*ÁãróÁ§}^¦@aqàÁå^•Át^•æ(c^}Áê`i^¦^}ÁÜ`}å•&@,ãæ•Á

a): `[¦å}^}Á'}åÁsě i ^¦@spàÁdieses Rundschnitts zu verankern.
Òā ^ÁÜ>c ^}\[] -ç^!•œ̂!\`}*Á; ãåÁý æ‰sé\-&&•æådè
ÖæÁÖ`¦&@æà;\¦æóÁXÒåÁ; ¦å^Ásé; ÁÜ>c^}æð; &@; æósausgewertet.

Mindestbewehrung (NCI Zu 9.4.3(2)) wurde à^¦>& • & œ tÈ

Kombinationen Tæi*^à^}å^ÁS[{àãjæaãj}^}Ájæ&@ÄÖODAÖÞÁFJJ€

> Ew Einwirkungsname

Lkn Lastkombinationsnummer

c[| @ | | • & @ } a^Ac^| ê } a^| | a& @ AOa _ a\ ` } *

Öðl ÁÓ v ð ð ð ' * Á ð : ^|} ^ ¦ Á ð e cê|| Áð } ^ ¦ @ d à Áeiner Einwirkung wird mit diesem Ausgabeformat nicht dokumentiert.

Gk Qk.N Qk.W

Ew Grundkombination Lkn 1.35 1.50 ! 0.90

Rund-	Abstand	u	vEd	vRd,c	vRd,max	minAsw	erfAsw
schnitt	[cm]	[m]			Ž⊃Đ(á		Ž&{ á
Ucrit	34.00	1.52	0.178 m	0.542			

Position Auftrags-Nr. 2023 300 D-4.1 ÙVPËÜPÆÄÙ¢4&\@`ā ÁÙ>å Seite: 4-46 **DS-8** Durchstanznachweis nach DIN EN 1992-1-1 **Angaben** Beton C 30/37, Betonstahl B 500MA Šæ• c^ā, |^ãc`} * • √ê&@K Wandende 20.0 а cm b 20.0 cm Plattendicke h_0 20.0 cm Tãnd ÉÁ casaã & @ ÁP c @ 4 @ d_{m} 17.0 cm Šê}*•à^, ^@*}* Šê}*•à^, ^@*}*•*¦æå a_{s,m} 2.89 &{ Ð 0.17 % I,vorh 1.96 % I,zul Tæi*ÈÄÖ`¦&@eæ):\¦æec V_{Ed} 65.1 kΝ Šæ• c^¦@4@{}*•~æ\d[¦ 1.35 Keine Durchstanzbewehrung Asw erforderlich. Nachweis Ø>¦ÁåaðiÁ, æi*^à^}å^ÁÓ^|æ•č}*••ãčæāj}Á, `¦å^ÁåaðiÁ, ãdd^¦^ÁŠê}*•à^, ^@`}*Á asm an der Oberseite à^ | > & • 2& @2 dE ÖāN•^ÁŠê}*•à^、^@^`}*ÁãróÁ§}^¦@aqàÁå^•Át^•æ(c^}Áê`i^¦^}ÁÜ`}å•&@,ãæ•Á a): `[| a) ^} Á } a Áse i ^ | @eta Ádieses Rundschnitts zu verankern.

Oa ^AÛOc ^} \[] -ç^! • œ!\` } * Á ā a Á ā @Ase AÛOc ^} a) • &@ ācAsusgewertet.

Oa ÁÖ | &@ ca): \| æAKOå Á ` | a ^Áse ÁUOc ^} a) • &@ ācAsusgewertet. Mindestbewehrung (NCI Zu 9.4.3(2)) wurde à^¦>& • & œ tÈ Kombinationen Tæi: *^à^}å^ÁS[{àã;æeāi}^}Á;æ&@ÁÖOD•ÁÖÞÁFJJ€

Ew Einwirkungsname

Lkn Lastkombinationsnummer

Ţ

Öðl ÁÓ v ð ð ð ' * Á ð : ^|} ^ ¦ Á ð e cê|| Áð } ^ ¦ @ d à Áeiner Einwirkung wird mit diesem Ausgabeformat nicht dokumentiert.

Ew Gk Qk.N Qk.W Grundkombination Lkn 1.35 1.50 ! 0.90

Rund-	Abstand	u	vEd	vRd,c	vRd,max	minAsw	erfAsw
schnitt	[cm]	[m]			ŽD-E0{ á		Ž&{ á
Ucrit	34.00	1.67	0.310 m	0.542			

Position Auftrags-Nr. ÙVPËJPÆÄJC4& @ã ÁJ>å 2023 300 D-4.1 Seite: 4-47 DS-9 Durchstanznachweis nach DIN EN 1992-1-1

Angaben Beton C 30/37, Betonstahl B 500MA Šæ• c^ā, |^ãc`} * • √ê&@K

Wandecke а 17.5 cm b 17.5 cm Plattendicke h_0 20.0 cm Tãod ÉÁn cægaã & @ Áp c @ 4 @ . d_{m} 17.0 cm Šê}*•à^, ^@*}* Šê}*•à^, ^@*}*•*¦æå $a_{s,m}$ 2.27 &{ Ð 0.13 % I,vorh 1.96 % I,zul Tæi*ÈÄÖ`¦&@eæ):\¦æec V_{Ed} 21.8 kΝ Šæ• c^¦@4@{}*•~æ\d[¦ 1.20

Keine Durchstanzbewehrung Asw erforderlich. **Nachweis**

> Ø>¦ÁåaðiÁ, æi*^à^}å^ÁÓ^|æ•č}*••ãčæāj}Á, `¦å^ÁåaðiÁ, ãdd^¦^ÁŠê}*•à^, ^@`}*Á asm an der Oberseite à^ | > & • 2& @2 dE

ÖāN•^ÁŠê}*•à^、^@^`}*ÁãróÁ§}^¦@aqàÁå^•Át^•æ(c^}Áê`i^¦^}ÁÜ`}å•&@,ãæ•Á

a): `[| a) ^} Á } a Áse i ^ | @eta Ádieses Rundschnitts zu verankern.

Oa ^AÛOc ^} \[] -ç^! • œ!\` } * Á ā a Á ā @Ase AÛOc ^} a) • &@ ācAsusgewertet.

Oa ÁÖ | &@ ca): \| æAKOå Á ` | a ^Áse ÁUOc ^} a) • &@ ācAsusgewertet.

Mindestbewehrung (NCI Zu 9.4.3(2)) wurde à^¦>& • & œ tÈ

Kombinationen Tæi: *^à^}å^ÁS[{àã;æeāi}^}Á;æ&@ÁÖOD•ÁÖÞÁFJJ€

> Ew Einwirkungsname

Lkn Lastkombinationsnummer

Öðl ÁÓ v ð ð ð ' * Á ð : ^|} ^ ¦ Á ð e cê|| Áð } ^ ¦ @ d à Áeiner Einwirkung wird mit diesem Ausgabeformat nicht dokumentiert.

Ew Gk Qk.N Qk.W Grundkombination Lkn 1.35 1.50 ! 0.90

Rund-	Abstand	u	vEd	vRd,c	vRd,max	minAsw	erfAsw
schnitt	[cm]	[m]			ŽD-E0{ á		Ž&{ á
Llcrit	34.00	0.88	0.174 m	0.542			

Position Auftrags-Nr. 2023 300 D-4.1 ÙVPËÜPÆÄÙ¢4&\@`ãį ÁÙ>å Seite: 4-48 **DS-10** Durchstanznachweis nach DIN EN 1992-1-1 **Angaben** Beton C 30/37, Betonstahl B 500MA Šæ• c^ā, |^āc`} * • √ê&@K Wandecke а 17.5 cm b 17.5 cm Plattendicke h_0 20.0 cm Tãod ÉÁn cægaã & @ Áp c @ 4 @ . d_{m} 17.0 cm Šê}*•à^,^@*}* Šê}*•à^,^@*}*•*¦æå $a_{s,m}$ 2.27 &{ Ð 0.13 % I,vorh 1.96 % I,zul Tæi*ÈÄÖ`¦&@eæ):\¦æec V_{Ed} 27.1 kΝ Šæ• c^¦@4@{}*•~æ\d[¦ 1.20 **Nachweis** Keine Durchstanzbewehrung Asw erforderlich. Ø>¦ÁsanÁ, æi*^à^}å^ÁÓ^|æ•č}*••ãčæāā;}Á¸`¦å^ÁsanÁ, ãcd^¦^ÁŠê}*•à^¸^@`}*Á asm an der Oberseite à^ l>& • 3&@2 dÈ ÖāN•^ÁŠê}*•à^、^@^`}*ÁãróÁ§}^¦@aqàÁå^•Át^•æ(c^}Áê`i^¦^}ÁÜ`}å•&@,ãæ•Á a): `[¦å}^}Á'}åÁsě i ^¦@spàÁdieses Rundschnitts zu verankern.
Òā ^ÁÜ>c ^}\[] -ç^!•œ̂!\`}*Á; ãåÁý æ‰sé\-&&•æådè
ÖæÁÖ`¦&@æà;\¦æóÁXÒåÁ; ¦å^Ásé; ÁÜ>c^}æð; &@; æósausgewertet. Mindestbewehrung (NCI Zu 9.4.3(2)) wurde à^¦>& • 3&@ à dÈ Kombinationen Tæi*^à^}å^ÁS[{àã}æaã[}^}Á;æ&@ÄÖOD•ÁÖÞÁFJJ€ Ew Einwirkungsname Lkn Lastkombinationsnummer !

> Öðl ÁÓ v ð ð ð ' * Á ð : ^|} ^ ¦ Á ð e cê|| Áð } ^ ¦ @ d à Áeiner Einwirkung wird mit diesem Ausgabeformat nicht dokumentiert.

> > Qk.W

Lkn	Grundkombin	ation					
1	1.39		1.50 !	0.90			
Rund-	Abstand	u	vEd	vRd,c	vRd,max	minAsw	erfAsw
schnitt	[cm]	[m]			ŽDĐ(á		Ž&{ á
Ucrit	34.00	0.88	0.216 n	า 0.542			

Qk.N

Ew

Gk

Position Auftrags-Nr. 2023 300 D-4.1 ÙVPËÜPÆÄÙ¢4&\@`ãį ÁÙ>å Seite: 4-49 **DS-11** Durchstanznachweis nach DIN EN 1992-1-1 **Angaben** Beton C 30/37, Betonstahl B 500MA Šæ• c^ā, |^āc`} * • √ê&@K Wandende а 17.5 cm b 17.5 cm Plattendicke h_0 20.0 cm Tãnd ÉÁ casaã & @ ÁP c @ 4 @ d_{m} 17.0 cm Šê}*•à^,^@*}* Šê}*•à^,^@*}*•*¦æå $a_{s,m}$ 2.27 &{ Ð 0.13 % I,vorh 1.96 % I,zul Tæi*ÉÄÖ`¦&@@æ):\¦æc V_{Ed} 9.8 kΝ Šæ• c^¦@4@{}*•~æ\d[¦ 1.35 **Nachweis** Keine Durchstanzbewehrung Asw erforderlich. Ø>¦ÁsanÁ, æi*^à^}å^ÁÓ^|æ•č}*••ãčæāā;}Á¸`¦å^ÁsanÁ, ãcd^¦^ÁŠê}*•à^¸^@`}*Á asm an der Oberseite à^ l>& • 3&@2 dÈ ÖāN•^ÁŠê}*•à^、^@^`}*ÁãróÁ§}^¦@aqàÁå^•Át^•æ(c^}Áê`i^¦^}ÁÜ`}å•&@,ãæ•Á a): `[¦å}^}Á'}åÁsě i ^¦@spàÁdieses Rundschnitts zu verankern.
Òā ^ÁÜ>c ^}\[] -ç^!•œ̂!\`}*Á; ãåÁý æ‰sé\-&&•æådè
ÖæÁÖ`¦&@æà;\¦æóÁXÒåÁ; ¦å^Ásé; ÁÜ>c^}æð; &@; æósausgewertet. Mindestbewehrung (NCI Zu 9.4.3(2)) wurde à^¦>& • 3&@ à dÈ Kombinationen Tæi*^à^}å^ÁS[{àã}æaã[}^}Á;æ&@ÄÖOD•ÁÖÞÁFJJ€ Ew Einwirkungsname Lkn Lastkombinationsnummer

> Öðl ÁÓ v ð ð ð ' * Á ð : ^|} ^ ¦ Á ð e cê|| Áð } ^ ¦ @ d à Áeiner Einwirkung wird mit diesem Ausgabeformat nicht dokumentiert.

Ew	Gk	<	Qk.N		Qk.W			
Lkn	Grundkombina	ation						
1	1.35	5	1.50 !		0.90			
Rund-	Abstand	u	vEd		vRd,c	vRd,max	minAsw	erfAsw
schnitt	[cm]	[m]			•	ŽDĐ(á		Ž&{ á
Ucrit	34.00	1.59	0.049	m	0.542	• •		•

!

Position Auftrags-Nr. 2023 300 D-4.1 ÙVPËÜPÆÄÙ¢4&\@`ā ÁÙ>å Seite: 4-50 **DS-12** Durchstanznachweis nach DIN EN 1992-1-1 **Angaben** Beton C 30/37, Betonstahl B 500MA Šæ• c^ā, |^ãc`} * • √ê&@K Wandende а 17.5 cm b 17.5 cm Plattendicke h_0 20.0 cm Tãnd ÉÁ casaã & @ ÁP c @ 4 @ d_{m} 17.0 cm Šê}*•à^, ^@*}* Šê}*•à^, ^@*}*•*¦æå a_{s,m} 2.27 &{ Ð 0.13 % I,vorh 1.96 % I,zul Tæi*ÈÄÖ`¦&@eæ):\¦æec V_{Ed} 7.6 kΝ Šæ• c^¦@4@{}*•~æ\d[¦ 1.35 Keine Durchstanzbewehrung Asw erforderlich. Nachweis Ø>¦ÁåaðiÁ, æi*^à^}å^ÁÓ^|æ•č}*••ãčæāj}Á, `¦å^ÁåaðiÁ, ãdd^¦^ÁŠê}*•à^, ^@`}*Á asm an der Oberseite à^ | > & • 2& @2 dE ÖāN•^ÁŠê}*•à^、^@^`}*ÁãróÁ§}^¦@aþàÁå^•Át^•æ(c^)Áê`i^¦^}ÁÜ`}å•&@,ãæ•Á a): `[| a) ^} Á } a Áse i ^ | @eta Ádieses Rundschnitts zu verankern.

Oa ^AÛOc ^} \[] -ç^! • œ!\` } * Á ā a Á ā @Ase AÛOc ^} a) • &@ ācAsusgewertet.

Oa ÁÖ | &@ ca): \| æAKOå Á ` | a ^Áse ÁUOc ^} a) • &@ ācAsusgewertet.

Kombinationen Tæi: *^à^}å^ÁS[{àã;æeāi}^}Á;æ&@ÁÖOD•ÁÖÞÁFJJ€

> Ew Einwirkungsname

Lkn Lastkombinationsnummer

Ţ

Mindestbewehrung (NCI Zu 9.4.3(2)) wurde à^¦>& • & œ tÈ

Öðl ÁÓ v ð ð ð * Á ð : ^|} ^ ¦ Á ð e cê|| Áð } ^ ; @ dà Áeiner Einwirkung wird mit diesem Ausgabeformat nicht dokumentiert.

Ew Gk Qk.N Qk.W Grundkombination Lkn 1.35 1.50 ! 0.90

Rund-	Abstand	u	vEd	vRd,c	vRd,max	minAsw	erfAsw
schnitt	[cm]	[m]			Ž⊃Đ({á		Ž&{ á
Ucrit	34.00	1.59	0.038 m	0.542			

Position Auftrags-Nr. 2023 300 D-4.1 Seite: 4-51

DS-13 Durchstanznachweis nach DIN EN 1992-1-1

Angaben Beton C 30/37, Betonstahl B 500MA

Šæ• c^ā |^āc`} * • √ê&@K

200 0 4 1 m) 2010 1 t				
Wandende	а	=	17.5	cm
	b	=	17.5	cm
Plattendicke	h_0	=	20.0	cm
Tãod ÉA cææã & @ ÁÞ c @ 4 @	d_{m}	=	17.0	cm
Šê} *•à^ , ^@ `}*	a _{s,m}	=	3.65	&(E)
Šê∫*•à^(^@`∫*•*¦æå	l,vorh	=	0.21	` %
	l,zul	=	1.96	%
Tæi*ÈÄÖ`¦&@eæ);∖¦æ€c	VEd	=	120.8	kN
Šæ• c^\ @4 @ } * • ~æ\ d \		=	1.35	

Nachweis Durchstanzbewehrung Asw ist erforderlich.

Ø>¦ÁåaðiÁ, æi*^à^}å^ÁÓ^|æ•č}*••ãčæāj}Á, `¦å^ÁåaðiÁ, ãdd^¦^ÁŠê}*•à^, ^@`}*Á

asm an der Oberseite à^ | >& • 2&@2 dÈ

ÖāN•^ÁŠê}*•à^、^@^`}*ÁãróÁ§}^¦@aþàÁå^•Át^•æ(c^)Áê`i^¦^}ÁÜ`}å•&@,ãæ•Á

a): `[¦å}^}Á'}åÁsě i ^¦@spàÁdieses Rundschnitts zu verankern.
Òā ^ÁÜ>c ^}\[] -ç^!•œ̂!\`}*Á; ãåÁý æ‰sé\-&&•æådè
ÖæÁÖ`¦&@æà;\¦æóÁXÒåÁ; ¦å^Ásé; ÁÜ>c^}æð; &@; æósausgewertet.

Mindestbewehrung (NCI Zu 9.4.3(2)) wurde à^¦>& • & œ tÈ

Kombinationen Tæi*^à^}å^ÁS[{àã}æaã[}^}Á;æ&@ÄÖOD•ÁÖÞÁFJJ€

> Ew Einwirkungsname

Lkn Lastkombinationsnummer

Öðl ÁÓ v ð ð ð ' * Á ð : ^|} ^ ¦ Á ð e cê|| Áð } ^ ¦ @ d à Áeiner Einwirkung wird mit diesem Ausgabeformat nicht dokumentiert.

Ew	Gk	Qk.N	Qk.W
Lkn	Grundkombination		
1	1.35	1.50 !	0.90

Rund-	Abstand	u	vEd	vRd,c	vRd,max	minAsw	erfAsw
schnitt	[cm]	[m]			ŽD-E0{ á		Ž&{ á
U1	8.50	0.79	1.211			0.59	2.26
U2	21.25	1.19	0.804			0.89	1.27
Ucrit	34.00	1.59	0.602 >	0.542			
			m		0.759		
Uout	39.60	1.77	0.542	0.542			

Breite des zu bewehrenden Bereiches Iw = 21.3 cm

 $O \stackrel{\text{de}}{\text{a}} \stackrel{\text{de}}{\text{a}} ^{\text{de}} \stackrel{\text{de}}{\text{a}} \stackrel{\text{de}}{\text{d}} \stackrel{\text{de}}{\text{a}} \stackrel{\text{de}}$ innerhalb des \ | aa &@ | AU | | a & & a & A e | AD archstanzbewehrung erforderlich.

Position Auftrags-Nr. 2023 300 D-4.1 Seite: 4-52

DS-14 Durchstanznachweis nach DIN EN 1992-1-1

Angaben Beton C 30/37, Betonstahl B 500MA

Šæ• c^ā |^āc`} * • √ê&@K

100.0.1				
Wandende	a	=	17.5	cm
	b	=	17.5	cm
Plattendicke	h_0	=	20.0	cm
Tãod ÉA caseãa & @ ÁP c @ 4 @	d_{m}	=	17.0	cm
Šê} *•à^ , ^@* } *	a _{s,m}	=	2.95	&{ D)
Šê∫*•à^¸^@`∫*•*¦æå	l,vorh	=	0.17	%
	l,zul	=	1.96	%
Tæi*ÈÄÖ`¦&@oæ);∖¦æec	V_{Ed}	=	126.2	kN
Šæc^\@4@}*•~æ\d;		=	1.35	

Nachweis Durchstanzbewehrung Asw ist erforderlich.

Ø>¦ÁåaðiÁ, æi*^à^}å^ÁÓ^|æ•č}*••ãčæāj}Á, `¦å^ÁåaðiÁ, ãdd^¦^ÁŠê}*•à^, ^@`}*Á

asm an der Oberseite à^ l>& • 3&@2 dÈ

ÖāN•^ÁŠê}*•à^、^@^`}*ÁãróÁ§}^¦@aþàÁå^•Át^•æ(c^)Áê`i^¦^}ÁÜ`}å•&@,ãæ•Á

a): `[¦å}^}Á'}åÁsě i ^¦@spàÁdieses Rundschnitts zu verankern.
Òā ^ÁÜ>c ^}\[] -ç^!•œ̂!\`}*Á; ãåÁý æ‰sé\-&&•æådè
ÖæÁÖ`¦&@æà;\¦æóÁXÒåÁ; ¦å^Ásé; ÁÜ>c^}æð; &@; æósausgewertet.

Mindestbewehrung (NCI Zu 9.4.3(2)) wurde à^¦>& • & œ tÈ

Kombinationen Tæi*^à^}å^ÁS[{àã}æaã[}^}Á;æ&@ÄÖOD•ÁÖÞÁFJJ€

> Ew Einwirkungsname

Lkn Lastkombinationsnummer

Öðl ÁÓ v ð ð ð * Á ð : ^|} ^ ¦ Á ð œ eê|| Áð } ^ ¦ @ þ à Áeiner Einwirkung wird mit diesem

Ausgabeformat nicht dokumentiert.

Ew	Gk	Qk.N	Qk.W	
Lkn	Grundkombination			
1	1.35	1.50 !	0.90	

Rund-	Abstand	u	vEd	vRd,c	vRd,max	minAsw	erfAsw
schnitt	[cm]	[m]			ŽD-E0{ á		Ž&{ á
U1	8.50	0.79	1.266			0.59	2.58
U2	21.25	1.19	0.841			0.89	1.44
Ucrit	34.00	1.59	0.629 >	0.542			
			m		0.759		
Uout	42.15	1.85	0.542	0.542			

Breite des zu bewehrenden Bereiches Iw = 21.3 cm

Ó^ã^ā,^{ Á; ãcd^\^} ÁŠê}*•à^. ^@*}*•*^@edoÁee { ÁMÁF€ÌHÁS{ ED Ása} Áå^¦Á Oberseite innerhalb des \\axia &@\} AU \\ a &@ ato A \\eartiell A^\axia A Durchstanzbewehrung erforderlich.

Position Auftrags-Nr. 2023 300 D-4.1 Seite: 4-53

DS-15 Durchstanznachweis nach DIN EN 1992-1-1

Angaben Beton C 30/37, Betonstahl B 500MA

Šæ• c^ā, |^āc`} * • √ê&@K

Wandende а 17.5 cm h 17.5 cm Plattendicke h_0 20.0 cm Tãnd ÉÁ casaã & @ ÁP c @ 4 @ d_{m} 17.0 cm Šê}*•à^, ^@*}* Šê}*•à^, ^@*}*•*¦æå a_{s,m} 2.77 & Đ 0.16 % I,vorh 1.96 % I,zul Tæi*ÈÄÖ`¦&@eæ):\¦æec V_{Ed} 128.7 kΝ Šæ• c^¦@4@{}*•~æ\d[¦ 1.35

Durchstanzbewehrung Asw ist erforderlich. **Nachweis**

Ø>¦ÁåaðiÁ, æi*^à^}å^ÁÓ^|æ•č}*••ãčæāj}Á, `¦å^ÁåaðiÁ, ãdd^¦^ÁŠê}*•à^, ^@'`}*Á

asm an der Oberseite à^ | > & • 2& @2 dE

ÖāN•^ÁŠê}*•à^、^@^`}*ÁãróÁ§}^¦@aþàÁå^•Át^•æ(c^)Áê`i^¦^}ÁÜ`}å•&@,ãæ•Á

a): `[| a) ^} Á } a Áse i ^ | @eta Ádieses Rundschnitts zu verankern.

Oa ^AÛOc ^} \[] -ç^! • œ!\` } * Á ā a Á ā @Ase AÛOc ^} a) • &@ ācAsusgewertet.

Oa ÁÖ | &@ ca): \| æAKOå Á ` | a ^Áse ÁUOc ^} a) • &@ ācAsusgewertet.

Mindestbewehrung (NCI Zu 9.4.3(2)) wurde à^¦>& • & œ dÈ

Kombinationen Tæi: *^à^}å^ÁS[{àã;æeāi}^}Á;æ&@ÁÖOD•ÁÖÞÁFJJ€

> Ew Einwirkungsname

Lkn Lastkombinationsnummer

c[| @ | | • & @ \ a^Ac^| e \ a^| | a \ @ A \ a \ | a \ | \ a \ |

Öðl ÁÓ ^ c^ð ðði * } * Á ði : ^ | } ^ ¦ Á Šærcê | | ^ Áði } ^ ¦ @ da Áeiner Einwirkung wird mit diesem Ausgabeformat nicht dokumentiert.

Ew	Gk	Qk.N	Qk.W
Lkn	Grundkombination		
1	1.35	1.50 !	0.90

Rund-	Abstand	u	vEd	vRd,c	vRd,max	minAsw	erfAsw
schnitt	[cm]	[m]			ŽD-E0{ á		Ž&{ á
U1	8.50	0.79	1.291			0.59	2.72
U2	21.25	1.19	0.857			0.89	1.52
Ucrit	34.00	1.59	0.642 >	0.542			
			m		0.759		
Uout	43.35	1.89	0.542	0.542			

Breite des zu bewehrenden Bereiches Iw = 21.3 cm

Ó^ã^ā,^{ Á; ãcd^\^} ÁŠê}*•à^. ^@*}*•*^@edoÁse { ÁMÁF€È Á&{ ED Ása} Ása^¦Á Oberseite innerhalb des \\axia &@\} AU \\ a &@ ato A \\eartiell A^\axia A Durchstanzbewehrung erforderlich.

Position Auftrags-Nr. ÙVPËÜPÄÄÛ¢4&\@`ã ÁÛ>å 2023 300 D-4.1 Seite: 4-54 **DS-16** Durchstanznachweis nach DIN EN 1992-1-1 **Angaben** Beton C 30/37, Betonstahl B 500MA Šæ• c^ā, |^āc`} * • √ê&@K Wandecke 20.0 а cm b 20.0 cm Plattendicke h_0 20.0 cm Tãod ÉÁn cægaã & @ Áp c @ 4 @ . d_{m} 17.0 cm Šê}*•à^,^@*}* Šê}*•à^,^@*}*•*¦æå a_{s,m} 5.61 & Đ 0.33 % I,vorh 1.96 % l,zul Tæi*ÉÄÖ`¦&@@æ):\¦æc V_{Ed} 59.0 kΝ Šæ• c^¦@4@{}*•~æ\d[¦ 1.20

Nachweis

Keine Durchstanzbewehrung Asw erforderlich.

Ø>¦ÁsanÁ, æi*^à^}å^ÁÓ^|æ•č}*••ãčæāā;}Á¸`¦å^ÁsanÁ, ãcd^¦^ÁŠê}*•à^¸^@`}*Á

asm an der Oberseite à^ l>& • 3&@2 dÈ

ÖāN•^ÁŠê}*•à^、^@^`}*ÁãróÁ§}^¦@aþàÁå^•Át^•æ(c^)Áê`i^¦^}ÁÜ`}å•&@,ãæ•Á

a): `[¦å}^}Á'}åÁsě i ^¦@spàÁdieses Rundschnitts zu verankern.
Òā ^ÁÜ>c ^}\[] -ç^!•œ̂!\`}*Á; ãåÁý æ‰sé\-&&•æådè
ÖæÁÖ`¦&@æà;\¦æóÁXÒåÁ; ¦å^Ásé; ÁÜ>c^}æð; &@; æósausgewertet.

Mindestbewehrung (NCI Zu 9.4.3(2)) wurde à^¦>& • 3&@ à dÈ

Kombinationen

Tæi*^à^}å^ÁS[{àã}æaã[}^}Á;æ&@ÄÖOD•ÁÖÞÁFJJ€

Ew Einwirkungsname

Lkn Lastkombinationsnummer

Öðl ÁÓ v ð ð ð * Á ð : ^|} ^ ¦ Á ð œ eê|| Áð } ^ ¦ @ þ à Áeiner Einwirkung wird mit diesem

Ausgabeformat nicht dokumentiert.

Ew	Gk	Qk.N	Qk.W
Lkn	Grundkombination		
1	1.35	1.50 !	0.90

Rund-	Abstand	u	vEd	vRd,c	vRd,max	minAsw	erfAsw
schnitt	[cm]	[m]			ŽD-Ð[{ á		Ž&{ á
Ucrit	34.00	0.93	0.446 m	0.542			

Position Auftrags-Nr. 2023 300 D-4.1 ÙVPËÜPÆÄÙ¢4&\@`ā ÁÙ>å Seite: 4-55 **DS-17** Durchstanznachweis nach DIN EN 1992-1-1 **Angaben** Beton C 30/37, Betonstahl B 500MA Šæ• c^ā, |^āc`} * • √ê&@K Wandende 20.0 а cm b 20.0 cm Plattendicke h_0 20.0 cm Tãod ÉÁn cægaã & @ Áp c @ 4 @ . d_{m} 17.0 cm Šê}*•à^, ^@*}* Šê}*•à^, ^@*}*•*¦æå a_{s,m} 2.73 &{ Ð 0.16 % I,vorh 1.96 % I,zul Tæi*ÈÄÖ`¦&@eæ):\¦æec V_{Ed} 58.8 kΝ Šæ• c^¦@4@{}*•~æ\d[¦ 1.35 **Nachweis** Keine Durchstanzbewehrung Asw erforderlich. Ø>¦ÁsanÁ, æi*^à^}å^ÁÓ^|æ•č}*••ãčæāā;}Á¸`¦å^ÁsanÁ, ãcd^¦^ÁŠê}*•à^¸^@`}*Á asm an der Oberseite à^ | > & • 2& @2 dE ÖāN•^ÁŠê}*•à^、^@^`}*ÁãróÁ§}^¦@aþàÁå^•Át^•æ(c^)Áê`i^¦^}ÁÜ`}å•&@,ãæ•Á Mindestbewehrung (NCI Zu 9.4.3(2)) wurde à^¦>& • 3&@ à dÈ Kombinationen Tæi*^à^}å^ÁS[{àã}æaã[}^}Á;æ&@ÄÖOD•ÁÖÞÁFJJ€ Ew Einwirkungsname Lkn Lastkombinationsnummer

Öðl ÁÓ v ð ð ð * Á ð : ^|} ^ ¦ Á ð œ eê|| Áð } ^ ¦ @ þ à Áeiner Einwirkung wird mit diesem Ausgabeformat nicht dokumentiert.

Ew	Gk	Qk.N	Qk.W			
Lkn	Grundkombination					
1	1.35	1.50 !	0.90			
Dund	Abstand	 νEd	vDd c	vPd may	min A cw	orf A cyv

Rund-Abstand u vEd vRd,c vRd,max minAsw ertAsw schnitt ŽD-Ð){ á Ž&{ á [cm] [m]Ucrit 34.00 1.67 0.280 m 0.542

Position Auftrags-Nr. 2023 300 D-4.1 ÙVPËÜPÆÄÙ¢4&\@`ãį ÁÙ>å Seite: 4-56 **DS-18** Durchstanznachweis nach DIN EN 1992-1-1 **Angaben** Beton C 30/37, Betonstahl B 500MA Šæ• c^ā, |^āc`} * • √ê&@K Wandende 20.0 а cm h 20.0 cm Plattendicke h_0 20.0 cm Tãnd ÉÁ casaã & @ ÁP c @ 4 @ d_{m} 17.0 cm Šê}*•à^,^@*}* Šê}*•à^,^@*}*•*¦æå a_{s,m} 2.44 &{ Ð 0.14 % I,vorh 1.96 % I,zul Tæi*ÈÄÖ`¦&@eæ):\¦æec V_{Ed} 47.5 kΝ Šæ• c^¦@4@{}*•~æ\d[¦ 1.35 Keine Durchstanzbewehrung Asw erforderlich. **Nachweis** Ø>¦ÁsanÁ, æi*^à^}å^ÁÓ^|æ•č}*••ãčæāā;}Á¸`¦å^ÁsanÁ, ãcd^¦^ÁŠê}*•à^¸^@`}*Á asm an der Oberseite à^ | > & • 2& @2 dE ÖāN•^ÁŠê}*•à^、^@^`}*ÁãróÁ§}^¦@aþàÁå^•Át^•æ(c^)Áê`i^¦^}ÁÜ`}å•&@,ãæ•Á a): `[¦å}^}Á;åÁæ`i ^¦@ajàÁdieses Rundschnitts zu verankern.
Òã^ÁJOc^}\[]-ç^!•œ!\`}*Á¸ãåÁjæ@Ás^!>&\•æ@ãc£
Öã^ÁÖ`¦&@ca): \¦æóÁxÒåÁ¸č¦å^Áæ;ÁJOcc^}æ)•&@ãcÁausgewertet. Mindestbewehrung (NCI Zu 9.4.3(2)) wurde à^¦>& • & œ dÈ Kombinationen Tæi*^à^}å^ÁS[{àã}æaã[}^}Á;æ&@ÄÖOD•ÁÖÞÁFJJ€ Ew Einwirkungsname Lkn Lastkombinationsnummer ! Öā^ÁÓ^c^ājāt~} * Á^āj: ^|} ^¦Ásæecê||^Ásj} ^¦@eþàÁsiner Einwirkung wird mit diesem Ausgabeformat nicht dokumentiert. Ew Gk Qk.N Qk.W

Lkn 1	Grundkombina 1.35		1.50 !	0.90			
Rund- schnitt	Abstand [cm]	u [m]	vEd	vRd,c	vRd,max ŽÞÐ { á	minAsw	erfAsw ŽX{ á

0.542

0.226 m

Ucrit

34.00

1.67

Position Auftrags-Nr. 2023 300 D-4.1 ÙVPËÜPÆÄÙ¢4&\@`ãį ÁÙ>å Seite: 4-57 **DS-19** Durchstanznachweis nach DIN EN 1992-1-1 **Angaben** Beton C 30/37, Betonstahl B 500MA Šæ• c^ā, |^āc`} * • √ê&@K Wandende 20.0 а cm b 20.0 cm Plattendicke h_0 20.0 cm Tãod ÉÁn cægaã & @ Áp c @ 4 @ . d_{m} 17.0 cm Šê}*•à^,^@*}* Šê}*•à^,^@*}*•*¦æå $a_{s,m}$ 2.44 &{ Ð 0.14 % I,vorh 1.96 % l,zul Tæi*ÈÄÖ`¦&@eæ):\¦æec V_{Ed} 47.7 kΝ Šæ• c^¦@4@{}*•~æ\d[¦ 1.35 **Nachweis** Keine Durchstanzbewehrung Asw erforderlich. Ø>¦ÁsanÁ, æi*^à^}å^ÁÓ^|æ•č}*••ãčæāā;}Á¸`¦å^ÁsanÁ, ãcd^¦^ÁŠê}*•à^¸^@`}*Á asm an der Oberseite à^ l>& • 3&@2 dÈ ÖāN•^ÁŠê}*•à^、^@^`}*ÁãróÁ§}^¦@aþàÁå^•Át^•æ(c^)Áê`i^¦^}ÁÜ`}å•&@,ãæ•Á a): `[¦å}^}Á'}åÁsě i ^¦@spàÁdieses Rundschnitts zu verankern.
Òā ^ÁÜ>c ^}\[] -ç^!•œ̂!\`}*Á; ãåÁý æ‰sé\-&&•æådè
ÖæÁÖ`¦&@æà;\¦æóÁXÒåÁ; ¦å^Ásé; ÁÜ>c^}æð; &@; æósausgewertet. Mindestbewehrung (NCI Zu 9.4.3(2)) wurde à^¦>& • & œ dÈ Kombinationen Tæi*^à^}å^ÁS[{àã}æaã[}^}Á;æ&@ÄÖOD•ÁÖÞÁFJJ€ Ew Einwirkungsname Lkn Lastkombinationsnummer !

Öā^ÁÓ^c^ājāt~} * Á^āj: ^|} ^¦Ásæecê||^Ásj} ^¦@eþàÁsiner Einwirkung wird mit diesem Ausgabeformat nicht dokumentiert.

Ew	Gk	(Qk.N	(Qk.W			
Lkn	Grundkombina	ation						
1	1.35	5	1.50 !		0.90			
Rund-	Abstand	u	vEd		vRd,c	vRd,max	minAsw	erfAsw
schnitt	[cm]	[m]			,	Ž⊃Đ [′] {á		Ž&{ á
Ucrit	34.00	1.67	0.227	m	0.542	• •		•

Position Auftrags-Nr. 2023 300 D-4.1 ÙVPËÜPÆÄÙ¢4&\@`ãį ÁÙ>å Seite: 4-58 **DS-20** Durchstanznachweis nach DIN EN 1992-1-1 **Angaben** Beton C 30/37, Betonstahl B 500MA Šæ• c^ā, |^āc`} * • √ê&@K Wandende 20.0 а cm b 20.0 cm Plattendicke h_0 20.0 cm Tãod ÉÁn cægaã & @ Áp c @ 4 @ . d_{m} 17.0 cm Šê}*•à^,^@*}* Šê}*•à^,^@*}*•*¦æå a_{s,m} 2.49 &{ Ð 0.15 % I,vorh 1.96 % I,zul Tæi*ÉÄÖ`¦&@@æ):\¦æc V_{Ed} 50.4 kΝ Šæ• c^¦@4@{}*•~æ\d[¦ 1.35 Keine Durchstanzbewehrung Asw erforderlich. **Nachweis** Ø>¦ÁsanÁ, æi*^à^}å^ÁÓ^|æ•č}*••ãčæāā;}Á¸`¦å^ÁsanÁ, ãcd^¦^ÁŠê}*•à^¸^@`}*Á asm an der Oberseite à^ l>& • 3&@2 dÈ ÖāN•^ÁŠê}*•à^、^@^`}*ÁãróÁ§}^¦@aþàÁå^•Át^•æ(c^)Áê`i^¦^}ÁÜ`}å•&@,ãæ•Á a): `[¦å}^}Á'}åÁsě i ^¦@spàÁdieses Rundschnitts zu verankern.
Òā ^ÁÜ>c ^}\[] -ç^!•œ̂!\`}*Á; ãåÁý æ‰sé\-&&•æådè
ÖæÁÖ`¦&@æà;\¦æóÁXÒåÁ; ¦å^Ásé; ÁÜ>c^}æð; &@; æósausgewertet. Mindestbewehrung (NCI Zu 9.4.3(2)) wurde à^¦>& • 3&@ à dÈ Kombinationen Tæi*^à^}å^ÁS[{àã}æaã[}^}Á;æ&@ÄÖOD•ÁÖÞÁFJJ€ Ew Einwirkungsname Lkn Lastkombinationsnummer c[| @\| • &@\} a^Ac^\e\e\a^\| a&@\AOa_a\\`}* $\ddot{\Box}$

Oa\AO\c\aa } " A\a: ^ } ^\Abæece ^Aa} } ^\ @aaaeiner Einwirkung wird mit dieser
Ausgabeformat nicht dokumentiert.

Qk.W

Qk.N

Gk

Lkn 1	Grundkombin 1.3		1.50 !	0.90			
Rund- schnitt	Abstand [cm]	u [m]	vEd	vRd,c	vRd,max ŽÞÐ { á	minAsw	erfAsw Ž&√ á
Ucrit	34.00	1.67	0.240 m	າ 0.542			<u> </u>

Ew

Seite: 4-59

Position Auftrags-Nr. ÙVPËJPÆÄJC4& @ã ÁJ>å 2023 300 D-4.1

`à^¦ËĐW}¢^¦:`*ËÓ^{ËÕ¦æ-Ó^{ ^••`} *Á¶ ÁÕ¦^}::`•œa} åÁå^¦Á/¦æt-ê@t\^ãaÁ,æ&@kÖQ¢AÒÞÁFJJGËFËF Ó^{ ^••`} * Áå^¦Á à^¦ËÁ} åÁW} ♂¦:>*^ `à^¦Ё0W}c^¦:>*^ Mat./Querschnitt Material- und Querschnittswerte nach DIN EN 1992-1-1 Šê} * ^ Material Position **Beton** Betonstahl Šê} * • Ó>* ^| [m] UZ-1 B 500SA B 500SA C 25/30 Q 3.13 UZ-2 B 500SA C 25/30 Q 4.65 B 500SA UZ-3 27.46 B 500SA B 500SA C 25/30 Q ÓÒÜZWÕË 27.56 B 500SA B 500SA C 30/37 Q ÓÒÜZWÕËG 27.46 B 500SA B 500SA C 30/37 Q Q: Õ^•c^ã,•\4¦} `}*ÁÛ`æl:ãc Querschnitt Position Exz. bы hf b_w h [cm] [cm] [cm] [cm] [cm] UZ-1, UZ-2 UΖ 100.0 20.0 20.0 50.0 UZ-3 UΖ 100.0 20.0 20.0 40.0 ÓÖÜZWÕËFÉÄ ÓÖÜZWÕËG . Ó 100.0 20.0 20.0 109.0 UZ: Unterzug · ÓK · à^¦: ** *^{ êi ÁÖ OÞÁÖÞÁFJJ GËFËFÉÝ æà ÉÁ ÈF Expositionsklasse Position Seite ΚI Kommentar WZËFENZËHËA ÓÒÜZWÕËFËA ÓÒÜZWÕËG XC1 d[&\^} A\ a^\ A\ ce\ a a A\ æ• umlaufend Bewehrung Vorgaben zur Bewehrungsdefinition Betondeckung Position &def,u Cmin,u Cnom,u &def,o Cmin,o Cnom,o [mm] [mm] [mm] WZËFËNZËHÊN ÓÒÜZWÕËFÊN ÓÒÜZWÕËG 10 10 20 10 10 20 Ó^, ^@<u>`}*•æà•œê}å^</u> der erforderlichen (Differenz-)Bewehrung Position d'o d'u [mm] [mm] WZËFËNZËHË ÓÒÜZWÕËFË ÓÒÜZWÕËG 50 50 ->|Áså^}ÁÕ¦^}::`•œa}åÁså^¦ÁV¦æt÷ê@at\^ãaÁ,æ&@AÖOQ•ÁÒÞÁFJJGËFËF <u>Bemessungsparameter</u> (GZT) Biegung/Querkraft Position min. Theta Mindestbewehrung Abs. 6.1, 6.2 Ž×á Šê} * • Querkraft WZĖTĖNZĖTĖ ÓÒÜZWÕĖTĖ ÓÒÜZWÕĖG optimiert ja ja Mindestbewehrung nach Abs. 9.2.1.1 bzw. 9.2.2 Uà^¦-¦ê&@ Schubfuge Position bi С Abs. 6.2.5 [cm] WZĒĖVZĒLĖ ÓÒÜZWÕĒ Š ÓÒŪZWÕĒG

20.0

0.40

rau

0.70

0.50

2023 300 D-4.1 ÙVPËÜPÄÄÜ¢4&\@aį ÁÙ>å

Bemessung

Unterzug (Stahlbeton) Bemessung

<u>UZ-1</u>

Unterzug

Kombinationen

Tæi*^à^}å^ÁS[{àãjæaāj}^}Ájæ&@ÁÖODAÓÞÁFJJ€

Ew Einwirkungsname

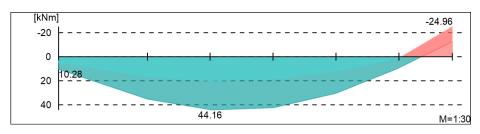
Lkn Lastkombinationsnummer

Öð ÁÓ ° † † * Á † : ^|} ^ ¦ Á æ cê || ^ Á þ } ^ ¦ @ † à Áeiner Einwirkung wird mit diesem Ausgabeformat nicht dokumentiert.

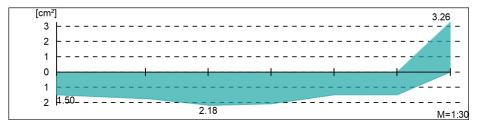
Seite: 4-60

Ew	Gk	Qk.N	Qk.W	
Lkn	Grundkombination			
1	1.00		1.50 !	
2-5	1.35	1.50 !	0.90	
6	1.00	1.50 !	0.90	

<u>Šê}*•à^, ^@°}*</u>

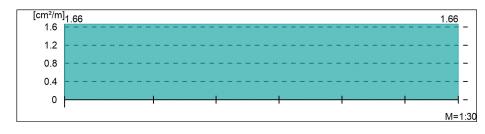

Ò¦{¦å^¦|&&@^ÁŠê}*•à^¸^@`}*ÁŒ^Á;à^}Ð}♂}

Bemessungsmomente beinhalten auch Plattenmomente im Bereich von bPI.


V¦æti-ê@at∖^ão

Biege- und Normalkraftbemessung, Abs. 6.1

Bemessungsmomente MEd oben/unten


Šê} *•à^, ^@`} *ÁŒÁ;à^}Ð} &^}

Querkraftbewehrung

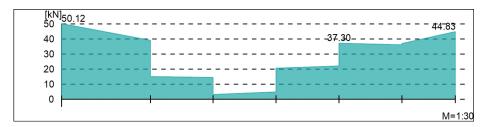
Ò¦{¦å^¦|ã&@^ÁÛ`^¦\¦ææà^¸^@`}*Á數ÁÇÓ>*^|D

Ó^{ ^••`}*•``^!\|ê-e^Áa^ā; @ede^} Áeĕ &@ÁU|æee^}``^!\|ê-e^Áā; ÁÓ^!^&&@Ác[} Áàw.

Auftrags-Nr.

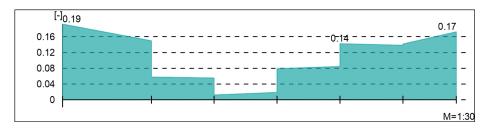
Position

2023 300

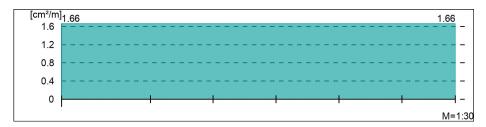

D-4.1

ÙVPËÜPÄÄÛc4&\@4 ÂÛ>å

<u>V¦æ*-ê@#\^ã</u>c

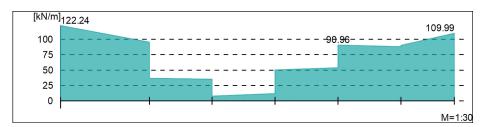

Querkraftbemessung, Abs. 6.2

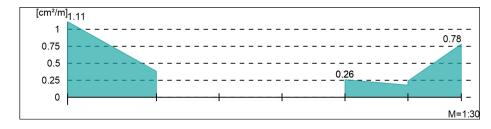
Bemessungsquerkraft VEd



Seite: 4-61

Querkraftausnutzung VEd/VRd,max


Querkraftbewehrung asw


Schubfuge

Nachweis der Schubfuge, Abs. 6.2.5

Ó^{ ^••`}*•|ê}*••&@à\¦æo{çÒå

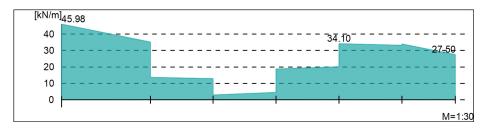
Verbundbewehrung asw

Auftrags-Nr.

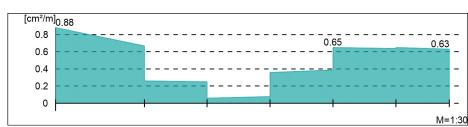
Position

2023 300

D-4.1


ÙVPËÜPÄÄÛc4&\@^ãį ÁÛ>å

Gurtbewehrung


Gurtanschlussbemessung, Abs. 6.2.4

Seite: 4-62

Ó^{ ^••`}*•|ê}*••&@à\¦æ⁄�¢Òå

Gurtanschlussbewehrung asf

2023 300 D-4.1

Seite: 4-63

UZ-2 Kombinationen Unterzug Tæi*^à^}å^ÁS[{àãjæaãi}^}Ájæ&@#ÖODAÖÞÁFJJ€

Ew Einwirkungsname

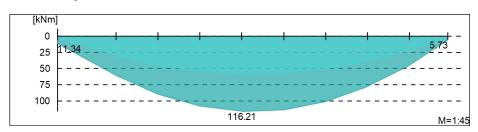
Lkn Lastkombinationsnummer

ç[¦@\|•&@\}å^Æç^\ê}å^\|&&@\ÁÒ@; ã\`}*

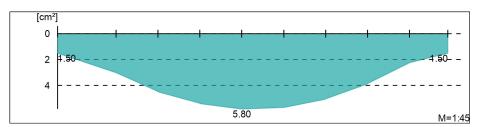
Öð ÁÓ c dð `} * Á ð : ^|} ^ ¦ Á æ cê||^ Á } } ^ ¦ @ d Áeiner Einwirkung wird mit diesem Ausgabeformat nicht dokumentiert.

Ew	Gk	Qk.N	Qk.W	
Lkn	Grundkombination			
1	1.00		1.50 !	
2-6	1.35	1.50 !	0.90	
7-8	1.00	1.50 !	0.90	

<u>Šê}*•à^, ^@*}*</u>

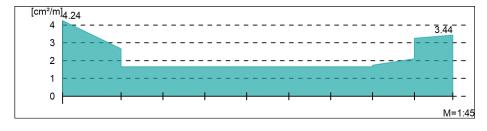

Ò¦-{¦å^¦|&&@AŠê}*•à^¸^@~`}*ÁO•A(à^}Ð`}৫^}

Bemessungsmomente beinhalten auch Plattenmomente im Bereich von bPI.


V¦æ≛-ê@≛∖^ãc

Biege- und Normalkraftbemessung, Abs. 6.1

Bemessungsmomente MEd oben/unten


Šê}*•à^. ^@*}*ÁŒÁàà^}Ð}♂}

Querkraftbewehrung

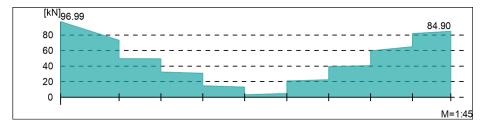
 \dot{O} | \dot{A} | \dot{A}

Ó^{ ^••`}*•``^!\|ê~e^Áa^ā; @eţe^} Áeĕ &@ÁÚ|ææe^}``^!\|ê~e^Áā; ÁÓ^!^&&@Áç[} Áàw.

Auftrags-Nr.

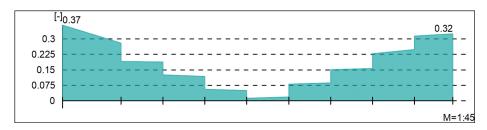
Position

2023 300

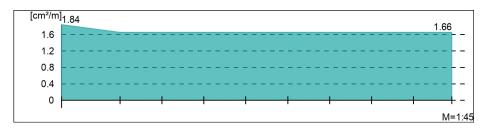

D-4.1

ÙVPËÜPÆÄÛ¢4&\@^ãį ÁÛ>å

<u>V¦æ*-ê@#∖^ã</u>c

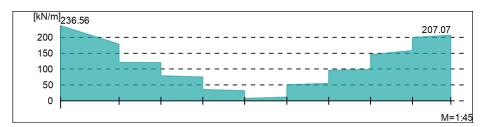

Querkraftbemessung, Abs. 6.2

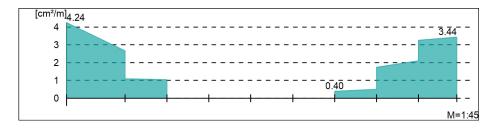
Bemessungsquerkraft VEd



Seite: 4-64

Querkraftausnutzung VEd/VRd,max


Querkraftbewehrung asw


Schubfuge

Nachweis der Schubfuge, Abs. 6.2.5

Ó^{ ^••`}*•|ê}*••&@à\¦æo{çÒå

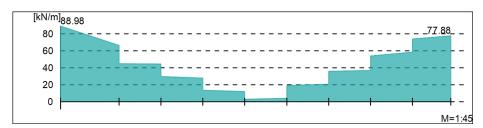
Verbundbewehrung asw

Auftrags-Nr.

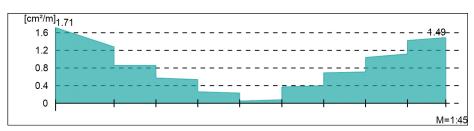
Position

2023 300

D-4.1


ÙVPËÜPÄÄÛc4&\@^ãį ÁÛ>å

Gurtbewehrung


Gurtanschlussbemessung, Abs. 6.2.4

Seite: 4-65

Ó^{ ^••`}*•|ê}*••&@à\¦æ⁄�¢Òå

Gurtanschlussbewehrung asf

2023 300 D-4.1

Seite: 4-66

<u>UZ-3</u> Unterzug

Kombinationen Tæi *^à^} å^ÁS[{ àã; ææã; }^} Á; æ&@ÁÖΦ ÁÖÞÁFJJ€

Ew Einwirkungsname

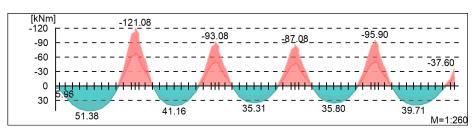
Lkn Lastkombinationsnummer

ç[¦@\|•&@\}å^Æç^\ê}å^\|&&@\ÁÒ@; ã\`}*

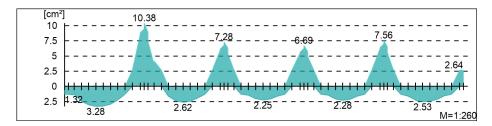
Öð ÁÓ ° † † * Á † : ^|} ^ ¦ Æ æ cê || ^ Á } } ^ ¦ @ ф à Æ iner Einwirkung wird mit diesem Ausgabeformat nicht dokumentiert.

Ew	Gk	Qk.N	Qk.W	
Lkn	Grundkombination			
1-2	1.00		1.50 !	
3-5	1.00	1.05	1.50 !	
6-15	1.35	1.50 !	0.90	
16-19	1.00	1.50 !	0.90	

Šê} *•à^, ^@`} *

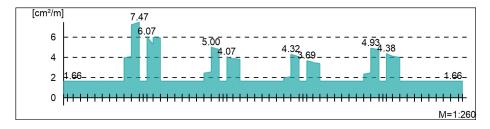

Ò¦-{¦å^¦|&@^ÁŠê}*•à^¸^@*}*ÁŒÁ;à^}Ð}৫^}

Bemessungsmomente beinhalten auch Plattenmomente im Bereich von bPI.


V¦æti-ê@at∖^ão

Biege- und Normalkraftbemessung, Abs. 6.1

Bemessungsmomente MEd oben/unten

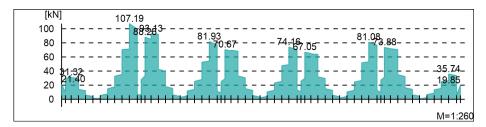

Šê}*•à^. ^@*}*ÁŒÁà^}Ð)♂}

Querkraftbewehrung

Ò¦-{¦å^¦|&&@^ÁÛ`^¦\¦ææà^¸^@`}*Á數ÁÇÓ>*^|D

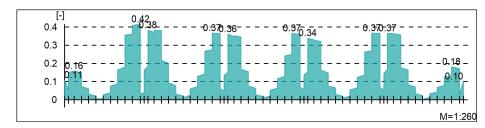
Ó^{ ^••`}*•``^!\|ê~e^Áa^ā;@ede^} Áse &@ÁU|æee^}``^!\|ê~e^Áā; ÁÓ^!^&&@Ás[} Ááw.

2023 300

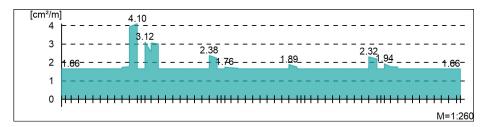

D-4.1

ÙVPËÜPÄÄÜ¢4&\@ã ÁÙ>å

<u>V¦æ*-ê@#∖^ãc</u>

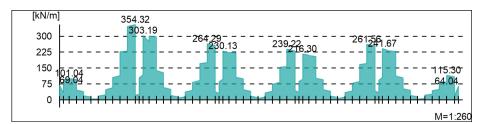

Querkraftbemessung, Abs. 6.2

Bemessungsquerkraft VEd

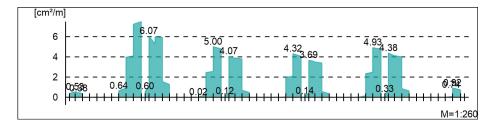


Seite: 4-67

Querkraftausnutzung VEd/VRd,max



Querkraftbewehrung asw



Schubfuge

Nachweis der Schubfuge, Abs. 6.2.5

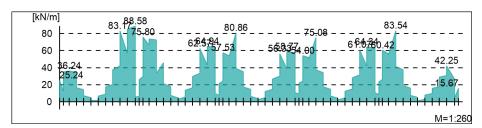
Verbundbewehrung asw

Auftrags-Nr.

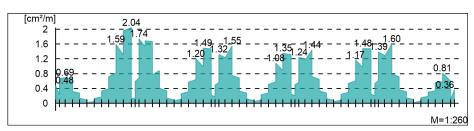
Position

2023 300

D-4.1


ÙVPËÜPÄÄÛc4&\@^ãį ÁÛ>å

Gurtbewehrung


Gurtanschlussbemessung, Abs. 6.2.4

Seite: 4-68

Ó^{ ^••`}*•|ê}*••&@à\¦æ⁄�¢Òå

Gurtanschlussbewehrung asf

2023 300

D-4.1

ÙVPËÜPÄÄÜ¢4&\@ã ÁÛ>å

<u>ÓÒÜZWÕË</u>

Kombinationen Tæi *^à^} å^ÆS[{ àãj ææãj }^} Áj æ&@ÄÖΦ ÂÖÞÁFJJ€

Ew Einwirkungsname

Lkn Lastkombinationsnummer

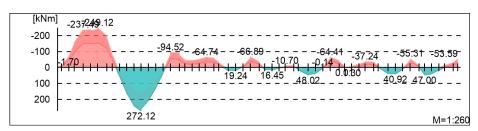
c[¦@\|•&@\}å^Áç^\ê}å^\|&&@\ADaj_a\`}*

Öð ÁÓ ° † † * Á † : ^|} ^ ¦ Æ æ cê || ^ Á } } ^ ¦ @ ф à Æ iner Einwirkung wird mit diesem Ausgabeformat nicht dokumentiert.

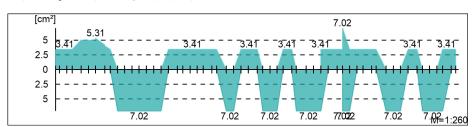
Seite: 4-69

Ew	Gk	Qk.N	Qk.W	
Lkn	Grundkombination			
1-2	1.00		1.50 !	
3-6	1.00	1.05	1.50 !	
7-15	1.00	1.50 !	0.90	
16-26	1.35	1.50 !	0.90	

Šê} *•à^, ^@*} *

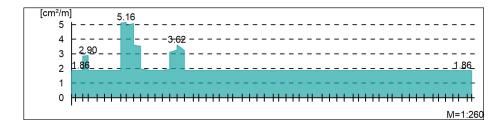

Ò¦-{¦å^¦|&@^ÁŠê}*•à^¸^@*}*ÁŒÁ;à^}Ð}৫^}

Bemessungsmomente beinhalten auch Plattenmomente im Bereich von bPI.


V¦æ*åe@a*∖^ãc

Biege- und Normalkraftbemessung, Abs. 6.1

Bemessungsmomente MEd oben/unten

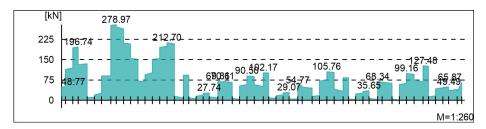

Šê} *•à^, ^@`} *ÁŒÁ;à^}Ð} &^}

Querkraftbewehrung

Ò!-{!å^!|&&@^ÁÛ`^!\!ææà^\^@`}*Áæ•\ÁQÓ>*^|D

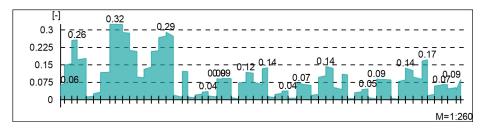
Ó^{ ^••`}*•``^¦\¦ê-e^Áa^ā; @edec^}Áseě &@ÁÚ|æec^}``^¦\¦ê-e^Áā; ÁÓ^¦^&&@Ác[}Ás_w.

2023 300

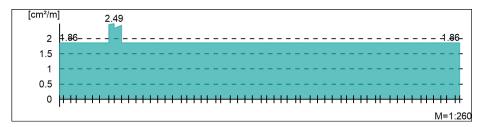

D-4.1

ÙVPËÜPÄÄÜ¢4&\@ã ÁÛ>å

<u>V¦æ*-ê@#∖^ãc</u>

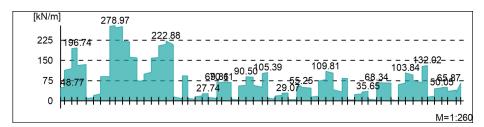

Querkraftbemessung, Abs. 6.2

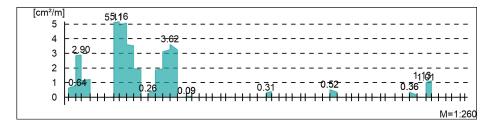
Bemessungsquerkraft VEd



Seite: 4-70

Querkraftausnutzung VEd/VRd,max


Querkraftbewehrung asw


Schubfuge

Nachweis der Schubfuge, Abs. 6.2.5

Ó^{ ^••`} *•|ê} *••&@ à\¦æ⁄�¢Òå

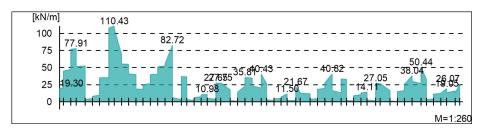
Verbundbewehrung asw

Auftrags-Nr.

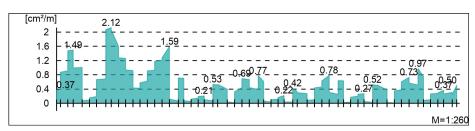
Position

2023 300

D-4.1


ÙVPËÜPÄÄÛc4&\@^ãį ÁÛ>å

Gurtbewehrung


Gurtanschlussbemessung, Abs. 6.2.4

Seite: 4-71

Ó^{ ^••`}*•|ê}*••&@à\¦æ⁄�¢Òå

Gurtanschlussbewehrung asf

2023 300

D-4.1

ÙVPËJPÆÄJC4& @ã ÁJ>å

<u>ÓÒÜZWÕËG</u> Kombinationen

Tæi*^à^}å^ÁS[{àãjæaãj}^}Ájæ&S@ŰÖQ⊅ÁÖÞÁFJJ€

Ew Einwirkungsname

Lkn Lastkombinationsnummer

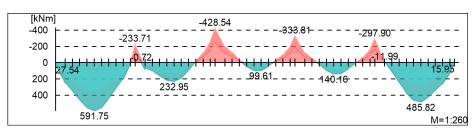
ç[¦@\|•&@\}å^Æç^\ê}å^\|&&@\ÁÒAj¸ã\`}*

Öð ÁÓ c ðð `} * Áð : ^|} ^! Ášæ cê||^Ás } ^! @ hásiner Einwirkung wird mit diesem Ausgabeformat nicht dokumentiert.

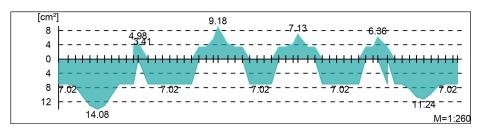
Seite: 4-72

Ew	Gk	Qk.N	Qk.W	
Lkn	Grundkombination			
1	1.00	1.05	1.50 !	
2-3	1.00		1.50 !	
4	1.35		1.50 !	
5-13	1.35	1.50 !	0.90	
14-20	1.00	1.50 !	0.90	

Šê} * • à^, ^ @ ` } *

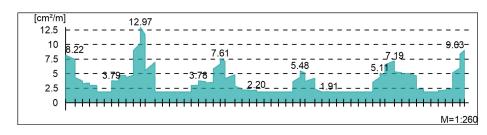

Ò¦-{ ¦å^¦|ã&@ ÁŠê} *•à^ , ^@`} *ÁŒ Á;à^}Ð} ♂}

Bemessungsmomente beinhalten auch Plattenmomente im Bereich von bPI.


<u>V¦æ*-ê@#\^ãc</u>

Biege- und Normalkraftbemessung, Abs. 6.1

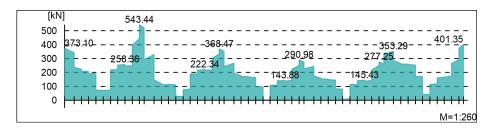
Bemessungsmomente MEd oben/unten


Šê}*•à^. ^@`}*ÁŒÁàà^}Ð}c^}

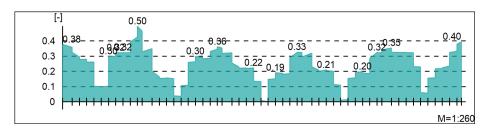
Querkraftbewehrung

 $\hat{O}_{1}^{+} = \hat{A}_{2}^{+} + \hat{A}_{3}^{+} + \hat{A}_{4}^{+} + \hat{A}_{5}^{+} + \hat{A}$

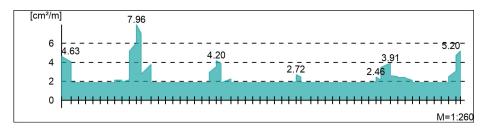
Ó^{ ^••`}*•``^!\|ê-e^Áa^a; @ede^} Ásĕ &@ÁU|ææe^}``^!\|ê-e^Áā; ÁÓ^!^&&@Ác[} Ááw.


2023 300 D-4.1

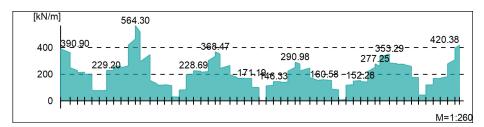
Seite: 4-73

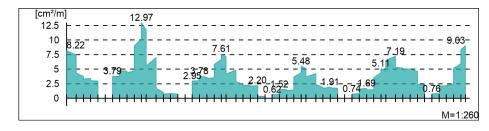

<u>V¦æ*-ê@#∖^ãc</u>

Querkraftbemessung, Abs. 6.2


Bemessungsquerkraft VEd

Querkraftausnutzung VEd/VRd,max


Querkraftbewehrung asw


Schubfuge

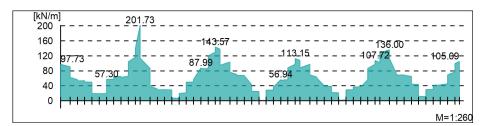
Nachweis der Schubfuge, Abs. 6.2.5

Ó^{ ^••`} *•|ê} *••&@ à\¦æ⁄�¢Òå

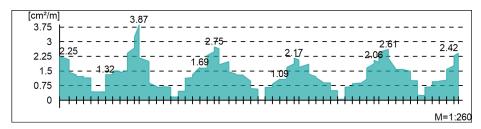
Verbundbewehrung asw

2023 300

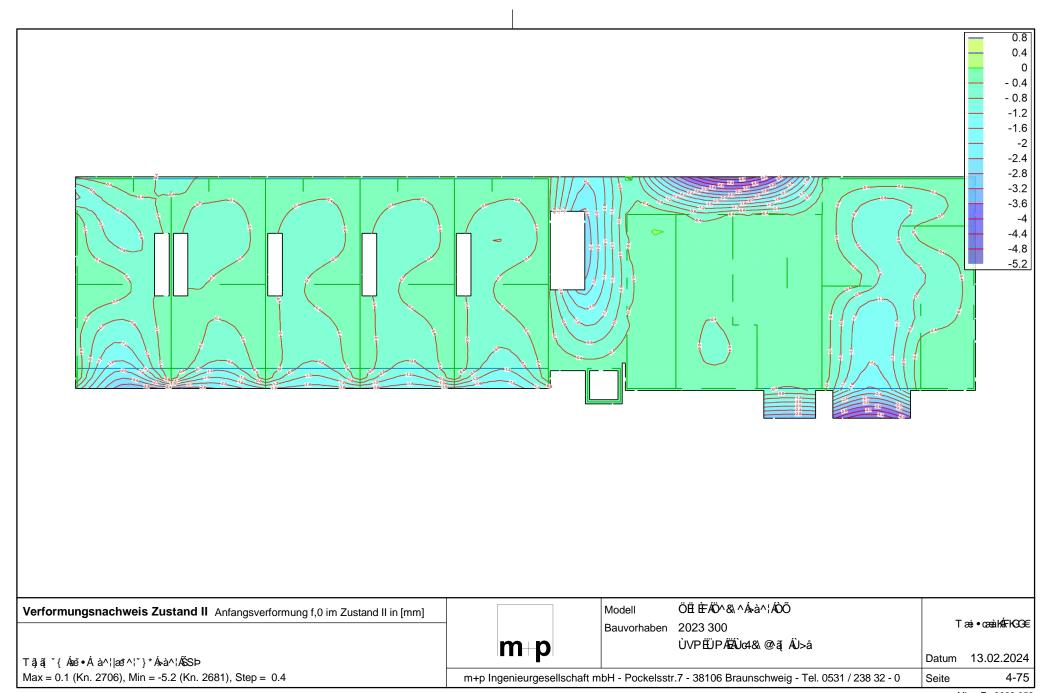
D-4.1

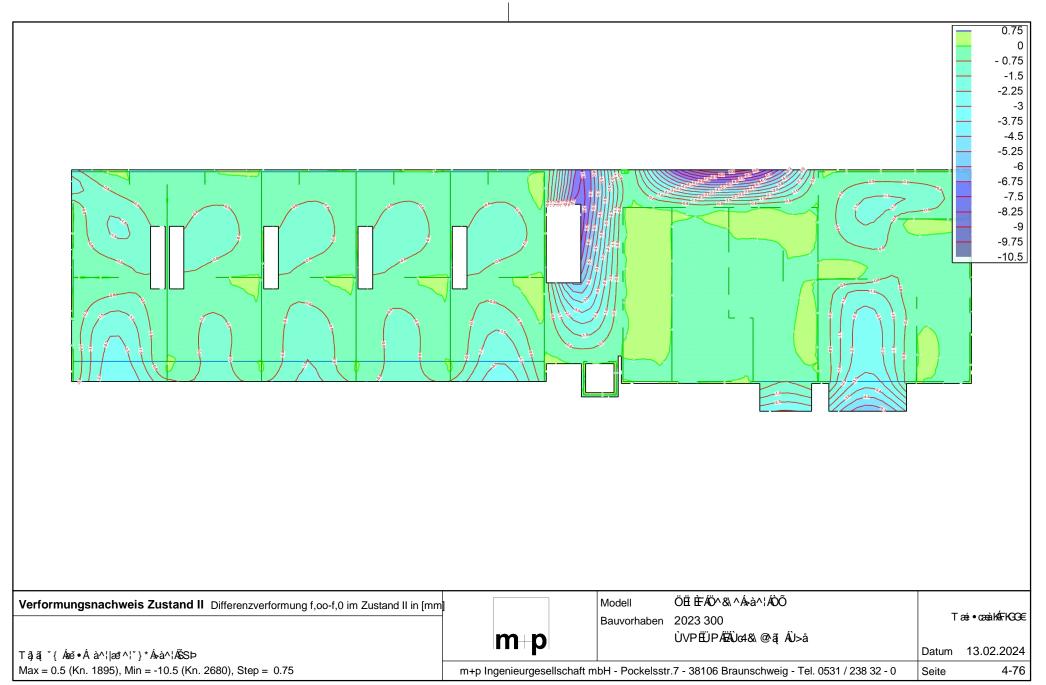

ÙVPËÜPÄÄÜ¢4&\@ã ÁÙ>å

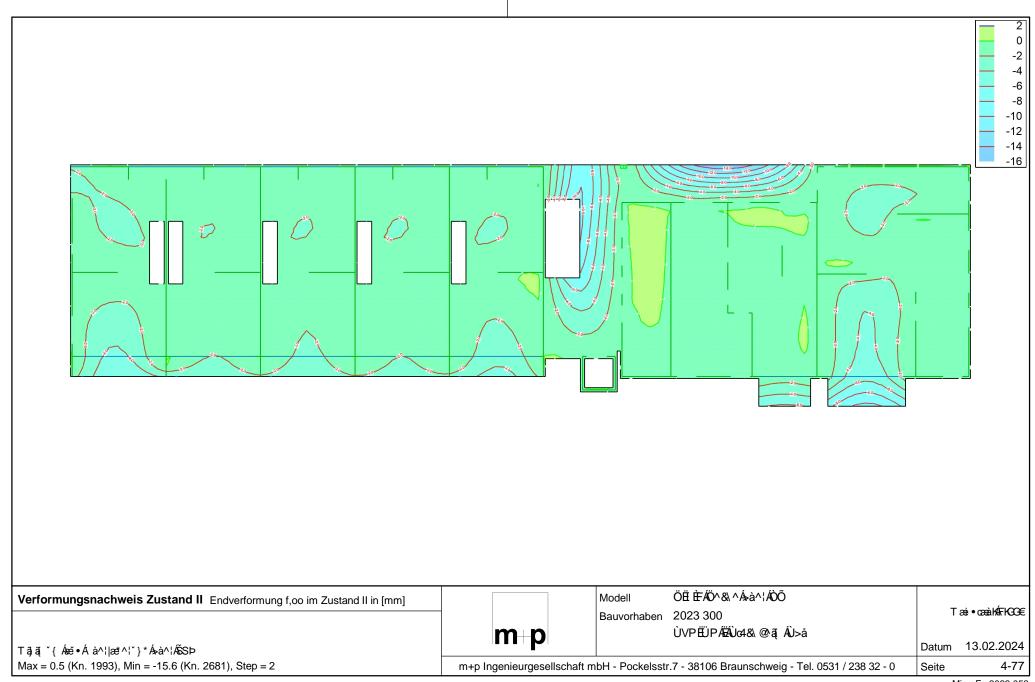
Gurtbewehrung


Gurtanschlussbemessung, Abs. 6.2.4

Seite: 4-74

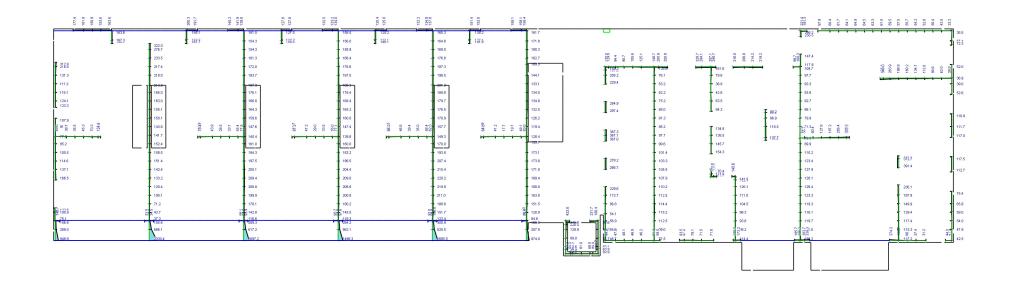

Ó^{ ^••`}*•|ê}*••&@à\¦æ⁄�¢Òå



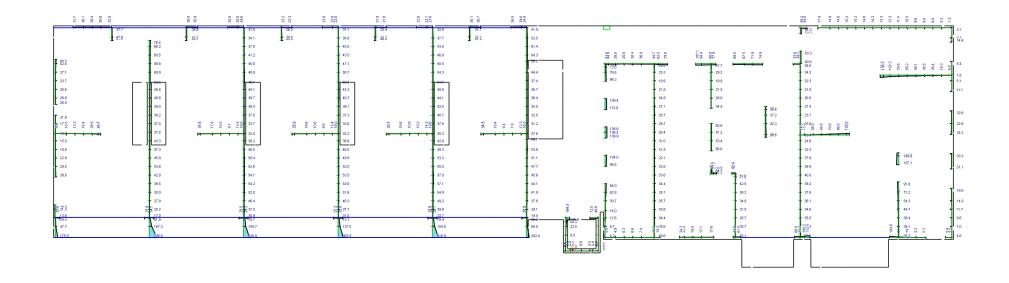

Gurtanschlussbewehrung asf

Nachweise (GZG)

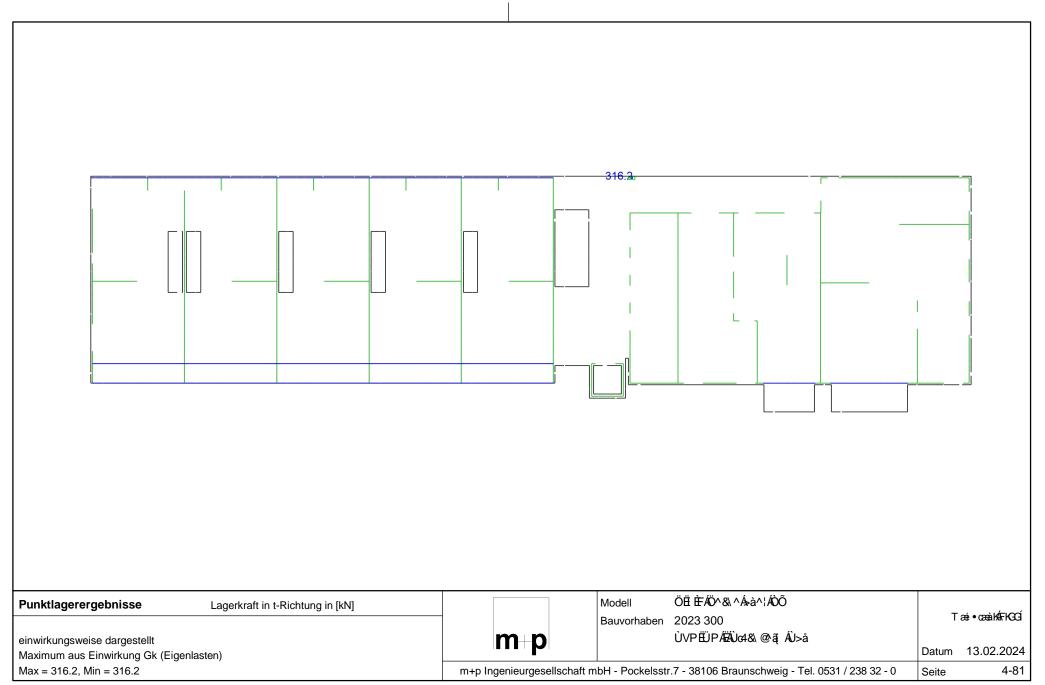
Auftrags-Nr. Position

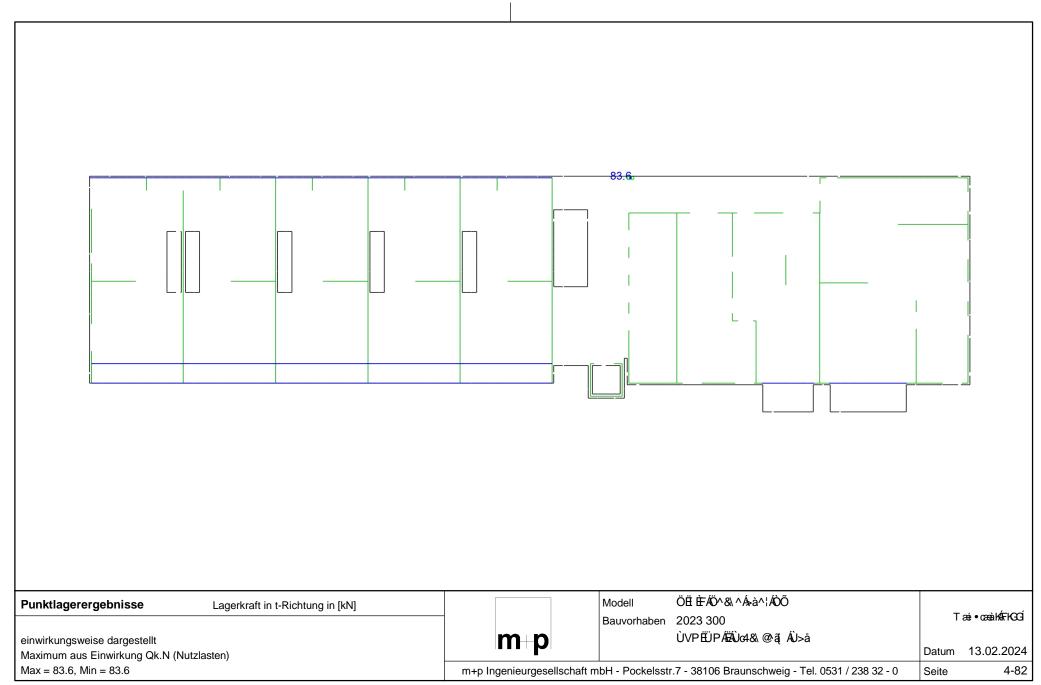


Seite: 4-78


2023 300

D-4.1


5 i ZU[Yf_f} ZhY



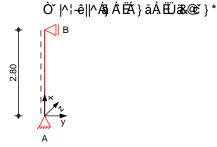
Linienlagerergebnisse Lagerkraft in t-Richtung in [kN/m]		Modell	ÖÜL ÈFÁÖ^&\^Ásà^¦ÁÒÕ		
		Bauvorhaben	2023 300 ÙVPËÜPÄÄÜ¢&\@A ÂÜ>å	T	aai•oaaaìkÁFKGG€
einwirkungsweise dargestellt Maximum aus Einwirkung Gk (Eigenlasten)	lm+p		OVI EDI ALBOOTON & Q ADZO	Datum	13.02.2024
Max = 2330.4, Min = 17.7	m+p Ingenieurgesellschaft mbH - Pockelsstr.7 - 38106 Braunschweig - Tel. 0531 / 238 32 - 0			Seite	4-79

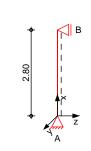
Linienlagerergebnisse Lagerkraft in t-Richtung in [kN/m]		Modell	ÖÜ ÈFÁÖ^&\^Ásà^¦ÁÒÕ		,
einwirkungsweise dargestellt		Bauvorhaben	2023 300 ÙVPËÜPÄÄÜ¢&\@A ÁÜ>å	Т	æi•cæàlkÁFkGŒ
Maximum aus Einwirkung Qk.N (Nutzlasten)	m⊣p		Ovi Divideolal Sq vera	Datum	13.02.2024
Max = 536.8, Min = -14.7	m+p Ingenieurgesellschaft mbH - Pockelsstr.7 - 38106 Braunschweig - Tel. 0531 / 238 32 - 0			Seite	4-80

2023 300

ST-4.1

ÙVPËÜPÄÄÛ¢4&\@ã ÁÛ>å

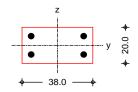

Seite: 4-83


fw

Pos. ST-4.1

GHV"!Gh mY

System M 1:120


Abmessungen Mat./Querschnitt

Geschoss	I	Material	b _y /b _z
	[m]		[cm]
EG	2.80	C 25/30	38/20

Auflager

Lager	X	$K_{T,z}$	$K_{R,y}$	$K_{T,y}$	$K_{R,z}$
•	[m]	[kN/m]	[kNm/rad]	[kN/m]	[kNm/rad]
В	2.80	fest	frei	fest	frei
Α	0.00	fest	frei	fest	frei

M 1:20

Abschnitt 1

Einwirkungen

Einwirkungen nach DIN EN 1990:2010-12

Gk

Eigenlasten

Ùœ̂} åð * ^ ÁÒð; ã\ ` } * ^ }

Qk.N

Nutzlasten Sæzv*[¦āvÁ02ÆZÁY[@y.EÄ{}åÁ0E:~^}c@extor\ê~{^

a route [eg et] aroce of te {

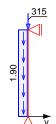
Ò¦|ê~c^\;\} * ^}

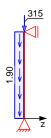
Lastansatz ung>nstig (fw)

Öā\Ásæec\}Ás^¦ÁÒā, ā\`}*Á, ^¦å^}Á§ Á; *>} •æt ^¦ÁLaststellung wirkend

angesetzt.

Belastungen


Belastungen auf das System


Grafik

Belastungsgrafiken (einwirkungsbezogen)

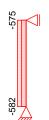
Einwirkungen

Auftrags-Nr.	Position	m+p	martens+p			
2023 300	ST-4.1	ÙVPËÜPÆÄ.	 c4&\@`ã(ÂÙ>å			Seite: 4-84
Streckenlasten in x-Richtung	Ges.	Komm.	a [m]	s [m]	q _u [kN/m]	q _o [kN/m]
Einw. <i>Gk</i>	EG	Eigengew	0.00	2.80		1.90
Punktlasten in x-Richtung	Einzellaster Ges.	n Komm.	a [m]		F _x [kN]	e _y e _z [cm] [cm]
Einw. <i>Gk</i> Einw. <i>Qk.N</i>	EG EG		2.80		315.00 100.00	0.0 0.0 0.0 0.0
<u>Imperfektionen</u>						
Grafik	Figur 7 w _z [c	cm]	Figu	ır 11 w _z [cm	1]	
	0.76		0.49			
Tabelle						
Figur 7	X [m]	Wyu [om]	W _{ZU}		Wyk	W _{Zk}
EG	[m] 2.80	[cm] 0.00	[cm] 0.00		[cm] 0.00	[cm] 0.00
	1.40	0.00	0.70		0.00	0.06 *
Figur 11	0.00 x	0.00 * w _{yu}	0.00 w _{zu}	*	0.00 * w _{yk}	0.00 * Wzk
rigui i i	[m]	[cm]	[cm]		[cm]	[cm]
EG	2.80	0.00	0.00		0.00	0.00
	1.70	0.00	0.49	*	0.00	0.00
	1.40 0.00	0.00 0.00 *	0.45 0.00	*	0.00 0.00 *	0.00 0.00 *
	Ungewollte	Ausmitte affin zur I nen ohne] æ} { êi a Richtung [-] z z	Biegelinie bzw	. affin zur I * Á^} \	Knickfigur be	ei
Kombinationen	Kombinatio	nsbildung nach DIN	I EN 1990			

Darstellung der mai gebenden Kombinationen

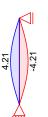
_	Ek	lmp.	(* *EW)	
•œ̂} åðtt͡ð̞[¦>à^¦* È	7	7	1.35*Gk	+1.50*Qk.N
Brand	19	11	1.00*Gk	+0.30*Qk.N

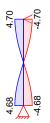
Ó^{ \overline{\ nach Th. II. Ordnung


nichtlineare Berechnung nach Th. II. Ordnung Nicht-Linear

<u>Grafik</u> Ù&@; ãct | 4i ^} ÁÇN{ @||^} å^D

ÙVPËÜPÄÄÛc4&\@ã ÁÛ>å 2023 300 ST-4.1


Seite: 4-85


 $N_{x,d}[kN]$

 $M_{y,d}[kNm]$

 $M_{z,d}[kNm] \\$

 $V_{y,d}[kN]$

 $V_{z,d}[kN] \\$

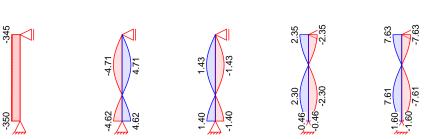
<u>Tabelle</u>

Ù&@ act 4i ^ AQM @||^ a^D

	X	$N_{x,d,min}$	Ek	$M_{y,d,min}$	Ek	$V_{z,d,min}$	Ek
		$N_{x,d,max}$		$M_{y,d,max}$		$V_{z,d,max}$	
	[m]	[kN]		[kNm]		[kN]	
EG	2.80	-575.25	5	0.00	1	-5.08	7
		-315.00	9	0.00	1	5.08	8
	1.40	-578.84	5	-4.83	8	-0.02	7
		-317.66	9	4.83	7	0.02	8
	0.00	-582.43	5	0.00	1	-5.06	8
		-320.32	9	0.00	1	5.06	7

Ε	G	

Х	$M_{z,d,min}$	Ek	$M_{z,d,max}$	Ek	$V_{y,d,min}$	Ek	$V_{y,d,max}$	Ek
[m]	[kNm]		[kNm]		[kN]		[kN]	
2.80	0.00	1	0.00	1	-4.70	5	4.70	6
1.40	-4.21	5	4.21	6	-0.02	5	0.02	6
0.00	0.00	1	0.00	1	-4.68	6	4.68	5


Brandfall Nicht-Linear

nichtlineare Berechnung nach Th. II. Ordnung

 $M_{y,d}[kNm]$

Grafik

Ù&@}ãc*¦4i^}ÁÇM{ @>||^}å^D

 $M_{z,d}[kNm]$

 $V_{y,d}[kN]$

 $N_{x,d}[kN]$

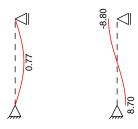
 $V_{z,d}[kN]$

Tabelle

Ù&@ ãct 4i ^} ÁQW @||^} å^D

F	=	(7	

	х	$\begin{matrix} N_{x,d,min} \\ N_{x,d,max} \end{matrix}$	Ek	$M_{y,d,min}$ $M_{y,d,max}$	Ek	$\begin{matrix} V_{z,d,min} \\ V_{z,d,max} \end{matrix}$	Ek
	[m]	[kN]		[kNm]		[kN]	
-	2.80	-345.00	17	0.00	13	-7.63	19
		-315.00	13	0.00	13	7.63	20
	1.80	-346.90	17	-4.71	20	-0.23	20
		-316.90	13	4.71	19	0.23	19
	0.00	-350.32	17	-4.62	19	-1.60	20
		-320.32	13	4.62	20	1.60	19

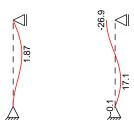

2023 300 ST-4.1 ÚVPËÜPĀĀŪd&\@ā, ÂŪ>å Seite: 4-86

	x [m]	M _{z,d,min} [kNm]	Ek	M _{z,d,max} [kNm]	Ek	V _{y,d,min} [kN]	Ek	V _{y,d,max} [kN]	Ek
EG	2.80	0.00	13	0.00	13	-2.35	17	2.35	18
	1.80	-1.43	17	1.43	18	-0.06	18	0.06	17
	0.00	-1.40	18	1.40	17	-0.46	18	0.46	17

Bem.-verformungen nach Th. II. Ordnung

Nicht-Linear nichtlineare Berechnung nach Th. II. Ordnung

Komb. 7 $w_{z,d}[cm]$ $y_{,d}[mrad]$


<u>Tabelle</u> X^¦-{ | { ` } *^} ÁÇ æ *^à^} å^D

	Gesch.	Χ	$W_{z,d}$	y,d	$\mathbf{W}_{y,d}$	z,d
		[m]	[cm]	[mrad]	[cm]	[mrad]
Komb. 7	EG	2.80	0.00	-8.80 *	0.00	0.00
		1.40	0.77 *	-0.02	0.00	0.00
		0.00	0.00	8 70 *	0.00	0.00

<u>Brandfall</u>

Nicht-Linear nichtlineare Berechnung nach Th. II. Ordnung

Komb. 19 $w_{z,d}[cm]$ $y_{,d}[mrad]$

	Gesch.	Х	$W_{z,d}$	y,d	$W_{y,d}$	z,d
		[m]	[cm]	[mrad]	[cm]	[mrad]
Komb. 19	EG	2.80	0.00	-26.87 *	0.00	0.00
		1.70	1.87 *	-0.53	0.00	0.00
		0.80	0.86	17.12 *	0.00	0.00
		0.00	0.00	-0.10	0.00	0.00

Auftrags-Nr. Position ÙVPËJPÆÄJc4& @ã ÁJ>å 2023 300 ST-4.1

Mat./Querschnitt

Material- und Querschnittswerte

_				
\sim			L	itte
	161	3.	m	III

Q	Тур	Bewehr	b/D	h/Di	Cmin	С
		anordnung	[cm]	[cm]	[mm]	[mm]
1	Recht	Ò&\•œ̂à^	38.0	20.0	20	15
Q	Expositions	klassen			Cnom	CV
					[mm]	[mm]
1	XC1				35	35

Seite: 4-87

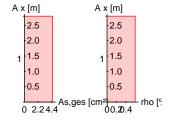
Materialien

Q	Beton	Betonstahl	min	max		
			[%]	[%]	[-]	ŽÞÐ() á
1	C 25/30	B 500SA	0.30	4.50	2.50	25.0

Bemessung (GZT)

*^{ êi ÁÖ OÞÁÐ ÞÁFJJ GËFËFÐÁN HÈÐÁN ÈÐÁN ÈÐÁN ÈÐÁN È

Ó¦ & @ & @) ãc * ¦ 4 i ^} Komb. 7


nach nichtlinearer Theorie

Х	Nu	Myu	Mzu	S	С	
[m]	[kN]	[kNm]	[kNm]	Žáá	Žšá	
2.80	1257.6	0.0	0.0	-2.00	-2.00	0.46
1.40	1128.9	9.4	0.0	-1.20	-3.05	0.51
0.00	1257.6	0.0	0.0	-2.00	-2.00	0.46

Erforderliche Bewehrung

von x	bis x	Q Typ	Bew.Art	ď'	As,ges	
[m]	[m]			[cm]	Ž&{ á	[%]
0.00	2.80	1 R	9WghVY	4.9	4.52	0.60

Erf. Bewehrung M 1:120

Brandfall

- *^{ êi Ád*^{ ^3,^{ ÁX^!-æ@^} Á æ&@ÄÖ@AÖÞÁFJJŒËES Berechnungsgrundlagen: spezifische Wêrme vom Beton (3.3.2) Feuchte des Betons 3.0%

- Wêrme>bertragungskoeffizient 25 W/m K
 thermische Leitfêhigkeit des Betons: obere Grenze
 Emissionswert der Betonoberflêche 0.7
 Festigkeitsred. Bewehrung f>r Klasse N

- Bewehrung kaltverformt
- quarzhaltige Betonzuschlêge
- St>tze am Fui eingespannt

Steifigkeiten im Brandfall

Q	t_{req}	Seiten	EA	Ely	Elz
	[min]	[-]	[kN]	ŽÞ{ á	ŽÞ{ á
1	90	r/l/o/u	316966.77	497.21	2432.11

Temperaturprofil Bewehrung

Auftrags-Nr.	Position		n⊣p	Ingenieurgese				
2023 300	ST-4.1	ÙVF	PÜPÆ	J04&\@`āį Áù	l>å		5	Seite: 4-88
	Q 1	Y [cm] -14.10 14.10 14.10	Z [cm] -5.10 -5.10 5.10	R [cm] 	Ž⁄á 558 558 558		s, /Es [-] 0.31 0.31 0.31	f _{y,} /f _y [- 0.51 0.51 0.51
		-14.10	5.10		558		0.31	0.5
<u>Ó¦`&@&@</u> ãæ*¦4i^}	nach nicht Komb. 19	linearer The	orie					
	x [m]	Νι [kN]		Myu k Nm]	Mzu [kNm]			
	2.80 0.00	785.4 643.6		0.0 -8.5	0.0 0.0			0.44 0.54
Erforderliche Bewehrung	von x [m]	bis x [m]	Q Ty _l	o Bew.Art		d' [cm]	As,ges Ž&{ á	[%
C	0.00	2.80	1 R	9 W <u>g</u> l} \	/Y	4.9	4.52	0.60
Erf. Bewehrung M 1:120								
	2.5 2.0 1 1.5 1.0 0.5 0 2.24.4	2.5 2.0 1 1.5 1.0 0.5 s.ges [cm ²]	- rho [º̞					
Nachweise (GZT)	=	^ÁQ[ÁÕ¦^}::`				ÖOÞÁÖÞÁF		
Querkraftbemessung	X [ma]	VEd,y VEd,z	VRd,c VRd,c	VRd,max,y VRd,max,z	N _x	Ž⁄á	Z	erfasw Ž&{E})á
Komb. 7	[m] 2.80	[kN]	[kN]	[kN]	[kN]		[cm]	_∡o≼ ±γa 3.16¹
Komb. 7	0.00	5.08	149.97	94.48	575.25	18.4	7.80	3.16 ^N
		5.06 uerkraftbew. nach	150.79 Abs. NDP 2	94.48 Zu 9.2.2(5)	582.43	18.4	7.80	
Bewehrungswahl	yon v	hie v	O Typ	B	ow -l ago		n	d
Bewehrungswahl	von x [m]	[m]	Q Typ		ewLage		n	[mm
Bewehrungswahl			Q Typ 1 Recl		ewLage		n 1	[mm
Bewehrungswahl Vorhandene Bewehrung	[m] 0.00 von x [m]	[m] 2.80 bis x [m]	1 Recl	nteck j e	Cnom	n	1 As,ges Ž &(á	[mm » % [%
Vorhandene	[m] 0.00 von x	[m] 2.80 bis x	1 Rech	nteck j e	e Ecke Cnom	n 4	1 As,ges	d: [mm »% [% 0.60

Längsstäbe: 4 Ø12 Querkraftbewehrung: Ø8 Betondeckung: cnom = 35 mm

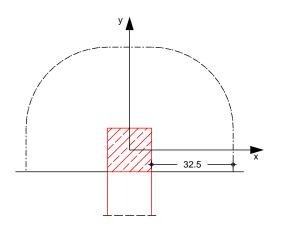
Auftrags-Nr.	Position		n	marte Ingenieur	ens+puller			
2023 300	ST-4.1		ÙVP	EÜPÄÄÜ04&\@4	(ÁÚ>å		S	eite: 4-89
Vorhandene Querkraftbewehrung	von x [m] 0.00	bis x [m] 2.80	Q 1	Typ	ds [mm] 8	s [cm] 14	Schnitt 2	A _{sw} <u>Ž&{ £</u> Q á 7.18
OE + æ*^ \ ê-e^\								
OE æ*^¦*¦4i^} Áæ(Á Ù⇔c^}\[]~	Einw Gk Qk.N			F _{x,k} [kN] 0.0 0.0	M _{y,k} [kNm] 0.0 0.0	M _{z,k} [kNm] 0.0 0.0	F _{y,k} [kN] 0.0 0.0	F _{z,k} [kN] 0.0 0.0
Œ †æ*^!*¦4i^} Áæ(Á Ù⇔c^}~ĭi	Einw Gk			F _{x,k} [kN] 320.3	M _{y,k} [kNm] 0.0	M _{z,k} [kNm] 0.0	F _{y,k} [kN] 0.0	F _{z,k} [kN] 0.0
Anteile aus Th. II Ordnung	Gk			100.0 M _{y,k} [kNm] 0.0	[kNı	0.0	0.0 F _{y,k} [kN] 0.0	0.0 F _{z,k} [kN] 0.0
Zusammenfassung	Qk.N Zusammen	fassung	ı der	0.0 Nachweise	0	0.0	0.0	0.0
Nachweise (GZT)	Nachweise			stand der Tragf	fêhigkeit			
	Nachweis							[-]
	Ùæàáacc Ól`&@ &@ â Querkraftbe Brand Bewehrung	emessu					OK OK OK OK	0.51
Nachweise (Brand)	Brandfall im	Grenz	zusta	and der Tragfêh	nigkeit			
	Nachweis							[-]
	Ó¦ ˇ &@ &@ ã	ic* 4i ^}	}				OK	0.54

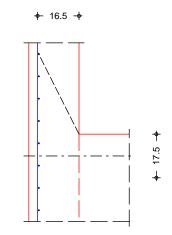
martens+puller
Ingenieurgesellschaft mbH

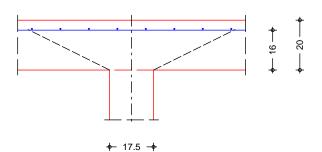
2023 300

DST-4.1

ÙVPËÜPÆÄÛ¢4&\@^ãį ÁÛ>å


Seite: 4-90


Pos. DST-4.1


Stahlbeton-Durchstanznachweis Wandende

System M 1:15

Y aa) å^} å^ÊÄÖ^&\^}] |æec^A[(@)^A\$ --}`}*^}

Deckenplatte

Dicke vorh. Biegebew. OE&@ianà• œê}å^ { acc/^\^\A\caea &@\A\P`c @4@\

 $a_{sx} / a_{sy} =$ $d'_x / d'_y =$

20.00 6.70 6.70 4.00 3.50 16.25 d =

cm

cm

cm

Ð

Betondeckung

Seite	Expositionsklasse(n)	C _{min,dur}	Cdev	Cnom
		[mm]	[mm]	[mm]
oben	XC1	10	10	20
unten	XC1	10	10	20

Wand

b = 17.50 cm 17.50 cm

Belastungen

Einwirkung	$F_z[kN]$	$M_x[kNm]$	$M_y[kNm]$
Ed.1	128.74	0.00	0.00

Zusammenstellungen

aus Pos. 'D-4.1', Ort 'DS-15' (Seite 4-2)

Kombinationen

Kombinationsbildung nach DIN EN 1990 Darstellung der mai gebenden Kombinationen

(* *EW)

•œ̂} åðã Ðç[¦>à^¦* È

1.00*Ed.1

Auftrags-Nr. Position DST-4.1 2023 300 Seite: 4-91

Bemessung (GZT)

nach DIN EN 1992-1-1, 6.4 und DIBt

Ò`¦[]êã&@Á/^&@,ÈŹĽ|æ•`}*ÁÔVŒËFŒEEÍIÁĢFŒFÏD

Beton C 30/37

Betonstahl B 500SA

Bemessungswert Querkraft	V_{Ed}	=	128.74	kN
Šæerc^¦@4@"}*•~æ\q[¦Á⇒¦Áæĕ•{ãncāt^ÁŠæerc^}				
nach 6.4.3(6), Bild 6.21N		=	1.35	-
char. Vorwert	$C_{Rk,c}$	=	0.18	-
Beiwert Einfluss Plattendicke	k	=	2.00	-
{ãod, ÈÁSê}*•à^¸^@~`}*•*¦æå	1	=	0.41	%
erf. Breite Durchstanzbew.	$I_{s,req}$	=	21.75	cm
Breite Bereich Durchstanzbew.	Is	=	30.00	cm

Nachweis

Rund-	Abst.	u	VEd	V _{Rd,c}	V _{Rd,max}
schnitt	[cm]	[m]	ŽÞÐ(á	ŽÞÐ(á	Ž⊃Đ({ á
U _{crit}	32.5	1.55	0.692 >	0.555	
			0.692 m		1.088
Uout	46.1	1.97	0.542	0.542	

Mindestbewehrung NCI Zu 6.4.5

: ` | ÁÛ 3&@ | • e^ || ` } * Áå^ | ÁÛ ` ^ | \ | ææd æ* -ê @* \ ^ ãc

. 17000	0) / w // U	11100000	O Gar i Gar		
Platten-	Rich-		m_{Ed}	min a _s	anzusetzende
seite	tung	[-]	[kNm/m]	Ž&{ Ð()á	Breite
oben	Х	0.250	32.19	4.59	b _y =0.15 l _y
	У	0.125	16.09	2.18	$b_x = 0.3 l_x$
unten	X	0.000	0.00	0.00	-
	V	0.000	0.00	0.00	_

Bewehrungswahl

POEŠØÒÞÁPÖÓÁÖ>à^||^ãrơ\Á;æ&@ÄÖÓÓc Ò`¦[]êã&&@ÁV^&@;ÈÄZ`|æ••`}*ÁÖVOEËFGEÐEÍÍIÁÇFGEÐFÏD

HDB Systemelemente

*^¸ ê@c

5 * HDB-10/165-3/360

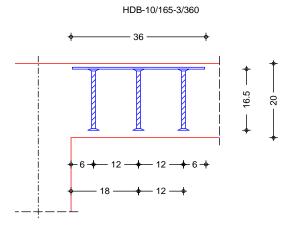
Ankerdurchmess					$d_A =$	10	mm
Û `^¦•&@; ãæ• √ ê&	@^Áxô^ÁOE;∖·	^¦			$A_{s_i} =$	0.79	&{
OF \ ^ @4 @^					h _A =	165	mm
Øeet (ÁÓ^ >&\ • È	ræedŽÁÞ~`c	@4@			=	1.00	-
Raraich	1	m	n	٠.	711l e	C*	ع اناح

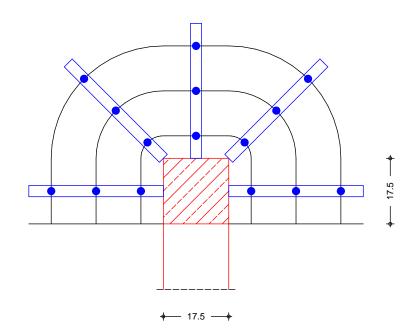
OF \^\a): æ@EÁOF \^\aà• cê} å^

Bereich	1	m	n	Sr	zul s _r	St	zul s _t
	[cm]	[-]	[-]	[cm]	[cm]	[cm]	[cm]
С	18.0	5	2	12.0	12.2	20.8	27.6
D	12.0	5	1	12.0	12.2	31.2	56.9

Durchstanzwiderstand 341.48 kΝ $V_{Rd,sy} =$

Auftrags-Nr.


Position DST-4.1


2023 300

Seite: 4-92

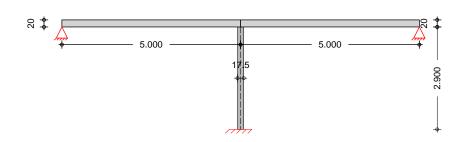
Verlegeplan M 1:10

M 1:10

2023 300

Pos. W-4.1

W-4.1


ÙVPËÜPÆÄÛ¢4&\@^ãį ÁÛ>å

Innenwand, genaueres Verfahren

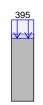
System

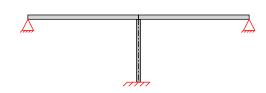
Innenwand 2-seitig gehalten

M 1:105

Abmessungen Mat./Querschnitt

Material	I	h	t	
	[m]	[m]	[cm]	ŽÞÐ() á
KS-P 20-2.0/DM	1.00	2.90	17.5	20.0

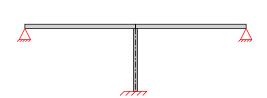

Massivdecken


Links Oben Rechts Oben

Material	lf	k	h	а	b	
	[m]	[-]	[cm]	[cm]	[m]	ŽÞÐ()á
C 25/30	5.00	0.50	20.0	8.75	1.00	25.0
C 25/30	5.00	0.50	20.0	8 75	1.00	25.0

Belastungen Grafik M 1:170

Gk



Seite: 4-93

M 1:170

Qk.N

Streckenlasten vertikal

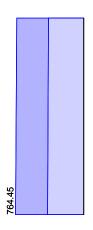
Nr.	EW	f _x
		[kN/m]
(a) 1	Gk	10.15
2	Gk	395.00
3	Qk.N	145.00

Auftrags-Nr. Position ÙVPËJPÆÄJO4& @ã ÁJ>å 2023 300 W-4.1 Seite: 4-94

(a) Wandeigengewicht 20.00*0.17*2.90 = 10.15 kN/m

Kombinationen Kombinationsbildung nach DIN EN 1990

Darstellung der mai gebenden Kombinationen


(* *EW) •œ} åð Ð[¦>à^¦* È 2 1.35*Gk +1.50*Qk.N @ê ĭ~ãt 5 1.00*Gk selten 7 1.00*Gk

Ó^{ \overline{\text{E}} &@ \text{ac* \4i ^}

<u>Grafik</u>

Schnittgr4i en aus Vertikallasten (Extrema aller Kombinationen) M 1:55

NEd[kN]

Mat./Querschnitt nach DIN EN 1996-1-1/NA:2019-12

*^¸ ê@c KS-P 20-2.0-(175)/DM Steinart Kalksandstein

Steintyp Planstein KS-P Steindruckfestigkeitsklasse **SFK 20** Steinrohdichteklasse **RDK 2.0** T 4\c^|**]]^ Ö>}}à^cd 4¦c^|ÁÖT

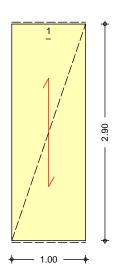
 $T \approx ^{i} ^{i} \hat{A} (\tilde{a} + \tilde{a} + \tilde{b})$

Materialbeiwerte charakt. Druckfestigkeit $f_k =$ 10.51 ÞÐ) { Teilsicherheitsbeiwert 1.50 М Dauerstandsfaktor 0.85 ÞÐ) {

Bemessungswert Druckfestigk. 5.95 f_d Rechenwert der Endkriechzahl 1.50

Ò pær cã ã tê cr { [å ĭ | 9981 ÞÐ) {

nach DIN EN 1996-1-1 (12/10) mit genauerer Berechnungsmethode Nachweise (GZT)


W-4.1

ÙVPËÜPÄÄÜd& @ ą ÁÜ>å Seite: 4-95

M 1:50

2023 300

Tragwiderstand Abs. 6.1.2

Nachweis des vertikalen Tragwiderstands

Ek	Stelle	у	Z	N_{Ed}	N_{Rd}	
		[-]	[-]	[kN]	[kN]	[-]
2	Kopf	1.000	0.900	750.75	937.67	0.80
2	Mitte	1.000	0.728	757.60	758.17	1.00
2	Ø i	1.000	0.900	764.45	937.67	0.82

Nachweise (GZG)

nach DIN EN 1996-1-1/NA:2019-12, NCI zu 7.2

Ausmitte Plattenri. NCI zu 7.2 (NA.7) Þæ&@, ^ãrÁsn'lÁs|æ}{ êiÈÁCE•{ãrc^Á§hÁÚ|ææc'}¦æ&@č}*

⊏K	Stelle	e _{z,L}	e _{z,D}	e h	zure	
		[cm]	[cm]	[cm]	[cm]	[-]
7	Kopf	0.0	0.0	0.0	5.8	0.00
7	Mitte	0.0	0.0	0.0	5.8	0.00
7	Ø i	0.0	0.0	0.0	5.8	0.00
6-1	Ausmitte infol	ne Vertikallasten				

e_{z,D}: Ausmitte infolge Deckenverdrehung e_h: Ausmitte infolge Horizontallasten

Char. Auflagerkr.

Aufl.	$F_{x,k}$	$F_{z,k}$	$M_{y,k}$	$F_{y,k}$	$M_{z,k}$
	[kN]	[kN]	[kNm]	[kN]	[kNm]
A	405.15	0.00	0.00	0.00	0.00
В		0.00	0.00		
A	145.00	0.00	0.00	0.00	0.00
В		0.00	0.00		

Einw. Qk.N

Einw. Gk

Zusammenfassung der Nachweise

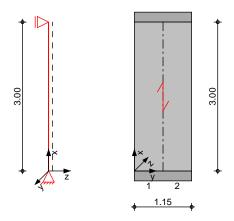
Nachweise (GZT)

Nachweise im Grenzzustand der Tragfêhigkeit

Nachweis	Ort			
			[-]	
vertikaler Tragwiderstand	Mitte	OK	1.00	

Zusammenfassung

Aight 2021 - IIID AEO GOIMA



Seite: 4-96

Pos. W-4.2 Stb.-Wand

System zweiseitig gehaltene Wand

M 1:75

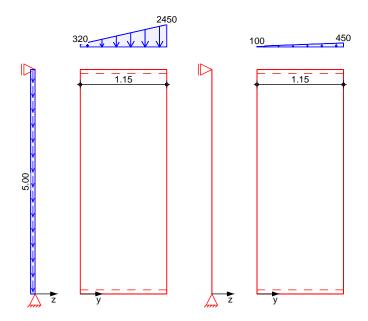
Abmessungen	I_{W}	lg	Material	h
Mat./Querschnitt	[m]	[m]		[cm]
	3.00	1.15	C 25/30	20.0

Expositionsklasse XC1

Auflager	Lager	x [m]	K _{T,z} [kN/m]		[kN	K _{R,y} lm/rad]
	A	0.00	fest		•	frei
	В	3.00	fest			frei
S} && ê} * ^	nach DIN EN 1992-1-1, 5.8.3.2(7) Grundwert nach Bild 5.7 Û ^ ¦ ê} å^ ﴿ ﷺ ﷺ ﴾ ﴿ الْمُعْدُلِّةِ ﴾ ﴿ الْمُعْدُلِّةِ ﴾ ﴿ الْمُعْدُلِّةِ ﴾ ﴿ الْمُعْدُلِّةِ ﴾ ﴿ الْمُعْدُلِّةِ ﴾ ﴿ الْمُعْدُلِّةِ ﴾ ﴿ الْمُعْدُلِّةِ ﴾ ﴿ الْمُعْدُلِّةِ ﴾ ﴿ الْمُعْدُلِّةِ ﴾ ﴿ الْمُعْدُلِّةِ ﴾ ﴿ الْمُعْدُلِّةِ ﴾ ﴿ الْمُعْدُلِّةِ ﴾ ﴿ الْمُعْدُلِّةِ ﴿ اللَّهُ الْمُعْدُلِّةِ ﴾ ﴿ الْمُعْدُلِّةِ ﴿ اللَّهُ الْمُعْدُلِّةِ ﴾ ﴿ الْمُعْدُلِّةِ ﴿ اللَّهُ اللَّهُ اللَّهُ اللَّهُ أَلَّهُ ﴿ اللَّهُ الللَّهُ اللَّهُ اللَّهُ اللَّهُ اللَّهُ اللَّهُ اللَّهُ اللَّهُ الللَّهُ اللَّهُ اللَّهُ الللَّهُ الللَّهُ الللَّهُ الللَّهُ اللَّهُ الللَّهُ الللَّهُ الللَّهُ اللَّهُ اللَّهُ الللَّهُ الللَّهُ اللَّهُ اللَّهُ الللَّهُ الللَّهُ الللَّهُ اللَّهُ الللَّهُ الللَّهُ اللَّهُ اللَّهُ الللَّهُ الللَّهُ الللَّهُ الللَّهُ الللَّهُ الللَّهُ الللَّهُ الللَّهُ اللَّهُ الللَّهُ اللَّهُ الللَّهُ الللَّهُ الللَّهُ الللَّهُ الللَّهُ الللَّهُ الللَّهُ الللَّهُ الللَّهُ الللَّهُ الللَّهُ اللَّهُ الللَّهُ اللَّهُ اللَّهُ اللَّهُ الللَّهُ الللَّهُ الللَّهُ اللَّهُ الللَّهُ الللَّهُ اللَّالِيلِيلِيلِيلِيلِيلِيلِيلِيلِيلِيلِيلِيل		0	=	1.00 1.00	-
	S} &&\ ê} * ^		I ₀	=	3.00	m

Belastungen auf das System

<u>Grafik</u> Belastungsgrafiken (einwirkungsbezogen)



Seite: 4-97

Einwirkungen

Gk

Qk.N

Streckenlasten in x-Richtung

Einw. Gk Einw. Qk.N Trapezlasten

Komm.	а	s	q_u	q_{o}	е
	[m]	[m]	[kN/m]	[kN/m]	[cm]
	0.00	1.15	320.00	2450.00	0.0
	0.00	1 15	100.00	450.00	0.0

Ø|ê&@\} |æ c^\} in x-Richtung

Einw. Gk

(a)

Trapezflêchenlasten

aus Eigengewicht

Komm. а [m](a) Eigengew 0.00 3.00

s [m] q_{u}

25.00*0.20 =

ŽÞÐ(á 5.00

\ ÞÐ)

5.00

 q_o

Kombinationen

Kombinationsbildung nach DIN EN 1990 Darstellung der mai gebenden Kombinationen

•œ} åð Ð[¦>à^¦* È

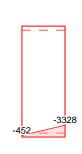
Ek * *EW) 1.35*Gk 2 1.35*Gk

+1.50*Qk.N

Ó^{ \(\begin{array}{c} \begin{array}{c

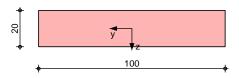
Ó^{ ^••`} *••&@ ãc*¦4i ^}

Grafik


Schnittgr4i en (je Kombination)

Komb. 1

 $M_{y,d}$ $V_{z,d}$ $n_{x,d}$


Auftrags-Nr. Position ÙVPËÜPĀÄÛc4&\@@ ã ÁÙ>å 2023 300 W-4.2 Seite: 4-98 Komb. 2 $M_{y,d} \\$ $V_{z,d}$ $n_{x,d} \\$

Mat./Querschnitt

Material- und Querschnittswerte nach DIN EN 1992-1-1:2011-01

Grafik Querschnittsgrafik [cm]

M 1:20

Abschnitte

Abs.	yА	УE	lΑ
	[m]	[m]	[m]
1	0.00	0.58	0.58
2	0.58	1.15	0.58

Expositionsklassen Abs. 4.2, 4.4

Expositionsklassen

Kante Kommentar umlaufend d[&\^} A\ å^¦ A\ cê} å āt A\ æ••

Bewehrungsanordnung

Achsabstênde, Betondeckungen

Abs.	1
Abs.	2

Cmin,a	Cdev,a	Uа	Cmin,i	Cdev,i	αi
[mm]	[mm]	[mm]	[mm]	[mm]	[mm]
10	10	38	10	10	38
10	10	38	10	10	38

Nachweise (GZT)

 $b = 3^{\circ} / 4 = 10^{\circ} / 4 =$

Ùcæàãjãcêc Abs. 5.8.3.2(1) Nachweis der Knicksicherheit im Druckkeil Schlankheit

Grenzwerte Abs. 5.8.3.1(1)

Abs.	Ek	n A,Ed	n E,Ed	n	lim
		[kN/m]	[kN/m]	[-]	[-]
1	2	-602.25	-2302.50	-0.51	25.00
2	2	-2302.50	-4002.75	-1.11	25.00

S¦>{ { `}*•à^ã, ^¦c

C	_	10	_
U	_	10	_

51.96

Ò¢: ^} dã ã êc^} Abs. 5.8.8.2

Abs.	Ek	e 0	e a	K_{r}	K	e 2
		[cm]	[cm]	[cm]	[cm]	[cm]
1	2	0.00	0.75	0.86	1.00	2.32
2	2	0.00	0.75	0.25	1 00	0.66

Biegung Abs. 6.1

Biegung mit Druckkraft

Auftrags-Nr.	Position	

ÙVPËÜPÄÄÛ¢4&\@`ã ÁÛ>å 2023 300 W-4.2 Seite: 4-99

Abs.	Ek	m yd	Nd	a sv	a sh
		[kNm/m]	[kN/m]	[cm ² /m]	[cm ² /m]
1	2	44.59	-1452.38	5.01 ^M	2.51 ^H
2	2	44.59	-3152.63	22.56	11.28 ^H

*^, ê@c

as,v

Mindestbewehrung nach 9.6.2(1) Mindestbewehrung nach 9.6.3(1)

Momente inklusive Anteile aus Theorie II. Ordnung

Querkraft	Ó^{ ^••`}	*Á⊳¦ÁÛ`^	¦∖¦æœà^æ)•]¦	`&@}*			
Abs. 6.2	x [m]	Ek	v _{Ed} [kN/m]	Ž⁄á	v _{Rd,max} [kN/m]	VRd,c [kN/m]	a _{sw,erf} [cm²/m²]
	(L = 3.00 r)	n)					
	3.00	1	-	18.4	337.87	80.19	-
	0.00	1	-	18.4	337.87	80.19	-

Normalkraft Abdeckung der Zugkeilkraft

Art

Bewehrungswahl Grundbewehrung

je Seite						[cm ² /m]	[cm ² /m]
•	Stabstahl verti	kal		< FG		7.54	-
	Stabstahl horiz	zontal		< FG	FÍÈ€	-	7.54
	Summe					7.54	7.54
Zulagen vertikal	Abs.	la	a s,erf	<	s	a s,vorh	
je Seite		[m]	[cm ² /m]	[mm]	[cm]	[cm ² /m]	[-]
•	2	0.58	3.74	12	30.0	3.77	0.99
Z` * àê} å^¦	y A	УE	As,erf	n	<	As,vorh	
ŕ	[m]	[m]	[cm ²]	[-]	[mm]	[cm ²]	[-]
	0.00	0.58	konstr.	2	12	2.26	-
	0.58	1.15	konstr.	2	12	2.26	-

Zulagen horizontal je Seite

nicht erforderlich

nicht erforderlich

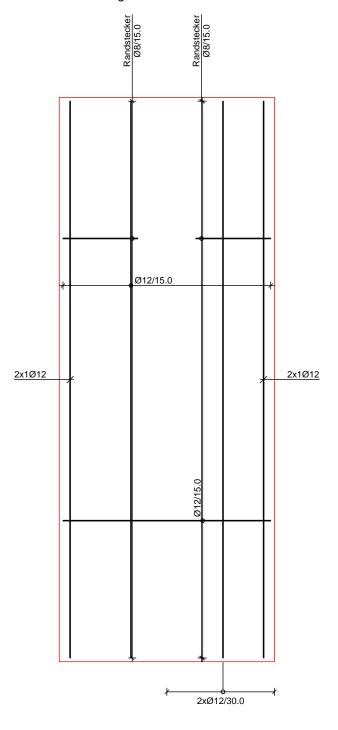
Abs. 9.6.4(1)

Randstecker

Abs. 9.6.4(2)

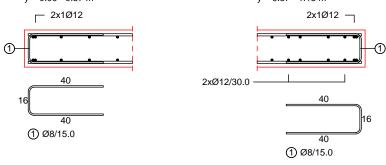
Abs. lΑ as,erf s **a**s,vorh < [cm²/m] [cm²/m] [mm] [m] [cm] [-] $\overline{1}$ 3.35 0.58 konstr. 8 15.0 2 0.37 0.58 1.25 8 15.0 3.35

Auftrags-Nr. Position



2023 300 W-4.2 ÙVPËÜPÄÄÜd4&\@4 ÁÛ>å

Seite: 4-100


Grafik M 1:20

Bewehrungsskizze

Auftrags-Nr. Position ÙVPËÜPÄÄÜ¢4&\@@ã ÁÛ>å 2023 300 W-4.2 Seite: 4-101 M 1:20 y = 0.00 - 0.57 my = 0.57 - 1.15 m __ 2x1Ø12 2x1Ø12 —

Œ +æ*^!\¦ê-e^ Ô@dado\a~a~a~&@\ÁOE~|ad~\\\\ê~e^

Char. Auflagerkr.

Aufl. $f_{x,k,A}$ $f_{x,k,\text{E}}$ $f_{z,k}$ $F_{y,k}$ [kN/m] [kN/m] [kN/m] [kN] Ā 2465.00 0.00 335.00 0.00 В 0.00 0.00 100.00 0.00 Ā 450.00 0.00 В 0.00 0.00

Einw. Gk Einw. Qk.N

Zusammenfassung Zusammenfassung der Nachweise

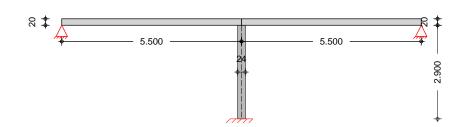
Nachweise (GZT) Nachweise im Grenzzustand der Tragfêhigkeit

Nachweis

Ùœà ããê c	OK
Biegung	OK
Querkraft	OK
Normalkraft	OK
Bewehrungswahl	OK

[-]

2023 300 W-4.3 ÙVPËUPÆÄVc4&\@@ Ã ÂV>å Seite: 4-102


Pos. W-4.3

Innenwand, genaueres Verfahren

System

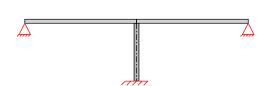
Innenwand 2-seitig gehalten

M 1:115

Abmessungen
Mat./Querschnitt

Material		n	ι	
	[m]	[m]	[cm]	ŽÞÐ()á
KS-P 20-2.0/DM	1.00	2.90	24.0	20.0

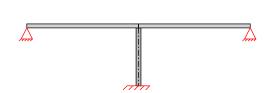
Massivdecken


Links Oben Rechts Oben

Material	lf	k	h	а	b	
	[m]	[-]	[cm]	[cm]	[m]	ŽiÞÐ() á
C 25/30	5.50	0.50	20.0	12.00	1.00	25.0
C 25/30	5 50	0.50	20.0	12 00	1 00	25.0

Belastungen Grafik M 1:185

Gk



M 1:185

Qk.N

Streckenlasten vertikal

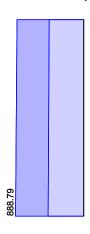
Nr. EVV	Τχ	
		[kN/m]
(a) 1	Gk	13.92
2	Gk	450.00
3	Qk.N	175.00

(a) Wandeigengewicht $20.00^{\circ}0.24^{\circ}2.90 = 13.92 \text{ kN/m}$

Auftrags-Nr. Position | Image | Ingenieurgesellschaft mbH | Ingenieurgesellschaft mbH | 2023 300 | W-4.3 | ÜVPEÜPÆÜU4& @ā ÂJ>å | Seite: 4-103

Kombinationen

Kombinationsbildung nach DIN EN 1990 Darstellung der mai gebenden Kombinationen


	Ek	(* *EW)	
•œ̂} åðî Ðұ[¦>à^¦* È	2	1.35*Gk	+1.50*Qk.N
@e`~āt	5	1.00*Gk	
selten	7	1.00*Gk	

Ó^{ E & @ ãc * ¦4i ^} Grafik

Schnittgr4i en M 1:55

aus Vertikallasten (Extrema aller Kombinationen)

NEd[kN]

Mat./Querschnitt nach DIN EN 1996-1-1/NA:2019-12

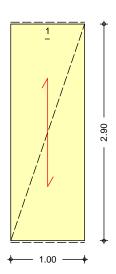
*^, ê@c KS-P 20-2.0-(240)/DMSteinart Kalksandstein Steintyp Planstein KS-P Steindruckfestigkeitsklasse SFK 20 Steinrohdichteklasse RDK 2.0 T $4|c|^2|^2$

Iæ^i¸^i\A(anA}ç^i{ 4ic°\c°}A∪qi~^^}

Materialbeiwerte charakt. Druckfestigkeit 10.51 Þ₽) { f_k = Teilsicherheitsbeiwert 1.50 = Μ Dauerstandsfaktor 0.85 Bemessungswert Druckfestigk. 5.95 f_d = ÞÐ) { Rechenwert der Endkriechzahl 1.50 =

Nechenwert der Endkriechzani ¬ = 1.50 Òjær cã ãiê œ { [å ĭ | E = 9981 ÞÐ {

Nachweise (GZT) nach DIN EN 1996-1-1 (12/10) mit genauerer Berechnungsmethode



Auftrags-Nr. Position 2023 300 W-4.3

ÙVPËJPĀĀŪd& @ā, ÁJ>å

Seite: 4-104

M 1:50

Tragwiderstand Abs. 6.1.2

Nachweis des vertikalen Tragwiderstands

Ek	Stelle	У	z	N_{Ed}	N_{Rd}	
		[-]	[-]	[kN]	[kN]	[-]
2	Kopf	1.000	0.900	870.00	1285.95	0.68
2	Mitte	1.000	0.809	879.40	1155.21	0.76
2	Ø i	1 000	0.900	888 79	1285 95	0.69

Nachweise (GZG)

nach DIN EN 1996-1-1/NA:2019-12, NCI zu 7.2

Ausmitte Plattenri. NCI zu 7.2 (NA.7) $bask@^{\tilde{a}} \hat{A}_{a}^{\hat{b}} + \hat{A}_{a}^{\hat{b}}$ $\hat{A}_{a}^{\hat{b}} \hat{A}_{a}^{\hat{b}}$ $\hat{A}_{a}^{\hat{b}} \hat{A}_{a}^{\hat{b}}$ $\hat{A}_{a}^{\hat{b}} \hat{A}_{a}^{\hat{b}}$ $\hat{A}_{a}^{\hat{b}} \hat{A}_{a}^{\hat{b}}$ $\hat{A}_{a}^{\hat{b}} \hat{A}_{a}^{\hat{b}} \hat{A}_{a}^{\hat{b}}$

⊏K	Stelle	$\mathbf{e}_{z,L}$	$\mathbf{e}_{z,D}$	eh	zure	
		[cm]	[cm]	[cm]	[cm]	[-]
7	Kopf	0.0	0.0	0.0	8.0	0.00
7	Mitte	0.0	0.0	0.0	8.0	0.00
7	Ø i	0.0	0.0	0.0	8.0	0.00
e _{z.L} :	Ausmitte infold	ge Vertikallasten				

e_{z,D}: Ausmitte infolge Vertikaliasteri e_{z,D}: Ausmitte infolge Deckenverdrehung e_h: Ausmitte infolge Horizontallasten

Char. Auflagerkr.

3 3 3 3	Aufl.	$F_{x,k}$	$F_{z,k}$	$M_{y,k}$	$F_{y,k}$	$M_{z,k}$
		[kN]	[kN]	[kNm]	[kN]	[kNm]
Einw. <i>Gk</i>	A	463.92	0.00	0.00	0.00	0.00
	В		0.00	0.00		
Einw. Qk.N	A	175.00	0.00	0.00	0.00	0.00
	В		0.00	0.00		

Zusammenfassung

Zusammenfassung der Nachweise

Nachweise (GZT)

Nachweise im Grenzzustand der Tragfêhigkeit

Nachweis	Ort		
			[-]
vertikaler Tragwiderstand	Mitte	OK	0.76

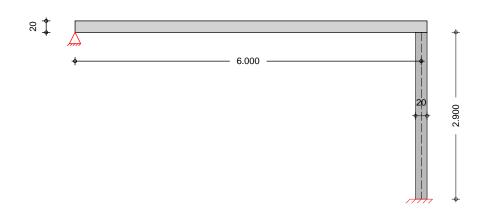
Pā, ^ã Á `¦ÁŒ•>@`}*

Υ→@`}*Ás^¦Áv æ)åÁæĕ&@ÁsjÁÜ[@áæ3&@^\|æ••^ÁFÊÁ;4*|æ&@È

Auftrags-Nr. Position

2023 300 W-4.4

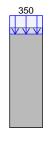
ÙVPËÜPÄÄÜd& @ a ÂÜ>å Seite: 4-105

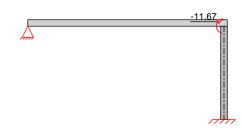

Pos. W-4.4

5 i £Ybk UbXž[YbUi YfYg'J YfZU\ fYb

System

Òaj • &@#dā ^ÁŒ i ^}, æ) å 2-seitig gehalten


M 1:65



Abmessungen Mat./Querschnitt	Material			 [m]	h [m]	t [cm]	ŽÞÐ á
	KS-P 20-2.0/	/DM		1.00	2.90	20.0	20.0
Massivdecken	Material	I f	k	h	а	b	
		[m]	[-]	[cm]	[cm]	[m]	ŽÞÐ()á
Links Oben	C 25/30	6.00	0.50	20.0	20.00	1.00	25.0

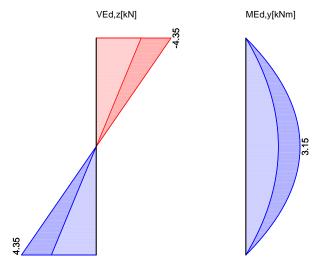
Belastungen Grafik M 1:115

Gk

M 1:115

Qk.N

Auftrags-Nr. Position ÙVPËÜPÄÄÛ¢4&\@ã ÁÛ>å 2023 300 W-4.4 Seite: 4-106 Qk.W M 1:115 Streckenlasten vertikal Nr. ΕW [kN/m] Gk 11.60 (a) 1 350.00 2 Gk 3 Qk.N 100.00 (a) Wandeigengewicht 20.00*0.20*2.90 = 11.60 kN/m Momente am Wandkopf Nr. ΕW $m_{p,y,o} \\$ [kNm/m] $\overline{1}$ Gk -11.67 2 Qk.N -3.33 $P[\tilde{a}] \approx c^{\hat{a}} \hat{A} = c^$ Nr. а s qu qo ŽÞ₽) á ŽÞÐ, á [m][m]1 Qk.W 2.00 2.00 0.00 2.90 Kombinationen Kombinationsbildung nach DIN EN 1990 Darstellung der mai gebenden Kombinationen (* *EW) Ek •œ} åð Ð[|>à^|* È 2 1.35*Gk +1.50*Qk.N 8 1.00*Gk +1.50*Qk.W 1.00*Gk @e`~at 11 selten 15 1.00*Gk Ó^{ \(\overline{\overlin Grafik Schnittgr4i en aus Vertikallasten (Extrema aller Kombinationen) M 1:55 NEd[kN] VEd,z[kN] MEd,y[kNm]


638.

2023 300 W-4.4 ÙVPËJPĀĀŪd&\@ā ĀŪ>å Seite: 4-107

Schnittgr4i en M 1:50

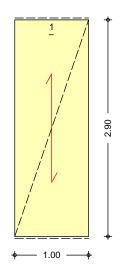
aus Horizontallasten (Extrema aller Kombinationen)

Mat./Querschnitt

nach DIN EN 1996-1-1/NA:2019-12

*^, ê@c

 $\begin{array}{lll} \textit{KS-P 20-2.0-(200)/DM} \\ \textit{Steinart} & \textit{Kalksandstein} \\ \textit{Steintyp} & \textit{Planstein KS-P} \\ \textit{Steindruckfestigkeitsklasse} & \textit{SFK 20} \\ \textit{Steinrohdichteklasse} & \textit{RDK 2.0} \\ \textit{T 4!c'|*|`]]^{\land}} & \ddot{O}>}} \grave{a}^{\alpha}(4!c'|a) \vec{A}\vec{U}(1*.5*) \\ \vec{T} \vec{a}^{\alpha}(3.5*) \vec{A}(3.5*) \vec{$


Materialbeiwerte

charakt. Druckfestigkeit	f _k =	10.51	ÞÐ(} {
Teilsicherheitsbeiwert	м =	1.50	
Dauerstandsfaktor	=	0.85	
Bemessungswert Druckfestigk.	f _d =	5.95	ÞÐ(
Rechenwert der Endkriechzahl	¬ =	1.50	
Ò æ•cããee•{[åĭ	E =	9981	ÞÐ(

Nachweise (GZT)

nach DIN EN 1996-1-1 (12/10) mit genauerer Berechnungsmethode

M 1:50

Auftrags-Nr. Position ÙVPËJPÆÄJO4& @ã ÁJ>å 2023 300 W-4.4 Seite: 4-108 **Tragwiderstand** Nachweis des vertikalen Tragwiderstands Abs. 6.1.2 Stelle N_{Ed} N_{Rd} [kN] [kN] 2 Kopf 1.000 793.80 0.78 0.667 622.50 2 1.000 Mitte 0.636 630.33 757.59 0.83 2 Øί 1.000 0.900 638.16 1071.62 0.60 Plattenschub Nachweis der Querkrafttragf. in Plattenrichtung NCI zu 6.2 (NA.24) Stelle tcal $V_{Ed,z}$ V_{Rdlt} [m]ŽD-E){ á [kN] [kN] 2 Mitte 0.20 1.50 2.04 -7.16 181.13 0.04 2 Øί 0.20 1.50 2.06 -7.16 183.21 0.04 8 Kopf 0.20 1.50 1.20 -8.37 106.37 0.08 nach DIN EN 1996-1-1/NA:2019-12, NCI zu 7.2 Nachweise (GZG) Ausmitte Plattenri. Þæ&@, ^ãrÁs^¦Án|æ}{ êi ÈÁOE. •{ ãcc^ÁspiÁÚ|æcc^}¦ã&@č}* NCI zu 7.2 (NA.7) Ek Stelle zul e $e_{z,D}$ e_{z.L} еh [cm] [cm] [cm] [cm] 15 Kopf 3.3 0.0 0.0 6.7 0.50 0.25 15 Mitte 0.0 0.0 6.7 1.6 15 Øί 0.0 0.0 6.7 0.00 0.0 Ausmitte infolge Vertikallasten ez,L: Ausmitte infolge Deckenverdrehung Ausmitte infolge Horizontallasten Char. Auflagerkr. Aufl. $F_{x.k}$ $F_{z,k}$ $M_{y,k}$ $F_{y,k}$ $M_{z,k}$ [kN] [kN] [kNm] [kN] [kNm] Einw. Gk $\overline{\mathsf{A}}$ 361.60 -4.020.00 0.00 0.00 В 4.02 0.00 Einw. Qk.N Ā 100.00 -1.15 0.00 0.00 0.00 В 0.00 1.15 2.90 Einw. Qk.W Ā 0.00 0.00 0.00 0.00 В 2.90 0.00 Zusammenfassung Zusammenfassung der Nachweise Nachweise (GZT) Nachweise im Grenzzustand der Tragfêhigkeit Ort Nachweis OK vertikaler Tragwiderstand Mitte 0.83 0.08 Plattenschub Kopf OK Nachweise (GZG) Nachweise im Grenzzust. der Gebrauchstauglichkeit Nachweis Ort

Kopf

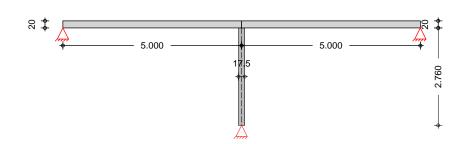
OK

0.50

Ausmitte in Plattenrichtung

2023 300 W-4.5

Seite: 4-109


Pos. W-4.5

Mauerwerksnachweis DIN EN 1996 / Aussteifungswand EG

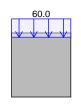
System Innenwand

2-seitig gehalten

M 1:105

Abmessungen Mat./Querschnitt

Material	I	n	τ	
	[m]	[m]	[cm]	ŽIÞÐ() á
KS-P 20-2.0/DM	2.68	2.76	17.5	20.0

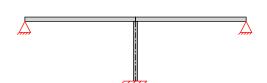

Massivdecken

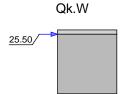
Material	l f	k	h	a	b	
	[m]	[-]	[cm]	[cm]	[m]	ŽÞÐ() á
C 30/37	5.00	0.50	20.0	8.75	2.68	25.0
C 30/37	5.00	0.50	20.0	8.75	2.68	25.0

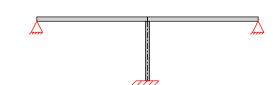
Links Oben Rechts Oben

Belastungen Grafik M 1:170

Gk




M 1:170


25.0

Qk.N

M 1:170

Auftrags-Nr. Position | I | I | Ingenieurgesellschaft mbH | 2023 300 | W-4.5 | ÛVPËJPÆÄJc4&\@a ĀJ>å | Seite: 4-110

Str	ecken	lasten	vertikal
Oti	CONCIL	laston	vortinai

Nr.	EW		f_x
			[kN/m]
(a) 1	Gk		9.66
2	Gk		60.00
3	Qk.N		25.00

(a) Wandeigengewicht $20.00^{*}0.17^{*}2.76 = 9.66 \text{ kN/m}$

 Punktlasten horizontal (Scheibenschub)

 Nr.
 EW
 a
 Fy

 [m]
 [kN]

 1
 Qk.W
 2.76
 25.50

Kombinationen Kombinationsbildung nach DIN EN 1990 Darstellung der mai gebenden Kombinationen

	Ek	(* *EW)			
∙œ̂} åðî Ðұ[¦>à^¦* È	2	1.35*Gk	+1.50*Qk.N		
	4	1.35*Gk	+1.50*Qk.N	+0.90*Qk.W	
	5	1.35*Gk	+1.05*Qk.N	+1.50*Qk.W	
	8	1.00*Gk	+1.50*Qk.W		
selten	15	1.00*Gk			

Ó^{ ∰ &@ ãc* ¦4i ^} aus Vertikallasten

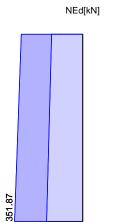
⊨k	Stelle	N_{Ed}	$V_{Ed,z}$	$M_{Ed,y}$	$V_{Ed,y}$	$M_{Ed,z}$
		[kN]	[kN]	[kNm]	[kN]	[kNm]
2	Kopf	316.99	0.00	0.00	0.00	0.00
4	Mitte	334.43	0.00	0.00	22.95	31.67
5	Ø i	321.78	0.00	0.00	38.25	105.57
8	Kopf	160.50	0.00	0.00	38.25	0.00
8	Mitte	173.42	0.00	0.00	38.25	52.79
8	Ø i	186.34	0.00	0.00	38.25	105.57

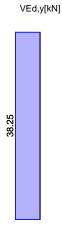
aus Deckenverdrehung

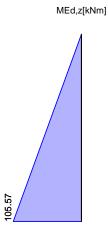
Ek Stelle		$M_{Ed,y}$	Km		$M_{Ed,y,red}$
		[kNm]	[-]	[-]	[kNm]
2	Kopf	0.00	2.00	0.50	0.00
4	Mitte	0.00			0.00
5	Ø i	0.00	0.00	1.00	0.00
8	Kopf	0.00	2.00	0.50	0.00
8	Mitte	0.00			0.00
8	Ø i	0.00	0.00	1.00	0.00

aus Horizontallasten

EK Stelle		$V_{Ed,z}$	MEd_{Jy}	$V_{Ed,y}$	$M_{Ed,z}$
		[kN]	[kNm]	[kN]	[kNm]
2	Kopf	0.00	0.00	0.00	0.00
4	Mitte	0.00	0.00	0.00	0.00
5	Ø i	0.00	0.00	0.00	0.00
8	Kopf	0.00	0.00	0.00	0.00
8	Mitte	0.00	0.00	0.00	0.00
8	Ø i	0.00	0.00	0.00	0.00


Grafik




2023 300 W-4.5 ÚVPËÜPÆÄÚd&\@@i[AÛ>å Seite: 4-111

Schnittgr4i en M 1:55

aus Vertikallasten (Extrema aller Kombinationen)

Mat./Querschnitt

nach DIN EN 1996-1-1/NA:2019-12

*^, ê@c

KS-P 20-2.0-(175)/DM
Steinart
Steintyp
Steindruckfestigkeitsklasse

charakt. Druckfestigkeit

rechn. Steinzugfestigkeit

Kalksandstein Planstein KS-P SFK 20 RDK 2.0

Steinrohdichteklasse T 4| c^|* |] ^

Ö>}}à^cq 4¦c^|ÁÖT

9981

0.22

0.80

ÞÐ) {

ÞÐ {

ÞÐ {

 $T \approx \frac{1}{4} \cdot$

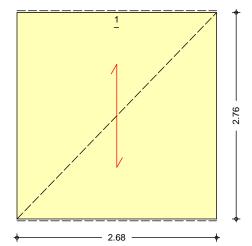
Materialbeiwerte

Teilsicherheitsbeiwert
Dauerstandsfaktor
Bemessungswert Druckfestigk.
Rechenwert der Endkriechzahl
Ò æ•cããeê•{[åˇ

=

 $f_{bt,cal} =$

Rechenwert der Endkriechzahl


Ölæ cã ãtêc { [å ˇ | E

Haftscherfestigkeit f_{vk0}

Nachweise (GZT)

nach DIN EN 1996-1-1 (12/10) mit genauerer Berechnungsmethode

M 1:50

Auftrags-Nr.	Position	martens+puller
2023 300	W-4.5	ÙVPËÜPÆÄÜ¢4&\@aį ÁÛ>å

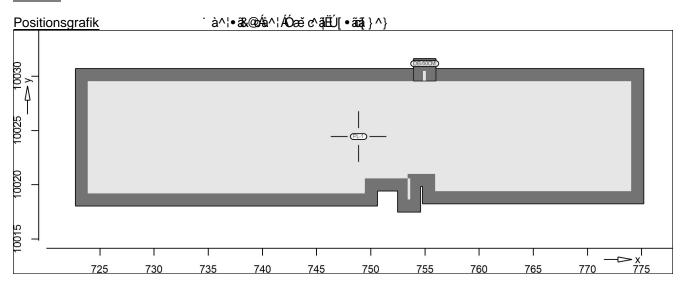
ranago ivi.	1 00111011							
2023 300	W-4.5	ÙVPËÜPĀĀĴŒ4&\@ā[ÁÛ>å				Seite: 4-112		
Tragwiderstand	Nachweis des vertikalen Tragwiderstands							
Abs. 6.1.2	Ek	Stelle	у	z		N_{Ed}	N_{Rd}	
			[-]	[-]		kN]	[kN]	[-]
	2	Kopf	1.000	0.900	316	.99 2	508.27	0.13
	2	Mitte	1.000	0.742	334	.43 20	068.25	0.16
	2	Ø i	1.000	0.900	351	.87 25	508.27	0.14
	4	Kopf	1.000	0.900	316	.99 2	508.27	0.13
	4	Mitte	0.929	0.742			921.80	0.17
	4	Ø i	0.865	0.900			170.68	0.16
	5	Kopf	1.000	0.900			508.27	0.11
	5	Mitte	0.870	0.742			800.04	0.17
	5	Øi	0.755	0.900			893.00	0.17
Sahaihanaahub	Nool	owoio dor C)uorkrofttroof j	n Cabaibanr	iohtuna			
Scheibenschub			Querkrafttragf. i		-	M	17	
NCI zu 6.2 (NA.19)	Ek	Stelle	l _{cal}	C Ll Ž	f _{vk}	V _{Ed,y}	V _{Rdlt}	r 1
		17 ([m]		•₽(á	[kN]	[kN]	[-]
	8	Kopf	3.01	1.02	0.14	38.25	47.40	0.81
	8	Mitte	3.01	1.02	0.15	38.25	51.21	0.75
	8	Øʻi	3.01	1.02	0.18	38.25	63.64	0.60
Nachweise (GZG)	nach	DIN EN 19	996-1-1/NA:20 ⁻	19-12, NCI z	ru 7.2			
Ausmitte Plattenri.	Þæ&	@ ^ãrÁå^¦Á,	æ}{êiÈÁOE.∙{	ãoc^Á§iÁÚlæec^ì	}¦&&@c`}*			
NCI zu 7.2 (NA.7)	Ek	Stelle	e _{z,L}	e _{z,D}	-	eh z∪	ul e	
		0.00	[cm]	[cm]	[cr		cm]	[-]
	15	Kopf	0.0	0.0			5.8	0.00
	15	Mitte	0.0	0.0			5.8	0.00
	15	Øi	0.0	0.0			5.8	0.00
	e _{z,L} : e _{z,D} : e _h :	Ausmitte ir Ausmitte ir	nfolge Vertikallasten nfolge Deckenverdreh nfolge Horizontallaste	ung	O	.0	5.0	0.00
Ausmitte Scheibenr.	Þæ&	@^ãaÁsa^¦Án	æ}{êiÈÁOE.∙{	ãnc^Á§IÁÙ&@^ã	Îa^}¦ã&@c°}*			
NCI zu 7.2 (NA.9)			erforderlich, da		,			
Randdehnung NCI zu 7.2 (NA.10)	Nach		Randdehnung a erforderlich, da e.				eit nicht	
Œ ∤æ*^¦\¦ê-&^	Ôœ	eato^¦ãoã&	@^ÁOE~ ae*^¦\¦ê~	e^				
Char. Auflagerkr.								
Grian / tanagemin	Aufl.		$F_{x,k}$	$F_{z,k}$	$M_{y,k}$	F.	y,k	$M_{z,k}$
	Adii.		[kN]	[kN]	[kNm]	[kl		[kNm]
Einw. <i>Gk</i>	A		186.34	0.00	0.00	0.0		0.00
EIIIW. GK			100.34			0.0)()	0.00
E' OLM	<u>B</u> A		00.00	0.00	0.00	0.0	20	0.00
Einw. <i>Qk.N</i>			66.88	0.00	0.00	0.0)0	0.00
	<u>B</u> A			0.00	0.00			
Einw. Qk.W			0.00	0.00	0.00	25.5	50	70.38
	В			0.00	0.00			
Zusammenfassung	Zusa	ammenfass	ung der Nachw	eise e				
Nachweise (GZT)	Nach	nweise im (Grenzzustand o	ler Tragfêhiç	gkeit			
	Nach	nweis				Ort		r 1
	verti	kaler Tragw	viderstand			Mitte	OK	0.17
		eibenschub				Kopf	OK	0.81
	Cone	J.201100110D				Kopi	U IX	0.01

Auftrags-Nr.

Position

2023 300 ÚVP ËÜP ÆÄÚd4&\ @ ã ÁÚ>å Seite: 5-1

) '!'; f~ bXi b[



Pos. SP-5.1 Sohlplattensystem

System

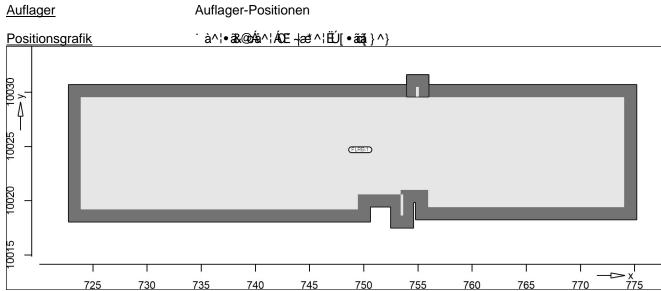
Positionsplan Positionsplan

Bauteile Bauteil-Positionen

Platten Platten-Positionen

Position Winkel Material Dicke Stahlbeton Art Žγá Šê} * • Quer [cm] PL-1 C 30/37 Q 0.0 iso 35.0 B 500MA B 500SA

 $\begin{array}{lll} \mbox{Winkel:} & \mbox{Bewehrungsrichtung r} \\ \mbox{iso:} & \mbox{isotropes Material} \\ \mbox{Q:} & \mbox{\~O}^{\bullet} \mbox{\circ} \mbox{$$

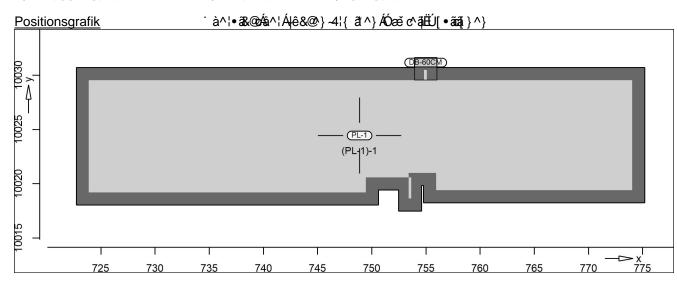

Expositionsklasse *^{ êi ÁÖOÞÁÖÞÁFJJOËËËÉÁVæàÀÀÈ

Position Seite ΚI Kommentar { êi ãt ^ ÁØ^ ` &@^ PL-1 oben XC3 WO Weitgehend trockener Beton XC2 nass, selten trocken unten Pê ~ at Á a ^ ¦ Á e} * ^ ¦ ^ ÁZ ^ ã Á WF feuchter Beton

Koordinaten	Position	X	у
		[m]	[m]
	PL-1	722.74	10030.70
		753.95	10030.70
		753.95	10031.62
		756.00	10031.62
		756.00	10030.70
		775.19	10030.70
		775.19	10018.25
		754.78	10018.25
		754.78	10019.84
		754.58	10019.84
		754.58	10017.48
		752.48	10017.48
		752.48	10019.42
		750.62	10019.42

Auftrags-Nr.	Position	Ingenieurgesellschaft mbH		
2023 300	SP-5.1	ÙVPËÜPÄÄÜd&\@ā, ÁÛ>å		Seite: 5-3
	Position		Х	у
			[m]	[m]
			750.62	10018.03
			722.74	10018.03
<u>Dickenbereiche</u>	Position			Dicke
				[cm]
	DB-60CM			30.0
Koordinaten	Position		x	У
			[m]	[m]
	DB-60CM		756.00	10029.57
			753.95	10029.57
			753.95	10031.62
			756.00	10031.62

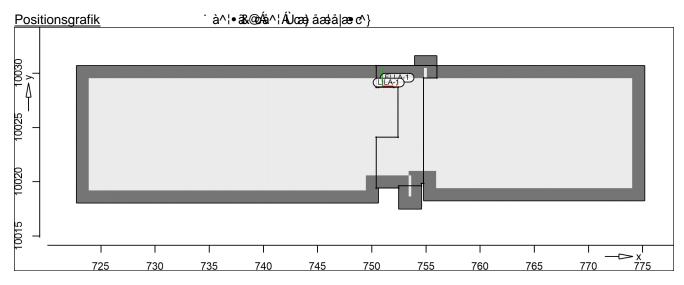
<u>Ø</u> ê&@} æ*^¦	Ø ê&@} æť^¦ËÚ[•ããá[}^}		
<u>Ø ê&@} à^ထ`}*</u> Á (Bettungsziffer)	Position		K _{T,z} [kN/m³]
	FLRB-1	+/-	5000
<u>Koordinaten</u>	Position	x [m]	y [m]
	FLRB-1	775.19	10030.70
		775.19	10018.25
		754.78	10018.25
		754.78	10019.84
		754.58	10019.84
		754.58	10017.48
		752.48	10017.48
		752.48	10019.42
		750.62	10019.42
		750.62	10018.03
		722.74	10018.03
		722.74	10030.70
		753.95	10030.70
		753.95	10031.62
		756.00	10031.62


Auftrags-Nr.	Position	Ingenieurgesellsch					
2023 300	SP-5.1	ÙVPËÜPÄÄÜø4&\@ā ÁÙ>å	h		Seite: 5-4		
	Position			X	y [m]		
				[m] 756.00	[m] 10030.70		
<u>Material</u>	Materialkenr	nwerte					
Stahlbeton DIN EN 1992-1-1	Position	Material	Wichte	E _{cm}	f_{ck}		
			ŽÞÐ) á	ŽÞÐ[(á	Ž⊃Đ(á		
	PL-1	C 30/37 Q	25.00	33000 13750	30.00 2.90		
	Q: Õ^•¢^ą̄•\4¦}	ˇ}*ÁÛˇæł:ãc		10700	2.00		
Betonstahl DIN EN 1992-1-1	Position	Material	Wichte	Es G	f _{yk}		
			ŽÞÐ á	ŽÞÐ0 { á	f _{tk,cal} Ž⊃Ð(á		
	PL-1	B 500MA	78.50	200000 77000	500.00 525.00		
	PL-1	B 500SA	78.50	200000 77000	500.00 525.00		
Auswertung	Geometrisch	Geometrische Auswertung der Positionen					
Ø ê&@}	Ø ê&@} -4¦{	Ø ê&@}~4¦{ ã^ÁÓæĕ c^āËÚ[•ããa[}^}					
Stahlbeton	Position	С	icke [cm]	Ø ê&@ Ž(á	Volumen Ž(á		
	PL-1	30.0	35.0	660.16	230.84		

<u>Belastungen</u>

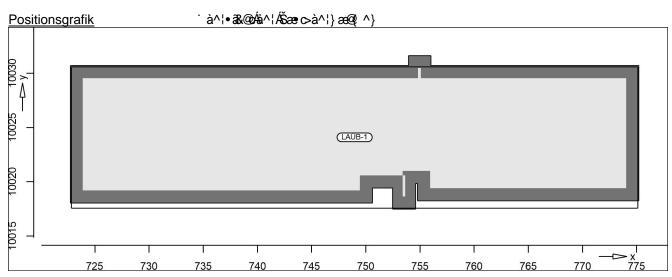
Lastplan Lasten des FE-Modells

<u>Bauteillasten</u> Bauteilbezogene Lasten



<u>Eigengewicht</u>	Position	EW	Lastfall	Art		g [kN/m²]
	PL-1	Gk	LF-1	PGr	von	7.50
					bis	8.75
	PGr: Gravitationslast; po	sitive Lasten v	wirken senkrecht nach unten			
Dickenbereiche	Bereiche mit abweic	hender R	egeldicke			
	Position	Dickenbe	•			g
						[kN/m ²]
	PL-1 DB-60CM				7.50	
Ù[}•cãt^Árcê}åãt^ÁŠæec	Desition	 \//	Looffall	۸4		_
U[}•ca^Ace}aa^Abæc	Position	EW	Lastfall	Art		g [kN/m²]
	PL-1	Gk	LF-1	PGr		1.80
			wirken senkrecht nach unten	_		1.00
<u>Nutzlast</u>	Position	EW	Lastfall je Lastfeld	Art		p
						[kN/m ²]
	PL-1	Qk.N	(PL-1)-1	PGr		2.70
	PGr: Gravitationslast; po	sitive Lasten v	wirken senkrecht nach unten			

Auftrags-Nr. Position martens+pulle Ingenieurgesellschaft mt
2023 300 SP-5.1 ÜVPËJPÆÄJæl& @ą́ ÁJ>å

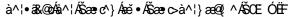

Seite: 5-6

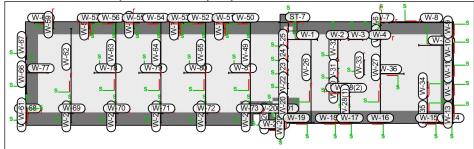
<u>Standardlasten</u> Standardlasten im FE-Modell

<u>Linienlasten</u>	Position	EW	Lastfall	Art	p _A ,m _A [kN/m	p _E ,m _E [kNm/m],
	LILA-1	Treppe)			
		Gk	LF-1	pGr	25.00	25.00
		Qk.N	LF-2	pGr	12.00	12.00
	pGr: Gravitations	slast; positive Laste	n wirken senkrecht nac	ch unten '		
<u>Õ ^&&@ ê&@} æ;¢^}</u>	Position	EW	Lastfall	Art		p [kN/m21

 $\underline{\check{S}ae} \circ \hat{a}^{+} \} \ aeQ \circ \hat{A}^{+} \} \ aeQ \circ$

Einwirkungen mit Lastgruppen werden weiterhin |æ cæ|d^ ´Áà^\} [{ { ^} È


SP-5.1


ÙVPËÜPÄÄÛ¢4&\@^ãį ÁÛ>å

Seite: 5-7

Öâl-Ásæ æ) e^al-Áæ • Áœ} åã ^} Ásæ e^} Áå^!ÁUc>c ^} ÉÁund Wandlager werden à^!>& • & • & • & •

Positionsgrafik

<u>Punktlasten</u>

Position	EW	Lastfall	Art	Р
				[kN]
ST-7	Gk	#1 gk	PGr	321.94
	Qk.N	#1 qk.n	PGr	83.65

PGr: Gravitationslast; positive Lasten wirken senkrecht nach unten

Linienlasten

Gk Qk.N Gk Qk.N Gk Qk.N Gk Qk.N Gk	#1 gk #1 qk.n #1 gk #1 qk.n #1 gk #1 qk.n #1 gk #1 qk.n	pGr pGr pGr pGr pGr pGr pGr pGr	89.71 24.90 338.15 106.09 220.78 66.53 110.42 32.82	[kN/m] 206.33 58.65 246.29 72.58 228.99 74.46 108.99
Qk.N Gk Qk.N Gk Qk.N Gk Qk.N Gk	#1 qk.n #1 gk #1 qk.n #1 gk #1 qk.n #1 gk #1 qk.n #1 qk.n	pGr pGr pGr pGr pGr pGr pGr	24.90 338.15 106.09 220.78 66.53 110.42	58.65 246.29 72.58 228.99 74.46 108.99
Gk Qk.N Gk Qk.N Gk Qk.N Gk	#1 gk #1 qk.n #1 gk #1 qk.n #1 gk #1 qk.n #1 gk	pGr pGr pGr pGr pGr pGr	338.15 106.09 220.78 66.53 110.42	246.29 72.58 228.99 74.46 108.99
Qk.N Gk Qk.N Gk Qk.N Gk Qk.N	#1 qk.n #1 gk #1 qk.n #1 qk #1 qk.n #1 gk	pGr pGr pGr pGr pGr pGr	106.09 220.78 66.53 110.42	72.58 228.99 74.46 108.99
Gk Qk.N Gk Qk.N Gk Qk.N	#1 gk #1 qk.n #1 gk #1 qk.n #1 gk	pGr pGr pGr pGr	220.78 66.53 110.42	228.99 74.46 108.99
Qk.N Gk Qk.N Gk Qk.N	#1 qk.n #1 gk #1 qk.n #1 gk	pGr pGr pGr	66.53 110.42	74.46 108.99
Gk Qk.N Gk Qk.N	#1 gk #1 qk.n #1 gk	pGr pGr	110.42	108.99
Qk.N Gk Qk.N	#1 qk.n #1 gk	pGr		
Gk Qk.N	#1 gk		32.82	
Qk.N		n G r		33.05
	#1 qk.n		129.89	159.38
Gk		pGr	40.76	50.34
				268.17
				67.27
				193.27
	#1 qk.n	pGr		44.02
Gk	#1 gk	pGr		58.05
Qk.N	#1 qk.n	pGr	17.30	6.10
Gk	#1 gk	pGr	46.20	83.60
Qk.N	#1 qk.n	pGr	1.57	14.59
Gk	#1 gk	pGr	55.76	55.66
Qk.N	#1 qk.n	pGr	1.75	8.64
Gk	#1 gk	pGr	121.21	128.20
Qk.N	#1 qk.n	pGr	31.88	34.84
Gk	#1 gk	pGr	129.49	124.72
Qk.N	#1 qk.n	pGr	33.30	31.14
Gk	#1 gk	pGr	86.79	52.26
Qk.N		pGr	18.70	3.64
Gk		pGr	53.88	56.47
Qk.N		pGr	4.38	5.43
Gk		pGr	-13.60	241.86
Qk.N			-24.97	84.84
Gk			344.02	161.38
				52.18
				152.66
				45.90
				101.75
				22.72
	Gk Qk.N Gk Qk.N Gk Qk.N Gk Qk.N Gk Qk.N Gk Qk.N Gk Qk.N Gk Qk.N	Gk #1 gk Qk.N #1 qk.n Gk #1 gk Qk.N #1 qk.n Gk #1 gk Qk.N #1 qk.n Gk #1 gk Qk.N #1 qk.n Gk #1 gk Qk.N #1 qk.n Gk #1 gk Qk.N #1 qk.n Gk #1 gk Qk.N #1 qk.n Gk #1 gk Qk.N #1 qk.n Gk #1 gk Qk.N #1 qk.n Gk #1 gk Qk.N #1 qk.n Gk #1 gk Qk.N #1 qk.n Gk #1 gk Qk.N #1 qk.n Gk #1 gk Qk.N #1 qk.n Gk #1 gk Qk.N #1 qk.n Gk #1 gk Qk.N #1 qk.n Gk #1 gk Qk.N #1 qk.n Gk #1 gk Qk.N #1 qk.n Gk #1 gk Qk.N #1 qk.n	Gk #1 gk pGr Qk.N #1 qk.n pGr Gk #1 gk pGr Qk.N #1 qk.n pGr Gk #1 gk pGr Qk.N #1 qk.n pGr Gk #1 gk pGr Qk.N #1 qk.n pGr Gk #1 gk pGr Qk.N #1 qk.n pGr Gk #1 gk pGr Qk.N #1 qk.n pGr Gk #1 gk pGr Qk.N #1 qk.n pGr Gk #1 gk pGr Qk.N #1 qk.n pGr Gk #1 gk pGr Qk.N #1 qk.n pGr Gk #1 gk pGr Qk.N #1 qk.n pGr Gk #1 qk.n pGr Gk #1 qk.n pGr Gk #1 qk.n pGr Qk.N #1 qk.n pGr	Gk #1 gk pGr 268.55 Qk.N #1 qk.n pGr 70.32 Gk #1 gk pGr 233.43 Qk.N #1 qk.n pGr 55.21 Gk #1 gk pGr 81.13 Qk.N #1 qk.n pGr 17.30 Gk #1 gk pGr 46.20 Qk.N #1 qk.n pGr 55.76 Qk.N #1 qk.n pGr 55.76 Qk.N #1 qk.n pGr 121.21 Qk.N #1 qk.n pGr 31.88 Gk #1 gk pGr 129.49 Qk.N #1 qk.n pGr 33.30 Gk #1 gk pGr 86.79 Qk.N #1 qk.n pGr 53.88 Qk.N #1 qk.n pGr -13.60 Qk.N #1 qk.n pGr -24.97 Gk #1 gk pGr 344.02 Qk.N #1 qk.n pGr

Position

SP-5.1

ÙVPËÜPÄÄÜ¢4& @ ą̃ ÁÜ>å Seite: 5-8

Danition	- \^/	Looffall	Λ4	_	_
Position	EW	Lastfall	Art	ра	PE [InNI/red]
W-19	Gk	#41alc	»C*	64.47	[kN/m]
VV-19	Qk.N	#1 gk	pGr	64.17	56.09
W-20	Gk.N	#1 qk.n	pGr	11.58 18.32	2.58
VV-2U		#1 gk	pGr		190.12
W-22	Qk.N	#1 qk.n	pGr	-11.25	67.67
VV-22	Gk	#1 gk #1 alc a	pGr	278.67	290.15
M 00	Qk.N	#1 qk.n	pGr	99.51	104.03
W-23	Gk	#1 gk #4 ala	pGr	378.94	379.30
144.04	Qk.N	#1 qk.n	pGr	136.72	136.57
W-24	Gk	#1 gk	pGr	309.38	296.93
144.05	Qk.N	#1 qk.n	pGr	112.77	108.40
W-25	Gk	#1 gk	pGr	244.35	189.67
111.00	Qk.N	#1 qk.n	pGr	86.74	67.31
W-26	Gk	#1 gk	pGr	128.46	92.69
	Qk.N	#1 qk.n	pGr	34.15	23.25
W-27	Gk	#1 gk	pGr	157.14	90.68
-	Qk.N	#1 qk.n	pGr	42.44	24.67
W-28(1)	Gk	#1 gk	pGr	103.60	133.10
	Qk.N	#1 qk.n	pGr	26.28	43.86
W-28(2)	Gk	#1 gk	pGr	154.40	153.97
	Qk.N	#1 qk.n	pGr	52.29	52.18
W-29	Gk	#1 gk	pGr	170.38	184.47
	Qk.N	#1 qk.n	pGr	59.17	64.90
W-30	Gk	#1 gk	pGr	184.91	180.02
	Qk.N	#1 qk.n	pGr	65.10	63.11
W-31	Gk	#1 gk	pGr	164.95	142.64
	Qk.N	#1 qk.n	pGr	56.34	49.36
W-32	Gk	#1 gk	pGr	56.72	103.81
	Qk.N	#1 qk.n	pGr	22.42	29.48
W-33	Gk	#1 gk	pGr	158.72	87.15
00	Qk.N	#1 qk.n	pGr	52.66	29.61
W-34	Gk	#1 gk	pGr	377.22	402.44
*****	Qk.N	#1 qk.n	pGr	147.58	157.02
W-35	Gk	#1 gk	pGr	216.36	96.87
VV 33	Qk.N	#1 qk.n	pGr	78.66	23.36
W-36	Gk	#1 qk.ii #1 gk	pGr	341.79	13.94
VV-30	Qk.N	#1 gk #1 qk.n	pGr	130.67	-6.16
W-37	Gk			315.44	
VV-31	Qk.N	#1 gk #1 gk p	pGr pGr		17.17
W-49	Gk.N	#1 qk.n	pGr	119.76 155.25	-7.13 171.22
VV-49	Qk.N	#1 gk #1 gk p			51.02
W-50		#1 qk.n	pGr	35.93 170.32	
VV-5U	Gk	#1 gk #1 alc a	pGr		169.95
W-51	Qk.N	#1 qk.n	pGr	34.50	33.02
16-44	Gk	#1 gk	pGr	164.77	163.44
14/50	Qk.N	#1 qk.n	pGr	29.17	28.53
W-52	Gk	#1 gk	pGr	149.77	143.30
144.50	Qk.N	#1 qk.n	pGr	23.62	22.46
W-53	Gk	#1 gk	pGr	137.02	137.42
	Qk.N	#1 qk.n	pGr	21.80	21.86
W-54	Gk	#1 gk	pGr	146.00	144.24
	Qk.N	#1 qk.n	pGr	23.78	23.84
W-55	Gk	#1 gk	pGr	139.77	139.75
	Qk.N	#1 qk.n	pGr	23.28	23.15
W-56	Gk	#1 gk	pGr	151.42	157.74
	Qk.N	#1 qk.n	pGr	24.49	25.88
W-57	Gk	#1 gk	pGr	203.73	212.34
	Qk.N	#1 qk.n	pGr	35.43	37.14

Position

2023 300 SP-5.1

ÙVPËÜPÄÄÜ¢4& @ ą̃ ÁÜ>å Seite: 5-9

Position	EW	Lastfall	A rt	n.	n-
Position	⊏VV	Lastiali	Art	ра	p∈ [kN/m]
W-58	Gk	#1 gk	pGr	195.38	173.03
*** 00	Qk.N	#1 qk.n	pGr	35.93	49.34
W-59	Gk	#1 gk	pGr	193.58	168.32
VV-33	Qk.N	#1 gk #1 qk.n	pGr	58.13	33.41
W-60	Gk.N				179.65
VV-60		#1 gk	pGr	163.71	
14/ 04	Qk.N	#1 qk.n	pGr	31.27	30.06
W-61	Gk	#1 gk	pGr	135.36	80.79
	Qk.N	#1 qk.n	pGr	28.76	11.54
W-62	Gk	#1 gk	pGr	77.19	267.30
	Qk.N	#1 qk.n	pGr	25.70	63.33
W-63	Gk	#1 gk	pGr	196.82	176.67
	Qk.N	#1 qk.n	pGr	47.49	38.30
W-64	Gk	#1 gk	pGr	196.63	179.37
	Qk.N	#1 qk.n	pGr	46.63	40.20
W-65	Gk	#1 gk	pGr	206.13	190.09
	Qk.N	#1 qk.n	pGr	49.58	43.25
W-66	Gk	#1 gk	pGr	155.66	83.94
	Qk.N	#1 qk.n	pGr	31.31	11.53
W-67	Gk	#1 gk	pGr	96.36	216.48
VV-01	Qk.N	#1 gk #1 qk.n	pGr	19.79	40.22
W-68	Gk.N		pGr	106.97	152.73
VV-00		#1 gk			
144.00	Qk.N	#1 qk.n	pGr	20.23	33.58
W-69	Gk	#1 gk	pGr	61.64	40.95
	Qk.N	#1 qk.n	pGr	17.81	13.24
W-70	Gk	#1 gk	pGr	108.92	102.62
	Qk.N	#1 qk.n	pGr	25.85	24.26
W-71	Gk	#1 gk	pGr	104.92	107.21
	Qk.N	#1 qk.n	pGr	24.52	25.07
W-72	Gk	#1 gk	pGr	105.27	116.07
	Qk.N	#1 qk.n	pGr	24.87	27.38
W-73	Gk	#1 gk	pGr	126.02	98.56
	Qk.N	#1 qk.n	pGr	27.49	20.13
W-74	Gk	#1 gk	pGr	144.35	128.03
** * .	Qk.N	#1 qk.n	pGr	43.17	22.74
W-75	Gk	#1 qk.ii #1 gk	pGr	126.49	145.12
VV 75	Qk.N	#1 gk #1 qk.n	pGr	21.83	43.34
W-76	Gk			146.39	147.22
VV-7 O		#1 gk #1 gk	pGr		
W-77	Qk.N	#1 qk.n	pGr	26.70	43.31
VV-//	Gk	#1 gk	pGr	33.26	93.07
147.70	Qk.N	#1 qk.n	pGr	2.21	36.49
W-78	Gk	#1 gk	pGr	70.34	48.11
	Qk.N	#1 qk.n	pGr	27.82	6.52
W-79	Gk	#1 gk	pGr	78.54	44.95
	Qk.N	#1 qk.n	pGr	29.90	5.72
W-80	Gk	#1 gk	pGr	76.43	48.84
	Qk.N	#1 qk.n	pGr	29.39	6.97
W-81	Gk	#1 gk	pGr	73.87	35.01
	Qk.N	#1 qk.n	pGr	26.05	2.47
W-200	Gk	#1 gk	pGr	430.06	441.00
	Qk.N	#1 qk.n	pGr	159.98	164.33
W-201	Gk	#1 gk	pGr	249.69	198.41
5.	Qk.N	#1 gk #1 qk.n	pGr	72.52	46.60
W-202	Gk	#1 qk.ii #1 gk	pGr	81.66	78.59
v v - 202	Qk.N		pGr pGr	-10.65	1.83
W 202		#1 qk.n			
W-203	Gk	#1 gk	pGr	102.93	72.92
-	Qk.N	#1 qk.n	pGr	7.92	-6.98

Auftrags-Nr.	Position	martens+puller
2023 300	SP-5.1	ÙVPËÜPÄÄÜ¢4&\@ãį ÁÙ>å

Position	EW	Lastfall	Art	p _A	PE
					[kN/m]
W-204	Gk	#1 gk	pGr	6.65	261.85
	Qk.N	#1 qk.n	pGr	-34.02	76.18
W-205	Gk	#1 gk	pGr	927.75	-11.00
	Qk.N	#1 qk.n	pGr	167.23	-11.34
W-206	Gk	#1 gk	pGr	2327.41	-245.22
	Qk.N	#1 qk.n	pGr	531.32	-42.33
W-207	Gk	#1 gk	pGr	1693.65	26.46
	Qk.N	#1 qk.n	pGr	420.51	5.82
W-208	Gk	#1 gk	pGr	1495.02	57.06
	Qk.N	#1 qk.n	pGr	357.23	14.50
W-209	Gk	#1 gk	pGr	1680.87	41.17
	Qk.N	#1 qk.n	pGr	411.25	10.02
W-210	Gk	#1 gk	pGr	839.77	8.01
	Qk.N	#1 qk.n	pGr	190.28	-6.38
pGr: Gravitations	slast; positive Laste	n wirken senkrecht n			

Seite: 5-10

Einwirkungen

DIN EN 1990 Einwirkungen nach DIN EN 1990

> S>: ^| Beschreibung **Typisierung** Gk Eigenlasten ٜ}åã*^ÁÒã¸ã\`}*^} Qk.N Nutzlasten Sæe^*[¦â^ÁOEÁÉÝ[@]ÉÁ}åÁOE-^}c@edo•¦ê`{^

Qk.W Wind Windlasten

Šæge@||^Á} åÁå^\^} ÁZ*[¦å}*}*Á*Áå^} ÁÖā, ã*}*A Šær cê||^

LF-1, #1|gk Gk

LF-2, (PL-1)-1, #1|qk.n Qk.N Qk.W #1|qk.w

Bemessung (GZT+GZG)

Biegung PI-As-erf-Iso Plattenbiegebemessung nach DIN EN 1992-1-1

<u>PL-1</u> Ó^{ ^••`} * Á>¦ÁÚ|ææc^ÁÇÙææ@à^{{}} DÁÚŠËF

Mat./Querschnitt Beton C 30/37

Betonstahl B 500MA

Ö&&\^} Áç^¦ê} å^¦|&&@Á@ÁMÁÁ.HEÌEEEÌÌÌÌ ÌEE€Á&{

*^{ êi ÁÖ OÞÁÖÞÁFJJ GËFËFÉÝ æà ÉÁ ÈF Expositionsklasse

> Position Seite ΚI Kommentar PL-1 XC3 { êi ãt ^ ÁØ^ * &@^ oben Weitgehend trockener Beton WO XC2 nass, selten trocken unten Pê ~ at Á a ~ ¦ Á e } * ~ ¦ ^ ÁZ ^ ã Á WF

> > feuchter Beton

Vorgaben zur Bewehrungsdefinition Bewehrung

Cmin,u/Cmin,o = Betondeckung 20 / 20 mm

&def.u D &def.o =15 / 15 mm

Auftrags-Nr.	Position	Ingenieurgesellschaft mbH	
2023 300	SP-5.1	ÙVPËÜPÄÄĴŒW.@ã ÁĴ>å	Seite: 5-11

		Cnom	u/C _{nom.o}	=	35 /	35	mm
	Bewehrungsabstand	-110111	d' _{ru/su}		30 /	30	mm
	_		d'ro/so	=	30 /	30	mm
	Bewehrungsrichtung		W _{ru/su}	=	0.0 /	90.0	»
			W _{ro/so}	=	0.0 /	90.0	»
Grundbewehrung	Seite	Tænc^ÊÁÚcêà^	d'r		$\mathbf{a}_{sg,r}$	d's	a _{sg,s}
		<Ž{{aÐ-Ž&{á	[mm]	Ž&([mm]	Ž&{ Đ(á
	Unten		30	1	12.83	30	12.83
	Oben		30	1	12.83	30	12.83
Nachweisparameter	nach DIN EN 1992-1-1						
	T 7 ° A . ` A . A . A . * * * * * * * * * * * * * *	À`À`	່າກລາ	<u>.</u>			

T @ a^•ca^, ^@*} * AQ KEETEDA, * | a^Aa^|; >&\ • a&@a*cE

Kombinationen Tæi*^à^}å^Ás[{àãjæaāj}^}Ájæ&@ÄÖQ⊅ÁÖÞÁFJJ€

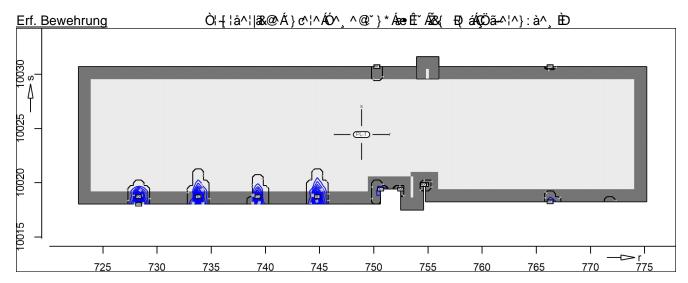
> Ew Einwirkungsname

Lkn Lastkombinationsnummer

ç[| @ | | • & @ } a ^ Aç ^ | ê } a ^ | | a & @ A Da ; a \ ` } *

Öâ ÁÓ c đã * } * Á ; c | } ^ | Á šæ cê | | Á j } ^ | @ фà Áeiner Einwirkung wird mit diesem

Ausgabeformat nicht dokumentiert.


Ew	Gk	Qk.N	Qk.W	
Lkn	Grundkombination			
1-5	1.35	1.50 !		
6-7	1.35	1.50 !	0.90	

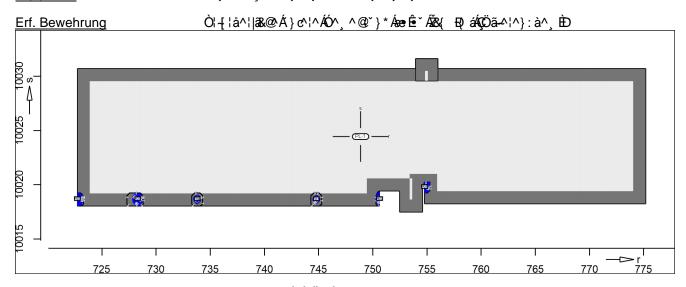
2023 300 SP-5.1 ÙVPË

Seite: 5-12

as,r,unten

Šê}*•à^¸^@`}*Á§ÁËÜæ&@`}*Á§Á`;¢^¦^¦ÆŠæ*^

Q[|3,3}•č-^}ÁMÁQĚ €Á&{ Ð


Achsabstand erf. Bewehrung: $d'_{ru} = 30 \text{ mm}$ Achsabstand vorh. Bewehrung: $d'_{ru} = 30 \text{ mm}$ $\tilde{O}()^* \hat{a}^* \hat{a}^* \hat{a}^* \hat{b}^* \hat{a}^* \hat{b}^* \hat{$

Punkt	Х	У	$m_{r,Ed}$	$m_{s,Ed}$	$m_{rs,Ed}$	m_{Ed}	$a_{s,ru}$	Lkn
		[m]				[kNm/m]	Ž&{ Đ(á	
F01	744.79	10019	559.67	192.57	-5.21	564.88	33.12	6
F02	739.30	10019	460.60	162.39	-2.83	463.43	23.38	1
F03	733.80	10019	545.74	186.52	-13.68	559.42	32.57	1
F04	728.31	10019	625.76	244.95	9.78	635.54	40.58	6
R01	750.28	10031	151.90	9.25	54.66	206.56	2.21	1
R02	766.27	10031	124.86	15.17	-59.38	184.24	0.53	1
R03	766.27	10018	257.74	43.02	8.19	265.93	6.85	1
R04	754.78	10020	71.90	124.94	-133.14	205.04	2.10	2
R05	754.58	10020	138.59	-245.36	-119.24	196.54	1.46	2
R06	752.48	10019	139.05	-14.63	-44.69	183.74	0.49	1
R07	750.62	10019	214.56	-76.26	83.69	298.25	9.45	1
R08	728.31	10018	500.80	134.09	6.63	507.43	27.47	6

PËÜPÄÄÜ¢4&\@`ā[ÁÜ>å Seite: 5-13

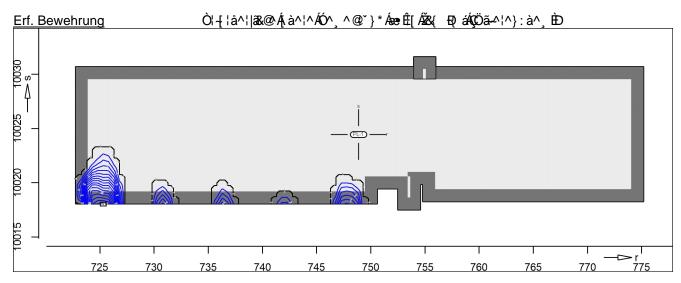
as,s,unten

Šê}*•à^¸^@`}*Á§Á;ËÜæ&@`}*ÁŞÁ}¢^¦^¦Á§æ*^

Q[|ã,ã^}•č.^}ÁMÁ€ĚÉ€Á&{ Ð

Achsabstand erf. Bewehrung: $d'_{su} = 30 \text{ mm}$ Achsabstand vorh. Bewehrung: $d'_{su} = 30 \text{ mm}$ $\tilde{O}_{su}^{\dagger} + \tilde{A}_{su}^{\dagger} + \tilde{A}_{s$

			σ =σ ₁ − ₁	, =	o, , a.a. _s			
Lkn	$\mathbf{a}_{s,su}$	m_{Ed}	$m_{rs,Ed}$	$m_{s,Ed}$	$m_{r,Ed}$	У	Х	Punkt
	Ž&{ Ð()á	[kNm/m]				[m]		
7	1.56	197.93	-5.33	192.59	559.17	10019	744.79	F01
1	1.73	200.19	-13.68	186.52	545.74	10019	733.80	F02
6	5.96	254.73	9.78	244.95	625.76	10019	728.31	F03
1	6.27	258.71	-131.32	127.40	69.38	10020	754.78	R01
3	7.14	269.55	91.47	178.08	-38.90	10019	750.62	R02
1	8.83	290.63	-79.97	210.65	81.22	10019	722.74	R03



ÙVPËÜPÄÄÛ¢4&\@@ã ÁÛ>å

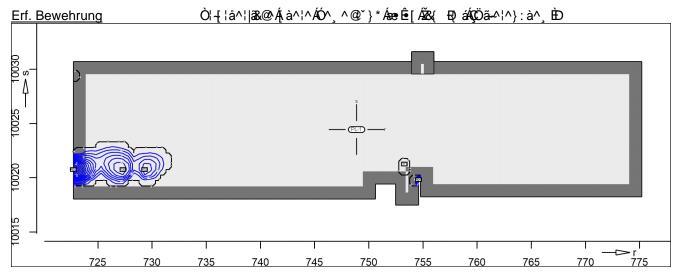
Seite: 5-14

as,r,oben

Šê}*•à^¸^@*}*Á§ÁËÜæ&@*}*ÁŞÁ¸Á¸à^¦^¦ÁŠæ*^

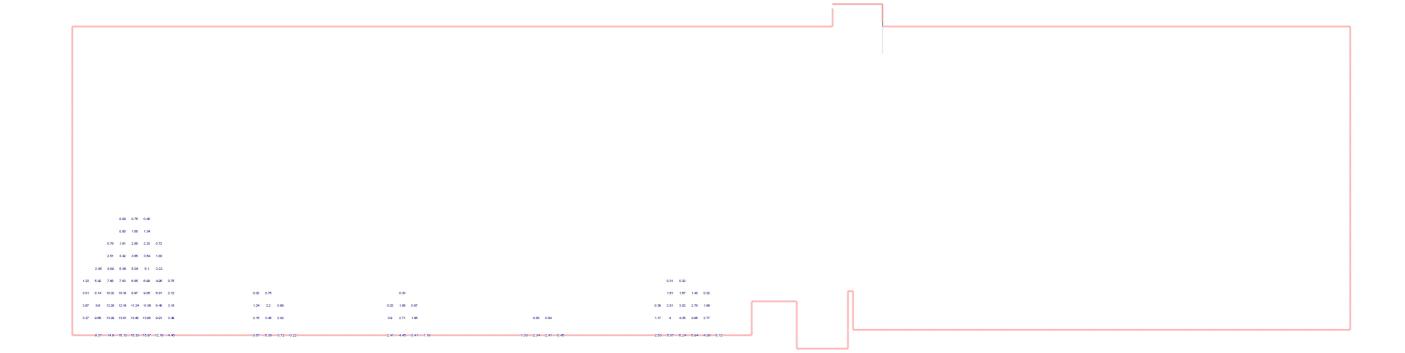
Q[|ã,ã\}•č.~\}ÁMÁFÈ€€Á&{ Ð

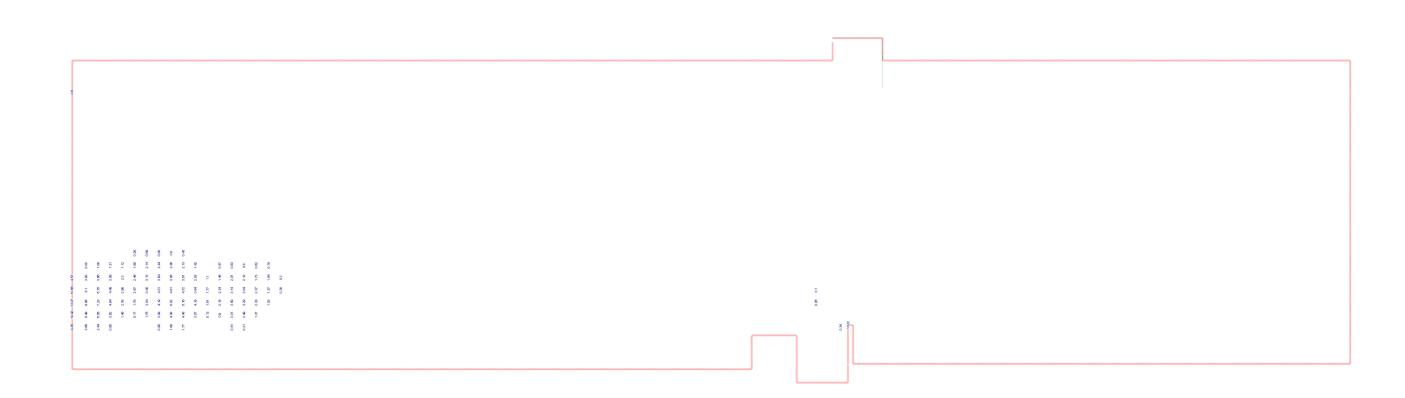
Achsabstand erf. Bewehrung: d'ro = 30 mm Achsabstand vorh. Bewehrung: d'ro = 30 mm Õ¦`}åà^. ^@`}*KÁæ•*Ê[ÁMÁFŒÈHÁ&{ E)


Punkt	Х	у	$m_{r,Ed}$	m _{s,Ed}	$m_{rs,Ed}$	m_{Ed}	a _{s,ro}	Lkn
		[m]				[kNm/m]	Ž&{ Ð()á	
R01	725.31	10018	-367.94	-6.82	13.64	-381.58	16.33	4

ÙVPËÜPÄÄÜ¢4&\@4 ÂÜ>å Seite: 5-15

as,s,oben

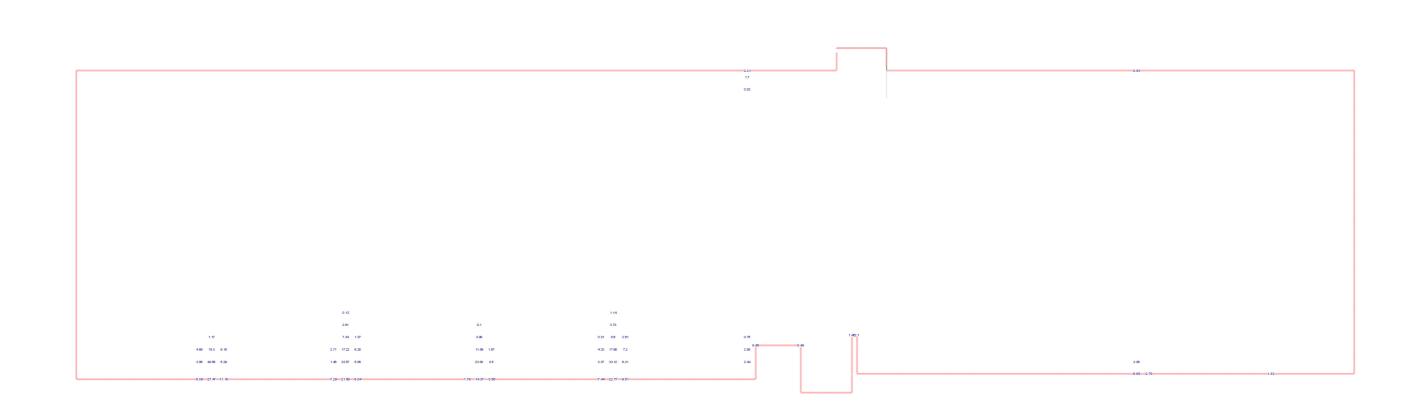

Šê}*•à^¸^@`}*Á§Á;ËÜæ&@č}*Á§Á;à^¦^¦ÆŠæ*^


Q[|ã,ã^}•č.^}ÁMÁ€ĒİÁ&{Ð

Achsabstand erf. Bewehrung: $d'_{so} = 30 \text{ mm}$ Achsabstand vorh. Bewehrung: $d'_{so} = 30 \text{ mm}$ $\tilde{O}|^*\} \mathring{a}\mathring{a}^{\ } ^{\ } ^{\ } ^{\ } ^{\ } ^{\ } \mathring{b} = ^* \mathring{E} [\mathring{A} \mathring{M} + \widetilde{C} + \widetilde{A} \mathring{b}]$

Punkt	Х	У	$m_{r,Ed}$	$m_{s,Ed}$	$m_{rs,Ed}$	m_{Ed}	$a_{s,so}$	Lkn
		[m]				[kNm/m]	Ž&{EŅá	
F01	753.28	10021	-34.79	-145.52	-33.02	-178.53	0.10	4
F02	729.30	10021	-18.68	-194.43	-30.35	-224.78	3.59	6
F03	727.31	10021	-57.10	-202.04	42.69	-244.73	5.16	5
R01	754.58	10020	118.97	-231.47	-124.88	-356.35	14.22	4
R02	722.74	10021	-5.13	-269.59	-72.98	-342.57	13.07	4

SP-5.1 Sohlplattensystem Modell : `} W YbVYa Yggi b[Erforderliche Bewehrung as,erf (Differenzbew.) Tæi∙cæàkÁFKFÍÍ Bauvorhaben 2023 300 Vorhandene Bew. as,vorh = 12.83 (Grund+Zulagen) m-p ÙVPËÜPÆÄÛ¢4&\@^ā(AÛ>å Beton C 30/37 aus allen Nachweisen Datum 13.02.2024 ¦ËÜã&@č}*Áţà^}Á§ÁÃ&{ Ð{á Bew.-Abstand d' = 30 mm Max = 16.33 (Kn. 27), Min = 0 (Kn. 12) m+p Ingenieurgesellschaft mbH - Pockelsstr.7 - 38106 Braunschweig - Tel. 0531 / 238 32 - 0 Bauteildicke h = 30.00...35.00 cm Seite 5-16


SP-5.1 Sohlplattensystem Modell : `} W YbVYa Yggi b[Erforderliche Bewehrung as,erf (Differenzbew.) Bauvorhaben 2023 300 Vorhandene Bew. as,vorh = 12.83 (Grund+Zulagen) m p Beton C 30/37 aus allen Nachweisen •ËÜ&&@č}*Áţà^}Á§AÃ&{ Ð(á Bew.-Abstand d' = 30 mm m+p Ingenieurgesellschaft mbH - Pockelsstr.7 - 38106 Braunschweig - Tel. 0531 / 238 32 - 0 Bauteildicke h = 30.00...35.00 cm Max = 14.22 (Kn. 10), Min = 0 (Kn. 12)

ÙVPËÜPÆÄÛ¢4&\@^ā(AÛ>å Datum 13.02.2024 Seite

MicroFe 2022.052

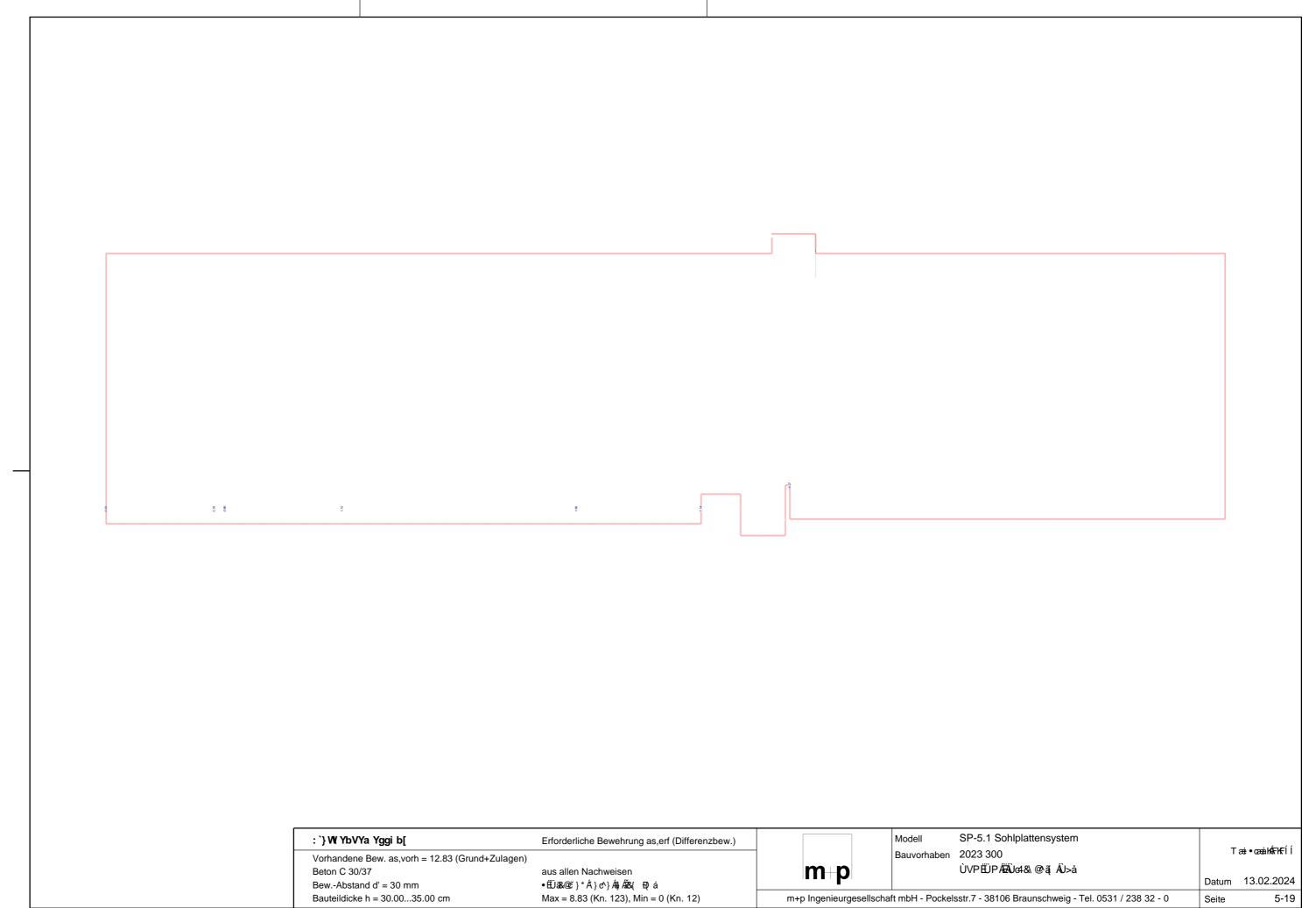
5-17

Tæi∙cæàkÁFKFÍÍ

: `} W YbVYa Yggi b[Erforderliche Bewehrung as,erf (Differenzbew.) Vorhandene Bew. as,vorh = 12.83 (Grund+Zulagen) Beton C 30/37 aus allen Nachweisen ¦ËÜ&&@č}*Á;}¢^}ÁşjÆ&{ Ð;á Bew.-Abstand d' = 30 mm Max = 40.58 (Kn. 134), Min = 0 (Kn. 12) Bauteildicke h = 30.00...35.00 cm

m p

Modell


SP-5.1 Sohlplattensystem Bauvorhaben 2023 300

m+p Ingenieurgesellschaft mbH - Pockelsstr.7 - 38106 Braunschweig - Tel. 0531 / 238 32 - 0

ÙVPËÜPÆÄÛ¢4&\@^ā(AÛ>å

Tæi∙cæàkÁFKFÍÍ Datum 13.02.2024

Seite 5-18 MicroFe 2022.052

SP-5.1 ÙVPËÜPÄÄÛ¢4&\@ã ÁÛ>å 2023 300 Seite: 5-20

Querkraftbemessung Plattenbereiche Querkraft Pl-As-Iso

<u>PL-1</u> Querkraftbemessung der Platte (Isolinien)

Querkraftbemessung nach DIN EN 1992-1-1

Beton C 30/37, Betonstahl B 500SA

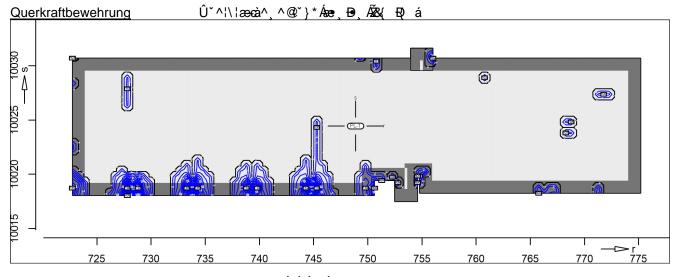
Õ^• c^ā,•\4¦} `} * ÁÛ `æ: ãc

Druckstrebenneigung wurde vom Programm optimiert.

Mindestbewehrung (9.3.2) wurde nicht ermittelt.

Ö&&\^} Áç^¦ê} å^¦|&&@Á@ÁMÁÁHEÌÈE€ÌÌÌÌÍ ÌÈE€Á&{

Tæi*^à^}å^ÁS[{àãjæeāj}^}Ájæ&@ÁÖΦDAÖÞÁFJJ€ Kombinationen


> Einwirkungsname Ew

Lastkombinationsnummer Lkn

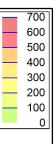
ç[| @ | | • & @ } å ^ Áç ^ | ê } å ^ | | **3**& @ Á Ò**3**, **3** \ ` } *

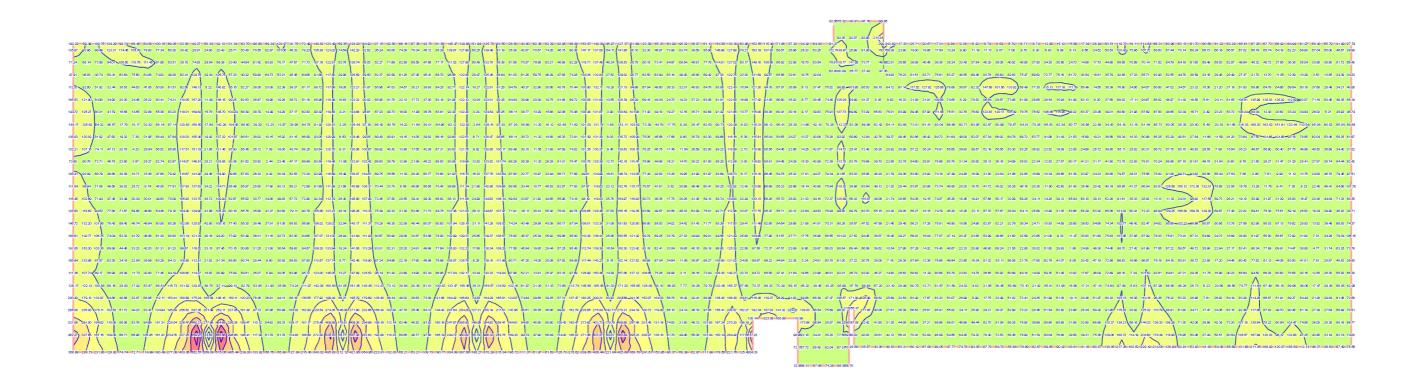
Öâ ÁÓ c đãt } * Á j : ^|} ^ L Šæ cê || Á j } ^ L @ da Áeiner Einwirkung wird mit diesem Ausgabeformat nicht dokumentiert.

Ew	Gk	Qk.N	Qk.W	
Lkn	Grundkombination			
1	1.35			
2-5	1.35	1.50 !	0.90	
6-9	1.35	1.50 !		

Q[|ā,ā\}•č.~\}ÁMÁGÈE€Á& Ð

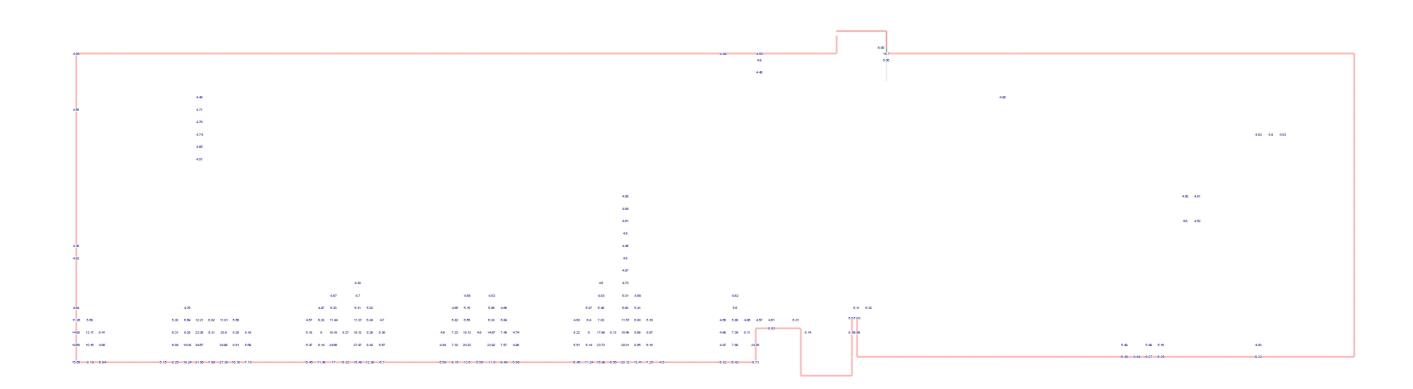
Punkt	Х	y [m]		vEd	vEd,res	vRd,c	vRd,max [kN/m]	asw/sw	Summe Ž&(-₽) á	Lkn
F01	750.78	10030	r	-163.1	163.2	147.0 m	975.4	4.90	4.90	3
			s	3.8		147.0 m	975.4	0.00		
F02	760.77	10029	r	4.5	161.6	147.0 m	975.4	0.00	4.86	5
			s	-161.5		147.0 m	975.4	4.86		
F03	727.81	10028	r	159.0	159.6	147.0 m	975.4	4.78	4.78	4
			s	14.5		147.0 m	975.4	0.00		
F04	771.76	10027	r	14.0	163.5	147.0 m	975.4	0.00	4.90	7
			s	162.9		147.0 m	975.4	4.90		
F05	768.77	10025	r	-79.0	172.4	147.0 m	975.4	0.00	4.61	7


Seite: 5-21


Auftrags-Nr. Position Ingenieurgesellschaft mt

2023 300 SP-5.1 ÜVPEÜPÆÜG& @ Ã ÂJ>å

Punkt vEd vEd,res vRd,c vRd,max asw/sw Summe Lkn Χ У [m] [kN/m] Ž&{ Ð() á -153.2 147.0 m 975.4 4.61 s F06 745.29 10024 4.64 4.64 2 -154.3 147.0 m 975.4 r 155.0 147.0 m 975.4 0.00 14.3 s F07 10024 4.60 8 768.27 -31.9 156.4 147.0 m 975.4 0.00 r 153.1 147.0 m 975.4 4.60 s F08 752.28 10020 224.2 147.0 m 975.4 0.00 6.31 6 -78.5r -210.0 975.4 s 147.0 m 6.31 F09 975.4 2 752.78 10019 -170.9173.9 147.0 m 5.14 5.14 r 975.4 32.3 147.0 m 0.00 s F10 749.79 10019 262.5 264.4 147.0 m 975.4 7.89 7.89 6 r -31.6 147.0 m 975.4 0.00 S F11 745.29 10019 -562.8 563.8 149.7 1375.2 28.01 28.01 7 r -34.8 147.0 m 975.4 0.00 F12 744.29 10019 505.8 507.3 147.0 m 1330.9 23.73 23.73 9 r -38.0 147.0 m 975.4 0.00 S F13 10019 739.79 -495.1 496.3 147.0 m 1320.8 22.92 22.92 9 r -34.8147.0 m 975.4 0.00 s F14 738.80 10019 459.3 460.8 147.0 m 1281.9 20.23 20.23 9 r -37.7 147.0 m 975.4 0.00 S F15 734.30 10019 -555.7 147.0 m 1370.4 27.47 27.47 3 557.4 r -44.5 147.0 m 975.4 0.00 F16 10019 518.5 520.7 147.0 m 1342.0 24.68 24.68 5 733.30 r -47.9147.0 m 975.4 0.00 F17 728.81 10019 r -655.5 663.1 147.3 1424.8 34.98 34.98 4 -99.6 147.0 m 975.4 0.00 S F18 10019 1423.0 34.67 727.81 651.4 659.3 147.0 m 34.67 3 r -101.3 147.0 m 975.4 0.00 s 10031 2 R01 722.74 -104.2192.2 147.0 m 975.4 0.00 4.86 r 161.5 147.0 m 975.4 4.86 s R02 756.00 10031 -236.6 299.3 131.4 m 784.1 8.85 15.70 2 r -183.4 131.4 m 784.1 6.86 S R03 765.77 10018 215.6 217.4 147.0 m 975.4 6.48 6.48 r 6 0.00 -27.6147.0 m 975.4 S R04 754.78 10020 -125.8265.4 147.0 m 975.4 0.00 7.03 1 r -233.7 149.9 975.4 7.03 s R05 754.58 10020 131.1 213.6 147.0 m 975.4 0.00 5.07 1 r -168.7 168.3 5.07 975.4 s R06 10019 -89.2 286.7 147.0 m 0.00 754.58 975.4 8.19 1 r -272.5 147.0 m 975.4 8.19 s R07 10019 147.0 m 751.28 -297.1 323.9 975.4 8.93 8.93 3 r -129.0147.0 m 975.4 0.00 S R08 10019 750.62 r -512.8 517.2 147.0 m 1337.1 24.25 24.25 4 -67.8 152.1 975.4 0.00 S R09 727.81 10018 r 539.3 562.6 154.5 1358.6 26.25 31.06 5 160.0 147.0 m 975.4 4.81 s R10 722.74 10019 -452.0452.3 147.0 m 1272.8 19.68 19.68 6 r 156.3 975.4 0.00 16.4


m: Tā å^•c ^loh æ&@lÖOÞÁÐÞÁFJJOËËËÊÕIEČ ÈEÀDÁ æi *^à^}å

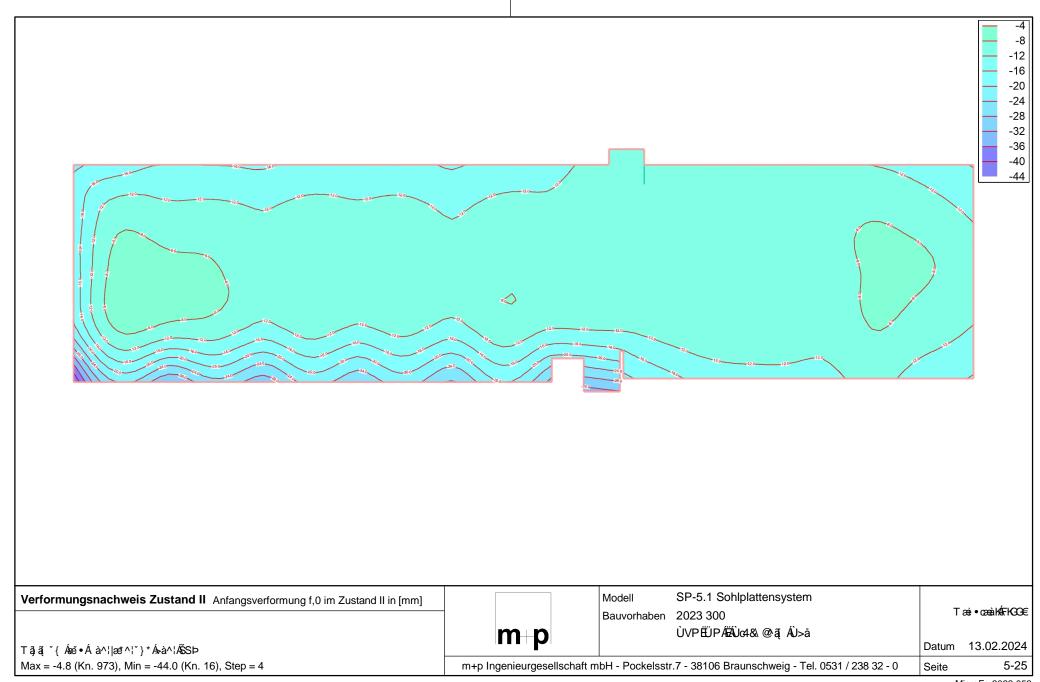
Querkraftbemessung	Ó^{ ^••`}*•``^¦\¦æx∳¢ÒåЁ^•Áæĕ•ÁV¦æ±-ê@∄\^āæ}æ	k@ ^ā/s Æ m ⊹p	Modell Bauvorhaben	SP-5.1 Sohlplattensystem 2023 300 ÙVPËÜPÆÄJc4& @ã ÁÚ>å	T Datum	æi•œaù kÁFKFÍÍ 13.02.2024
Max = 663.06, Min = 1.68, Step = 100		m+p Ingenieurgesellsch	aft mbH - Pocke	lsstr.7 - 38106 Braunschweig - Tel. 0531 / 238 32 - 0	Seite	5-22

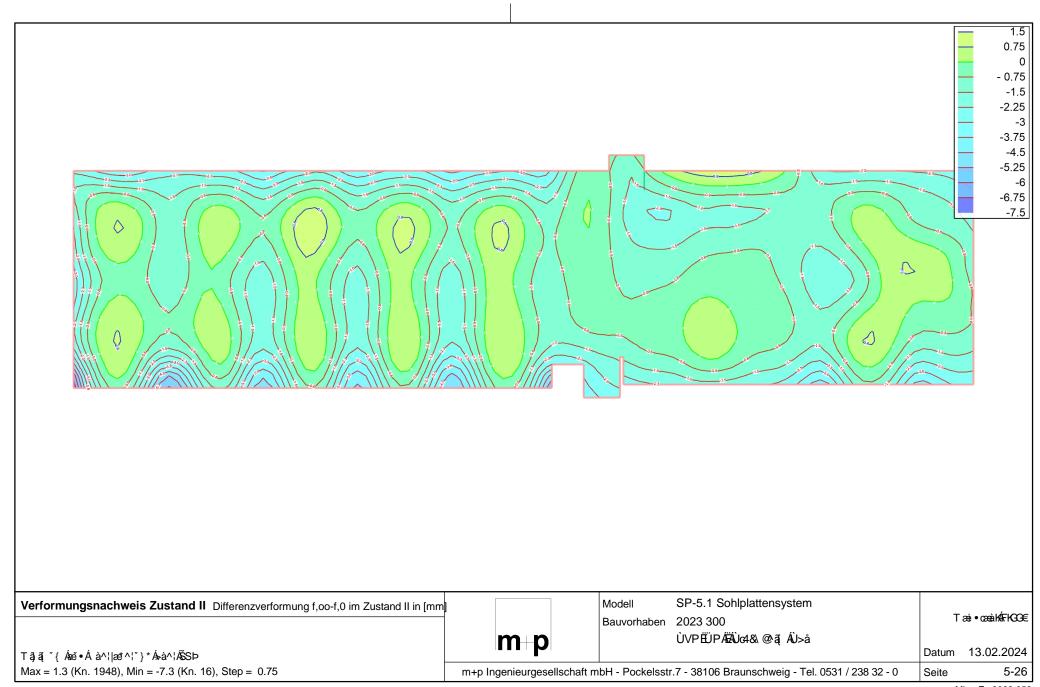
MicroFe 2022.052

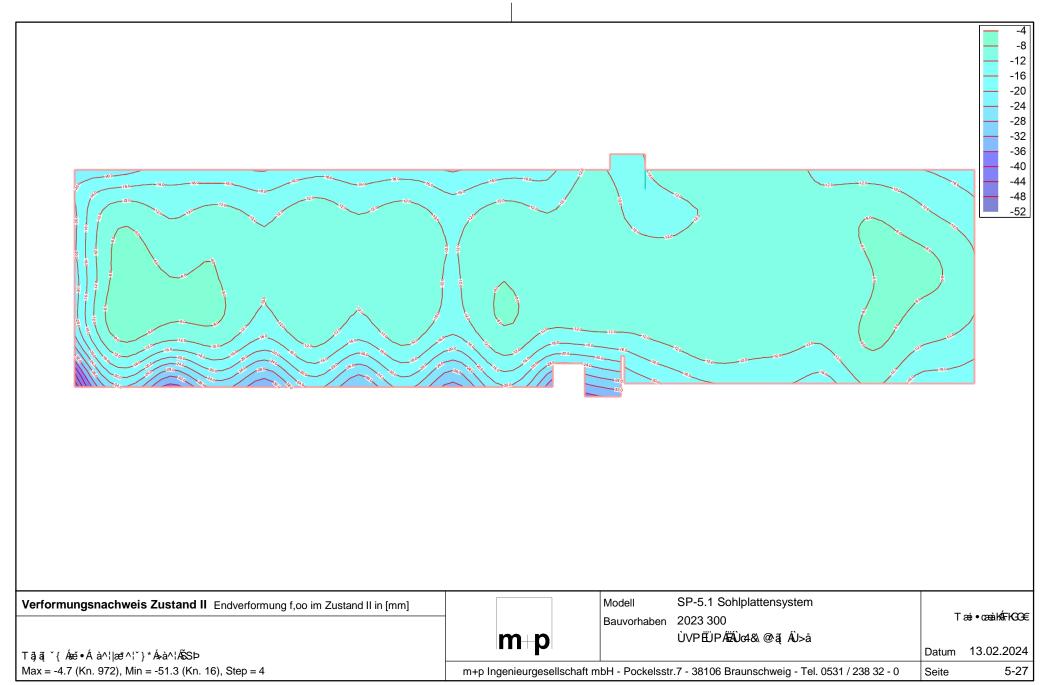
Querkraftbemessung	Û`^¦\¦ææà^¸^@``}*Áæe¸Ðo¸Áæč•Áæ∦^}Ápæ&@,^ãr^}Á	m p	Modell Bauvorhaben	SP-5.1 Sohlplattensystem 2023 300 ÙVPËÜPÆÄÜd& @ a ÁÚ>å	T Datum	æi•cæaìKaFKFÍÍ 13.02.2024
Max = 34.98, Min = 0		m+p Ingenieurgesellscha	aft mbH - Pocke	lsstr.7 - 38106 Braunschweig - Tel. 0531 / 238 32 - 0	Seite	5-23

MicroFe 2022.052

Auftrags-Nr. Position


martens+puller
Ingenieurgesellschaft mbH ÙVPËÜPÄÄÛc4&\@ãį ÁÛ>å

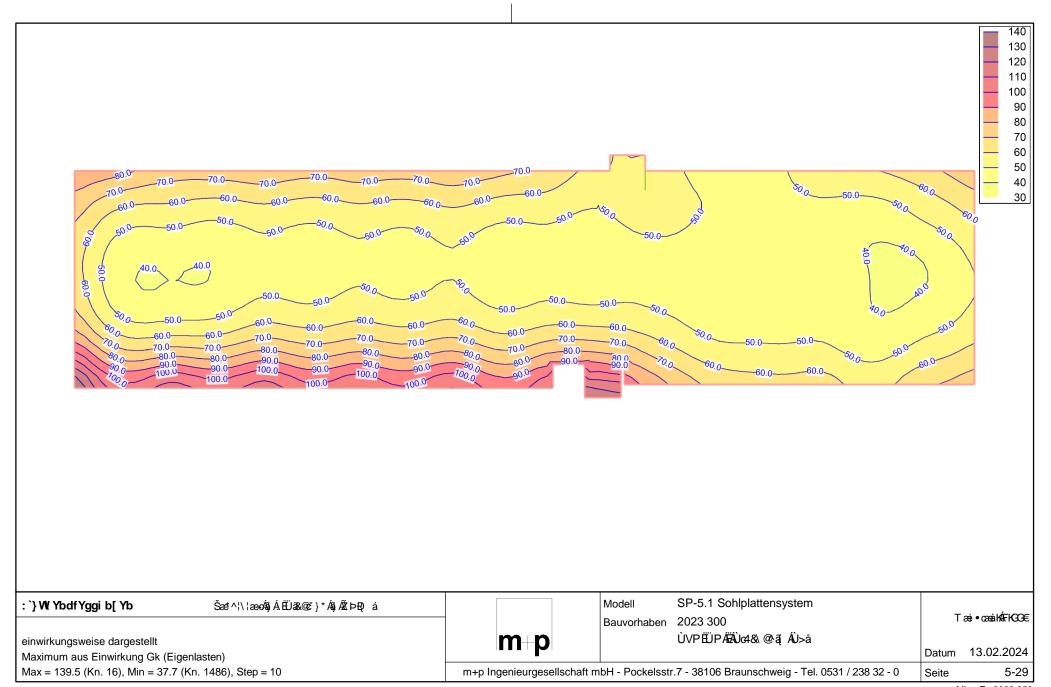

Seite: 5-24

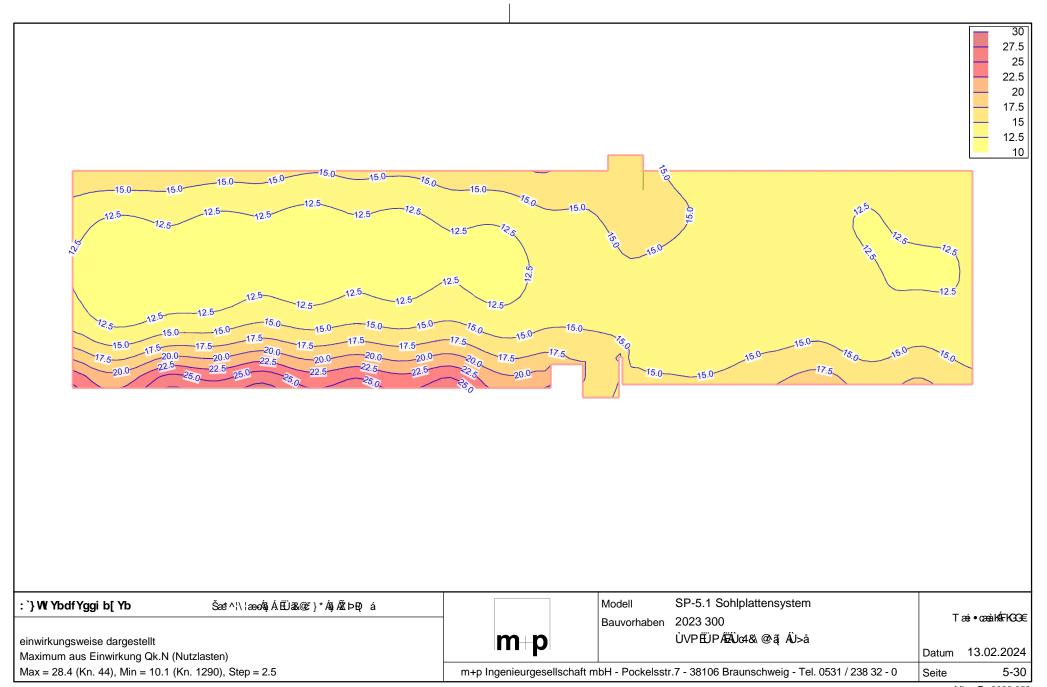

2023 300

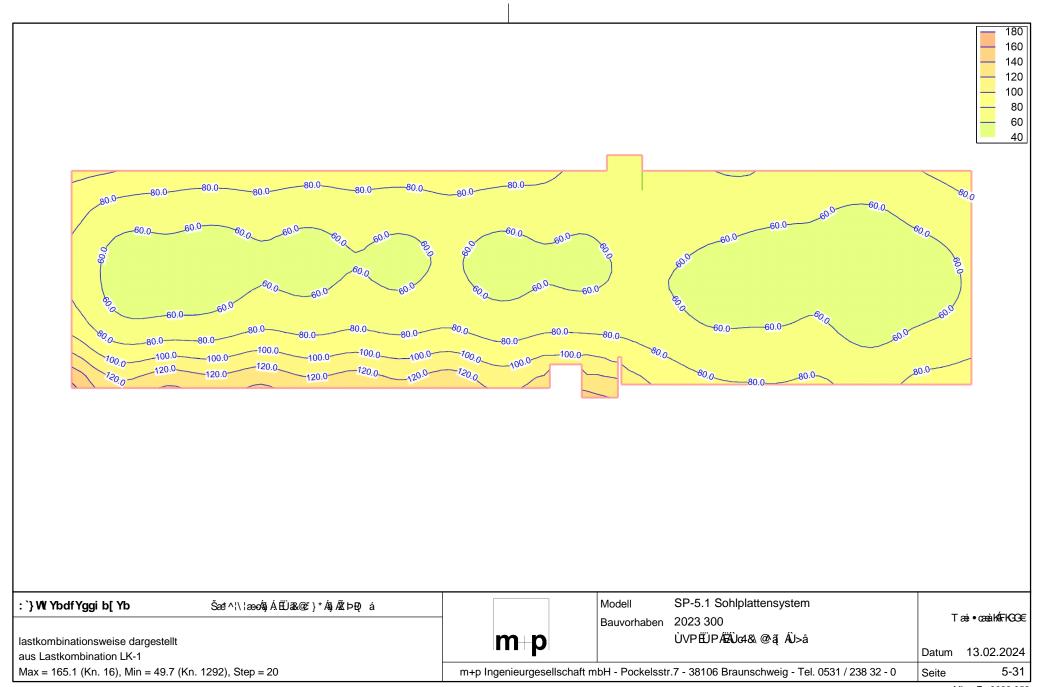
SP-5.1

Nachweise (GZG)

Auftrags-Nr. Position


Seite: 5-28


2023 300


SP-5.1

5 i ZU[Yf_f} ZHY

D-VIBWEL VELSION ZOZZ - COPYHUN ZOZ I - IIID AEC SONWARE GINDA

Seite: 5-32

2023 300

SP-5.1

ÙVPËJPÆÄJC4& @ã ÁJ>å

Y ê|{ ^åê{ { • ^• ¢^{ A}} ¢^{ \} |æ cæàdæ*^} å^} ÁÕ¦>} å~} * • platten

maximale rechnerische Sohlpressung ed MÁFÌ €Á ÞÐ

Bemessungswert der Druckspannung fcd FÌ €Á ÞÐ

z. B. Styrodur 400 CS mit f_{cd} MÁQH€Á ÞÐ ÁÇ, ^ãæt ã DÁÈ,È,È

Rissbreitenbegrenzung

Begrenzung der Rissbreite nach DIN EN 1992-1-1: 2015 mit NA: 2015-12

Anforderungen

Expositionsklasse: XC2

Rechenwert der Rissbreite $w_{max} = 0.30 \text{ mm}.$

Baustoffe, Geometrie

Rechteckquers chnitt: Höhe = 35,0 cm; Breite = 100,0 cm

Betonfestigkeitsklasse: C30/37

Betondeckung c: 3,5 cm

Stabdurchmesser: $d_{s,vorh} = 14,0 \text{ mm}$ (Betonrippenstahl)

Nachweis der Mindestbewehrung

Einwirkung: Zentrischer Zug

Ort der Zwangeinwirkung: Im Bauteil selbst

Wirksame Betonzugfestigkeit: f_{ct,eff} = 0,75 · f_{ctm} = 2,17 N/mm²

$$A_{s,min} \cdot \sigma_s = k_c \cdot k \cdot f_{ct,eff} \cdot A_{ct}$$
 (7.1)

mit
$$k_c = 1,00$$
 $k = 0,77$ $f_{ct,eff} = 2,17 \text{ N/mm}^2$

 $A_{ct} = 3500,0 \text{ cm}^2$ $\sigma_s = s \text{ iehe folgende Berechnung}$

Die Begrenzung der Rissbreite wird durch eine Begrenzung des Stabdurchmessers nachgewiesen.

$$\phi_{s} = \phi_{s}^{*} \cdot \frac{k_{c} \cdot k \cdot h_{cr}}{8 \cdot (h-d)} \cdot \frac{f_{ct,eff}}{2,9} \ge \phi_{s}^{*} \cdot \frac{f_{ct,eff}}{2,9} \tag{7.7DE}$$

$$\Rightarrow \qquad \varphi_{s} = \varphi_{s}^{*} \cdot 0.60 < \varphi_{s}^{*} \cdot 0.75 \qquad \Rightarrow \qquad \varphi_{s}^{*} = 14.0 \text{ mm } / 0.75 = 18.67 \text{ mm}$$

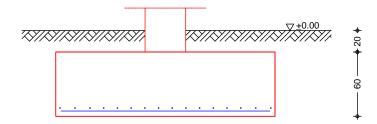
$$\Rightarrow \qquad \sigma_{s} = \sqrt{(3.48 \cdot 10^{6} \cdot w_{k} / d_{s}^{*})} = 236.49 \text{ N/mm}^{2} \text{ nach Tabelle 7.2DE}$$

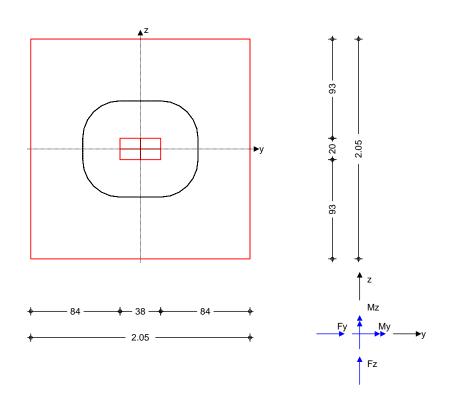
Seite: 5-33

2023 300

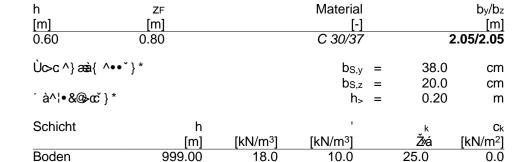
EF-5.1

ÙVPËÜPÄÄÛ¢4&\@4 ÁÛ>å


Pos. EF-5.1


Stb.-Einzelfundament

System


Einzelfundament

M 1:35

Abmessungen Mat./Querschnitt

Baugrund

Belastungen

Auftrags-Nr.	Position		martens+pu			
2023 300	EF-5.1	ÙVPËJPÆÄJ¢	-&\@^a[AU>ă		S	eite: 5-34
<u>Eigengewicht</u>	EW	Kommentar			Ť b D\ ź	G
	Gk.Fund	Eigengewicht f	Fundament		ŽÞ₽() á 25.00	[kN 63.04
	Gk.Fund2	Eigengewicht f			24.00	60.52
	Gk.Boden	Eigengewicht I			0.00	14.86
	: Òâ^}*^¸ &&@	\$Á⇔¦ÁSa]]EÄ}åÁOEa@à^}æ&@	^ãrÁ, ãoÁ^å`:ã∿¦c^¦Á	′&&@^Ás^•ÁÓ^q[]	}•	
Auflagerlasten		^}Áaĕ•Áå^¦ÁÙc>c^				
	EW	F _x	My	M_z	Fy	F
	Gk	[kN]	[kNm]	[kNm]	[kN]	[kN
	Qk.N	300.00 100.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00
	QK.N	100.00	0.00	0.00	0.00	0.00
Kombinationen		sbildung nach DIN E der mai gebenden K				
	Ek Typ	ÁÇEÁRÁÒYD				
GZ GEO-2	8 BS-P	1.35*Gk	+1.35*Gk.	Fund	+1.35*Gk.Bo	den
07.070 5 1	50.5	+1.50*Qk.N	4.0=+01		4.0=+01.5	
GZ STR: Fundament	14 BS-P	1.35*Gk +1.50*Qk.N	+1.35*Gk.	Fund	+1.35*Gk.Bo	den
GZ STR: Durchstanzen	18 BS-P	1.35*Gk	+1.50*Qk.	N		
	Kaina Ausmi	ittigkeit - Nachweis e	ontfâllt			
Bemessung (GZT)		achweise gem. DIN		2011-01		
Biegebemessung		n St>tzenanschnitt	LIV 1002 1 1	2011 01		
<u> Diogosomocoung</u>	doi i latto di	ii diz izoriariooriiik				
	$M_{y,d,mir}$	•		$M_{z,d,min}$	Ek Mz,d,i	
	[kNm]			[kNm]	[kN	
	0.00) - 115.75	14	0.00	- 94.	32 14
erf. Bewehrung	[@ ^ÁÓ^¦>& Bauteilverha	•&&@2ā*}*Ás^¦ÁTājå ltens	^•œ`^¸^@``}*	Á Šicher	stellung eines	duktilen
			Asy			As
			ž&√á			ž&(
	unten		3.79			4.90
	oben		-			
Mindestbewehrung	:	^ `}*Á&^¦ÁÛ`^¦\¦æ@	dae*-ê@a*∖^ãoÁ,	æ&@ÁDIN EN	N 1992-1-1/NA	, NCI Zu
	6.4.5					
	aufzunehme	nde Querkraft		V_{Ed}		. kN
			min beffz		z asz,min	b _{eff}
	unten	[-]	Ð á [m] .74 0.90	[- 0.12		[m 1.08
	oben	-		0.12		1.00
Bewehrungswahl	mit Betonsta	bstahl				
Unten	Verteilung de	er Bewehrung nach	Heft 631, Bild	3.10		
	Ri.	Streifen	erf As	* ^	∖ê@c	vorh A
		[m]	Ž&{ á		s[mm]	Ž&{
	у	0.00 - 0.26	0.27		&:», K	1.01
		0.26 - 0.51	0.38		%»,	0.50
		0.51 - 0.77	0.66 ^V		&`»,	1.01
		0.77 - 1.03	0.72		&`»,	1.01
		1 03 - 1 28	0.72		% ."	1 0

1.03 - 1.28

1.28 - 1.54

1.54 - 1.79

1.79 - 2.05

0.72

0.38

0.27

0.66 \(^{\text{V}}\)

&`»,

&'»,

%», &;», K 1.01

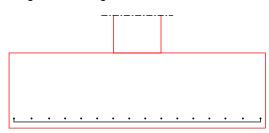
1.01

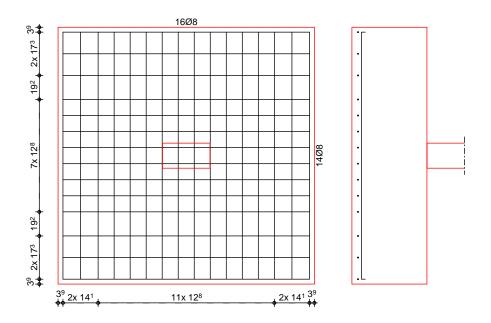
0.50

1.01

Auftrags-Nr.	Position			nieurgesellschaft m			
2023 300	EF-5.1	ÙVPËÜP	ÄÛ04&\(@^ą̃AÛ>å		S	Seite: 5-35
	Ri.	Streifen		erf As		ê @ c	vorh As
		[m]		Ž&{ á	n ds[r		ž &{_á
	Z	0.00 - 0.26		0.39		₹», K	1.01
		0.26 - 0.51		0.52 ^V		₹»,	1.01
		0.51 - 0.77		0.74 \		₹»,	1.01
		0.77 - 1.03		0.88		₹»,	1.01
		1.03 - 1.28		0.88		₹»,	1.01
		1.28 - 1.54		0.74 ∨		&`»,	1.01
		1.54 - 1.79		0.52 ^V		&`»,	1.01
		1.79 - 2.05		0.39	8	‱, K	1.01
Durchstanzbemessung	K: Konstrukt	ewehrung nach DIN EN 19 tive Bewehrung nach DIN I EN 1992-1-1:2011	EN 1992-1-	1, 9.3.1.1(3)			
	{ãod^\^Áo	æaã&@Áp čc@4@			d =	= 53.70	cm
	eff. Platte	nbreite	be	$_{f,v}/b_{ef,z} =$	2.05	/ 2.05	m
	eff. Bewel	hrung	$A_{s,ef,z}$	$A_{s,ef,y} =$	8.04	/ 7.04	- &{
	Šê} * • à^ ָ	^@^`}*•*¦æå		I,z/I,y =	0.08	/ 0.06	
	{ ãud ÞÁŠê} *	'•à^ [^@°}*•*¦æå	l		=	= 0.07	%
	Abstand k	rit. Rundschnitt			a _{crit} =	0.65	d
	Rund-	Ek	u	VEd	0d	Α	VEd,red
	schnitt	[-]	[m]	[kN]	[kN/m²]	[cm ²]	[kN]
	$\overline{U_{crit}}$	18 1.10	3.35	555.0	132.1	8636.6	440.9
<u>V¦æ*-ê@*t∖^ãc</u>	Rund-	а	u	V Ed	V Rd,c	VRd,max	
	schnitt	[cm]	[m]	[N/mm ²]	[N/mm ²]	[N/mm ²]	[-]
Ek 18	Ucrit	34.9	3.35	0.269	1.205	1.687	0.22

Keine Durchstanzbewehrung erforderlich!


EF-5.1


ÙVPËÜPÄÄÛ¢4&\@@ã ÁÛ>å

Seite: 5-36

Bewehrungsgrafik M 1:30

Biegebewehrung

Zusammenfassung

Zusammenfassung der Nachweise

Nachweise (GZT)

Nachweise im Grenzzustand der Tragfêhigkeit

Nachweis

		[-]
Kippen	OK	0.00
Sohldruck	OK	0.98
Gleiten	OK	0.00

Nachweise (GZG)

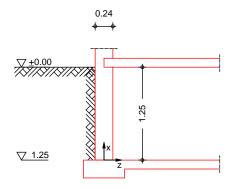
Nachweise im Grenzzust. der Gebrauchstauglichkeit

Nachweis

		[-
1. Kernweite	OK	0.00
2. Kernweite	OK	0.00

in the second se

W-5.1


ÙVPËÜPÄÄÛ¢4&\@ã ÁÛ>å

Seite: 5-37

Pos. W-5.1

Stb.-Wand Aufzugsunterfahrt WU

System M 1:50 zweiseitig gehaltene Wand

Abmessungen
Mat./Querschnitt

Material	Ι _w	h	С
	[m]	[m]	[kN/m ³]
C 30/37	1 25	0.24	25.00

Õ^|ê} å^

ebenes Gelênde Œa•œa; åÁUSÁÕ^|ê} å^ËYæ; å\[]~

$$h_e = 0.00$$

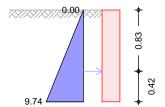
m

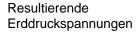
Boden

h		1		Ca	а	0
[m]		ŽÞÐ()á	Žá	ŽÞÐ()á	Ž∕á	Ž∕á
999.00	20.0	10.0	30.0	_	20.0	0.0

Erddruck

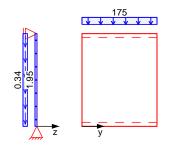
Gleichlasten erdseitig


Nr.	EW	q
		ŽÞÐ á
1	Gk	5.00
2	Qk.N	5.00


EW Gk.E

^ | @4 @^ | Áæ cãp^ | ÁÔ | åå | * &\ Áæ • ÁÓ [å^ } ^ â* ^ } * ^ , && @: Anteil aktiver Erddruck

M 1:50


Auftrags-Nr.	Position	m-p	martens+puller Ingenieurgesellschaft mbH			
2023 300	W-5.1	ÙVPËJPÆA	Jc4&\@`āį ÁÙ>å		Se	ite: 5-38
EW Gk	^¦@₄@^¦Ás Lastordina	xakicãç^¦ÁÓ¦åå¦ĭ&\Ásĕ∙/ ate	ÁÕ ^ã&@æ•oÁ\¦å•^ããã	p =	5.00	\ÞÐ)
M 1:50	1.95	◆ 0.63 ◆ 0.63				
	Z [m]		K' _{aph}			e' _{aph}
	[m] 0.00 1.25		[-] 0.390 0.390			ŽÞÐ á 1.95 1.95
	^¦@4@^Áad	ŧcãç^ÁÒ¦åå¦`&∖∖¦æc		E'ah = E'av = Z _S =	2.44 0.43 0.63	kN/m kN/m m
EW Qk.N	^¦@⊈@^¦Ás Lastordina	akicãç∧¦ÁÒ¦åå¦`&\Ásĕ∙/ ate	4Õ ^ã& @ae∙oA\¦å•^ãαã	p =	5.00	\Þ₽)
M 1:50	1.95	→ 0.63 → 0.63 →				
	z [m]		K' _{aph} [-]			e' _{aph} ŽÞÐ á
	0.00 1.25		0.390 0.390			1.95 1.95
	^¦@4@^Á±	ıcãç^ÁÒ¦åå¦`&∖∖¦æc		E'ah = E'av = Z _S =	2.44 0.43 0.63	kN/m kN/m m
Belastungen	Belastung	en auf das System				
<u>Grafik</u>	Belastung	sgrafiken (einwirkun	gsbezogen)			
Einwirkungen	Gk	G	Sk.E			
		450		7		

W-5.1

ÙVPËÜPÄÄÛ¢4&\@`ã ÁÛ>å

Seite: 5-39

Qk.N

St	<u>reckenlasteı</u>	1
in	v-Richtung	

Einw. *Gk* Einw. *Qk.N* Gleichlasten

Komm.	а	S	Qu	q_{o}	е
	[m]	[m]	[kN/m]	[kN/m]	[cm]
				450.00	0.0
				175.00	0.0

Ø|ê&@} |æ ৫\} in x-Richtung

Einw. Gk

Einw. Gk.E Einw. Qk.N

(a)

Gleichflêchenlasten
Olcionilicononiaston

Komm.	а	S	Qu	qo
	[m]	[m]	ŽÞÐa	ŽÞÐ, á
(a) Eigengew	0.00	1.25		6.00
Erddruck	0.00	1.25		0.34
Erddruck	0.00	1.25	1.72	0.00
Frddruck	0.00	1.25		0.34

aus Eigengewicht

25.00*0.24 =

6.00 \Þ₽)

Ø|ê&@} |æ ৫\} in z-Richtung

Einw. Gk

Einw. *Gk.E* Einw. *Qk.N* Gleichflêchenlasten

NOITIIII.	а	5	Y u	4 0
	[m]	[m]	ŽÞÐa	ŽÞÐa
Erddruck	0.00	1.25		1.95
Erddruck	0.00	1.25	9.74	0.00
Erddruck	0.00	1.25		1.95

Ô@###ÄU&@\aac* | 4i ^}

<u>Tabelle</u>

Ù&@; ãc* | 4i ^} ÁQ\$^ÁÒã; ã\`}*D

X	$N_{x,k}$	$M_{y,k}$	$V_{z,k}$
[m]	[kN/m]	[kNm/m]	[kN/m]
1.25	-450.00 *	0.00	-1.22 *
0.63	-453.96	0.38 *	0.00
0.00	-457.93 *	0.00	1.22 *
1.25	0.00	0.00	-2.03 *
0.53	-0.36	0.98 *	0.00
0.00	-1.07 *	0.00	4.06 *
1.25	-175.00 *	0.00	-1.22 *
0.63	-175.21	0.38 *	0.00
0.00	-175.43 *	0.00	1.22 *
	[m] 1.25 0.63 0.00 1.25 0.53 0.00 1.25 0.63	[m] [kN/m] 1.25 -450.00 * 0.63 -453.96 0.00 -457.93 * 1.25 0.00 0.53 -0.36 0.00 -1.07 * 1.25 -175.00 * 0.63 -175.21	[m] [kN/m] [kNm/m] 1.25 -450.00 * 0.00 0.63 -453.96 0.38 * 0.00 -457.93 * 0.00 1.25 0.00 0.00 0.53 -0.36 0.98 * 0.00 -1.07 * 0.00 1.25 -175.00 * 0.00 0.63 -175.21 0.38 *

Kombinationen

•œ} åð Ð;[¦>à^¦*È ~æð 6e} åð Kombinationsbildung nach DIN EN 1990 Darstellung der mai gebenden Kombinationen

ΕK	(^ ^EVV)		
2	1.35*Gk	+1.35*Gk.E	+1.50*Qk.N
10	1.00*Gk	+1.00*Gk.E	+0.30*Qk.N

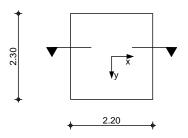
Auftrags-Nr.	Position	m		ns+puller gesellschaft mbH			
2023 300	W-5.1	ÙVPËÜ	PÁÄÜ04&\@ã	ÁÙ>å		S	eite: 5-40
Bemessung (GZT)	⇒¦Áå^}ÁÕ¦^}	:: `•œ) åÁå^¦	ÁV¦æ*i~ê@#t\^8	áÁ, æ&@ÁÖQÞÁÖÞÁFJ.	JŒËË K	ŒFFËŒF	=
<u>Ùcæàđããêc</u> Ek 2	Knicklastfakt Schlankheit S} &\ ê}*^}			e a	= = = =	273.98 17.98 1.00 0.31	- - - cm
Schnittgr./Verform. lin. Th. II.O.	x [m] 1.25 0.58 0.00	n _{Ed} [kN/m] 870.00 876.53 882.80	m _{Ed} [kNm/m] 0.00 2.40 0.00	VEd [kN/m] -6.23 -0.09 8.97	0. 0.	w m] 00 00 00	[rad] 0.00003 0.00000 -0.00003
Schnittgr./Verform. nichtlin. Th. II.O.	x [m] 1.25 0.58 0.00	n _{Ed} [kN/m] 870.00 876.53 882.80	m _{Ed} [kNm/m] 0.00 2.40 0.00	VEd [kN/m] -6.24 -0.09 8.98	0. 0.	w m] 00 00 00	[rad] 0.00003 0.00000 -0.00003
erf. Bewehrung	infolge Knick vertikal je Se horizontal je		chweis nach	$\begin{array}{c} 5.8 \\ \text{erf } a_{s,v} \\ \text{erf } a_{s,h} \end{array}$		0.00 0.00	&(E)
	infolge Rissk horizontal je	oreitenbegren: Seite	zung nach 7.3	3 erf a _{s,h}	=	12.49	&(E)
konstr. Mindestbew.	nach 9.6.2(1 vertikal je Se horizontal je)	min a _{s,v} min a _{s,h}		1.80 0.36	8(E) 8(E)
Bewehrungswahl							
Bewehrung je Seite	Art			*^, ê@c	a _{s,} [cm²/m]	a _{s,h} [cm²/m]
	Ùœà^Æø^¦æãa Ùœà^Æ@¦ã[æ‡ }cæ‡		%\$#%) `Wa %(#%\$`Wa	5.24	4 -	- 15.39
Querbewehrung	Þæ&@ÜOΦÁÒI beider Wand z.B. durch S	dseiten an { 🗿	HÈHÈQQĐÁA, å ÁÁ, å^•ơ}•ÁAÂ)d	a^Áaĕi^}Áa^*^}å^ ^ ^}Áa^A(Ávæ)å~	^} ÁÓ^¸ / ∤ê&@^Á	`@`}*∙ `Áverbin	∙œà^Á iden,
Nachweise (GZG) Rissbreitenbegrenz.		N 1992-1-1, 7. ⊳¦Áåã^ÁÜã∙à¦^∂		W _{max}	=	0.20	mm
vertikale Bewehrung Ek 10	max. Momer zug. Normal wirksame Be Zeitpunkt La	etonzugfestigk stbeanspruch achweis nach	(eit	H* &@ } * MEd,perm NEd,perm f _{ct,eff} entfallen, da im ge	=	1.46 -507.2 2.90 Querso	kN/m ÞÐ(
horizont. Bewehrung Mindestbewehrung	Verformungs ≫¦Áåã ÁÓ^* ¦∕ wirksame Be	š • Ás } ^¦^{ ÁZ, sbehinderung ^}: ` } * Ás^¦ÁJá etonzugfestigk vangsbeanspr	∙à¦^ãc^Á;æ&@ eit	ÓCEa-∤a∿i^}Ána^¦ÁnP^å DÁIÈ—HÈG f _{ct,eff}		.•¸ ê¦{ /	^Á}åÁ Þ₽({

Auftrags-Nr.	Position			Ingenieurge	sellschaft mbl	l		
2023 300	W-5.1		ÙVPËÜPÆ	ÄÛ04&\@^a[/	ÁÚ>å		Se	ite: 5-41
GI.(7.1)	k _c [-] 1.00	k [-] 0.80	f _{ct,eff} [N/mm ²] 2.90	f _{ct,0} [N/mm ²] 3.00	h _t [cm] 12.0	A _{ct} [cm ²] 2400.0	s [N/mm ²] 222.97	d _s * [mm] 14.00
	Mindestbe	ewehru	ng			a _{s,min} =	24.97	&(D)
Zusammenfassung	Zusamme	enfassu	ng der Nach	weise				
Nachweise (GZT)	Nachweis	e im G	renzzustand	der Tragfêl	nigkeit			
	Nachweis							[-]
	Bemessu Bewehrur	•	,				OK OK	
Nachweise (GZG)	Nachweis	e im G	renzzust. de	r Gebrauch	stauglich	keit		
	Nachweis							
	Rissbreite	;					OK	[-]

2023 300

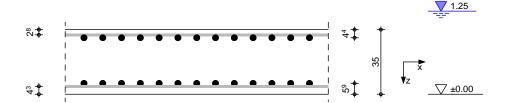
Pos. SP-5.2

SP-5.2


Rissbreitennachweis Sohle Aufzugsunterfahrt WU

System

Bodenplatte


M 1:100

Draufsicht

Querschnitt

M 1:20

Abmessungen Mat./Querschnitt

Material	L	В	h
	[m]	[m]	[m]
C 30/37, B 500SA	2.20	2.30	0.35

Belastungen Ø|ê&@\} |æ c^\}

Kommentar

Seite: 5-42

Einw.

Eigengewicht 0.35 * 25.00

Kombinationen

Kombinationsbildung nach DIN EN 1990 Darstellung der mai gebenden Kombinationen

(* *EW) 1.00*Gk

selten

Mat./Querschnitt

Betondeckung

Seite	Expositionsklasse	C _{min}	Cdev
		[mm]	[mm]
oben	XC1	10	10
unten	XC2,WF	20	15

Position 2023 300 SP-5.2

ÙVPËÜPĀÄÛc4&\@ã ÁÛ>å

Seite: 5-43

Nachweise (GZG) Randbedingung	Nachweise na DIN EN 1992			2/17),				
Nutzungsklasse	Nutzungsklas	Nutzungsklasse A						
Beanspruchungs-	å¦>&\^} å^∙ <i>Æ</i>)!`}å æ•∙	۸!					
klasse	Beanspruchu		•				1	
zul. Rissweite	nach WU-Ric	htlinie (12/	17), Tab.2					
	P4@ÁYæ•^		,.			h _G =	1.25	m
	P4@^ÂÛ[@^					h _s =	0.00	m
	Ö¦`&\@4@^					h _w =		m
	Ö¦`&*^-ê ^					$h_w/h_b =$		-
	zul. Rissweite	9				Wzul =	0.20	mm
Trennrisse (Zwang)	nach DIN EN	1992-1-1,	7.3.2				Hydratation	
	reiner Zug					k _c =	1.00	-
	innerer Zwan	g				k =		-
	•] êc^¦ÁZ¸ æ)* Zugspannunç					f _{ct,eff} =	3.00	N/mm ²
	Betonspannu					c =	3.00	N/mm ²
Mindestbewehrung	nach DIN EN	1992-1-1.	7.3.2. Gl.(7	7.1)				
g	Lage	d _s			s	Act	k_{zt}	a s,min
	9	[mm			nm²]	[m ²]		[cm ² /m]
	x-oben	16.00	•		2.68	0.17	1.00	17.37
	y-oben	16.00			2.13	0.17	1.00	19.06
	x-unten	16.00	15.4	7 212	2.13	0.17	1.00	19.06
	y-unten	16.00	15.4	7 212	2.13	0.17	1.00	19.06
	nach DIN EN	1992-1-1/	NA, NCI Zu	ı 7.3.2, C	GI.(NA.7	.5.1)		
	Lage	GI.	h/d _i	h _{eff}	d _s *	•	$_{s}$ k_{zt}	$a_{s,min}$
				[m]	[mm]	[N/mm	²]	[cm ² /m]
	x-oben	а	12.50	0.09	15.47	212.1	3 1.00	12.87
	y-oben	а	7.95	0.12	15.47	212.1		17.39
	x-unten	а	8.14	0.12	15.47	212.1		17.11
	y-unten	а	5.93	0.15	15.47	212.1	3 1.00	21.64
Ö`∖daãaêc	nach DIN EN	1992-1-1/	NA NDP 7	'u 9 2 1 ′	1(1)			
	Lage	1002 1 1/1	M _{cr}	.u 3.2.1. ZII	• (•)	lı	f_{ctm}	a s,min
	Lago	Г	kNm]	[cm]			[N/mm ²]	[cm ² /m]
	x-oben		59.21	28.98		036	2.90	4.09

Lage	Mcr	ZII	lı	f_{ctm}	a s,min
	[kNm]	[cm]	[m ⁴]	[N/mm ²]	[cm ² /m]
x-oben	59.21	28.98	0.0036	2.90	4.09
y-oben	59.21	27.54	0.0036	2.90	4.30
x-unten	59.21	27.63	0.0036	2.90	4.29
y-unten	59.21	26.19	0.0036	2.90	4.52

Öā^Áş[¦@a)å^}^ÁTā,å^•œà^¸^@*}*ÁÇÖ*\œããaê dÓ ás was reichend.

Bewehrungswahl Grundbewehrung

Lage	Тур	d_s	S	a	
		[mm]	[cm]	[cm ² /m]	
x-oben	Ùœ̂à^	16	10.0	20.11	
y-oben	Ùœ̂à^	16	10.0	20.11	
x-unten	Ùœ̂à^	16	10.0	20.11	
y-unten	Ùœ̂à^	16	10.0	20.11	

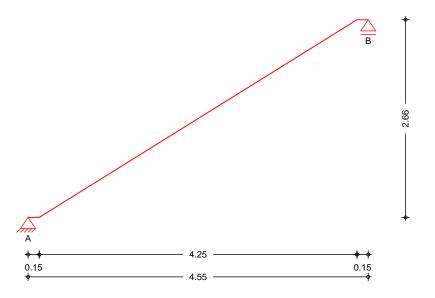
Auitrags-ivr.	Position	Ingenieurgeseilschaft mbh	
2023 300	SP-5.2	ÙVPËÜPÆÄÛ¢I&\@ą̃AÛ>å	Seite: 5-44

	Kommentar	Lage	a _{s,erf}	[cm ²		
	Hydratation	x-oben	12.87).11	0.64
	Hydratation	y-oben	17.39	-).11	0.87
	Hydratation	x-unten	17.11	20).11	0.85
	Hydratation	y-unten	19.06	20).11	0.95
Zusammenfassung	Zusammenfassung der Nachwe	eise				
Nachweise (GZG)	Nachweise im Grenzzust. der G	ebrauchstau	glichkeit			
	Nachweis			Lage		
						[-]
Mindestabmessungen	Plattendicke				OK	0.71
Trennrisse	Mindestbewehrung-Zugzwang		X	c-oben	OK	0.64
	Mindestbewehrung-Zugzwang		X-	-unten	OK	0.85
	Mindestbewehrung-Zugzwang		У	/-oben	OK	0.87
	Mindestbewehrung-Zugzwang		y-	-unten	OK	0.95
Ö`∖dããêc	Tā) å^•cà^¸^@°} *ËÖ`\cajaãêc		X	c-oben	OK	0.20
	Tājå^∙oà^¸^@°}*ËÖ`∖oájãaêc		X-	-unten	OK	0.21
	Tajå^∙oà^〔^@°∫*ËÖ`∖oájãuêc		У	-oben	OK	0.21
	Tajå^∙cà^ໍ_^@°`∫*ËÖ`∖cajãuêc		•	-unten	OK	0.22
			,			

Auftrags-Nr. Position

2023 300 ÚVP ËÜP ĀĀŪd& @ ą̃ AŪ>å Seite: 6-1

6 - Allgemeine Positionen


2023 300 TR-6.1 ÙVPËÜPÆÄJØ4&\ @ ji ÂJ

Seite: 6-2

Pos. TR-6.1

Gerader Stb.-Treppenlauf

System M 1:50 Gerader Treppenlauf

Abmessungen Mat./Querschnitt

Feld	Kommentar	1	h	Mat.
		[m]	[cm]	
Pu.	Podest unten	0.15	26.0	C 30/37
Tr.	Treppenlauf	4.25		
Po.	Podest oben	0.15		

Expositionsklassen:

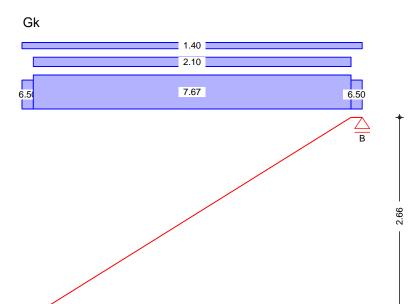
XC4, XF1, WF

Treppe

Neigung Treppenlauf	
Steigung	
Auftritt	

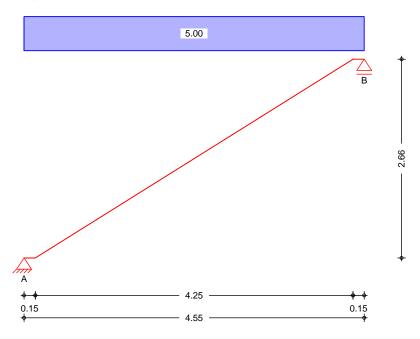
= 32.01 » = 17.50 cm = 28.00 cm

s


а

Auftrags-Nr. Position ÙVPËÜPĀÄÛc4&\@ã ÁÛ>å 2023 300 TR-6.1 Seite: 6-3

Belastungen <u>Grafik</u> Einwirkungen


Belastungen auf das System

4.55 -

Einwirkungen

Qk.N

<u>Eigengewicht</u>	Gleichlast Feld	ten	Kommentar	qz
				[kN/m²]
Einw. <i>Gk</i>	Pu.	Eigen. Pu.	25.00 * 0.26 =	6.50
	Tr.	Eigen. Tr.	25.00 * 0.26 / 0.848 =	7.67
	Tr.	Eigen. St.	0.50 * 24.00 * 0.17 =	2.10

Auftrags-Nr.	Position	martens+puller
2023 300	TR-6.1	ÙVPËÜPÆÄÙd&\@ã, ÁÙ>å

2023 300	TR-6.1	ÙVPËÜ	■ P <i>Ä</i> ÄÛ¢4&\	@aį̃ ÁÚ>å			Seite: 6-4
	Feld					Kommentar	qz [kN/m²]
	Po.	Eigen. Po).			25.00 * 0.26 =	6.50
<u>Ø</u> ê&@} æ•♂}	Gleichflêch Feld Ko	enlasten mm.	a [m]	[n	S	q⊫ ŽÞÐ(á	q _{re} ŽÞÐ, á
Einw. <i>Gk</i>	Pu.		0.00	4.5		дрц а	1.40
Einw. Qk.N	Pu.		0.00	4.5			5.00
Mat./Querschnitt	Material- u	nd Querschnitts	swerte na	ach DIN EN 1	1992-1-1	1:2011-01	
<u>Material</u>	Material			[N/r	f _{yk} mm²]	f _{ck} [N/mm²]	E [N/mm²]
	C 30/37 B 500SA			50	0.00	30.00	33000 200000
Expositionsklassen Abs. 4.2, 4.4	Kante umlaufend		XC4 XF1 WF	Kommentar wechselnd	nass un ∌•^¦•êα ⁄ / ê}*^¦^	zãtˇ}*Α∱@}^Á	
Bewehrungsanordnung		å^ ÊŐ ^{} å^&\	`}*				
	Feld	Cmin,o	Cdev,o	d'o	Cmin,u		d'u
	alle	[mm] 25	[mm] 15	[mm] 40	[mm] 25		[mm] 45
Grafik M 1:20	Austritt	28		Antritt	28	40	
33	2 ⁵		175		*	6# 25 ++	13 175 + 23 +

Kombinationen

Kombinationsbildung nach DIN EN 1990 Darstellung der mai gebenden Kombinationen

•œ̂} åð t͡ð̞[¦>à^¦* È

1.35*Gk

+1.50*Qk.N

+ 16 +

Ó^{ # &@ ac* | 4i ^}

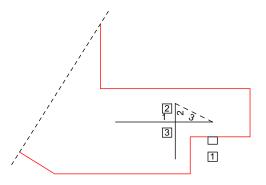
Ó^{ ^••`} *••&@ ãct'4i ^}

Auftrags-Nr.	Position		M	- O Marti	eris+pu irgesellschaft	mbH		
2023 300	TR-6.1	ÙVPËÜPĀĀĴŒ4&\@Ā,ĀĴ>å					Seite: 6-5	
<u>Tabelle</u>	Schnittg	r4i en (je Ko	ombina	ition)				
	Feld	X []			My,			V _{z,d}
Komb. 1	Pu.	[m]			[kNm/m] 0.0			[kN/m] 33.63 *
NOMD. 1	ru.	0.00 0.15			4.9			32.03 *
	Tr.	0.00			4.9			32.03 *
		2.13			38.9			0.00
		4.25			4.9			-32.03 *
	Po.	0.00			4.9			-32.03 *
		0.15			0.0			-33.63 *
Komb. 2	Pu.	0.00			0.0			50.69 *
	т,	0.15			7.4 7.4			47.97 * 47.97 *
	Tr.	0.00 2.13			58.3			0.00
		4.25			7.4			-47.97 *
	Po.	0.00			7.4			-47.97 *
		0.15			0.0			-50.69 *
Bemessung (GZT)	nach DII	N EN 1992-	1-1:201	11-01				
	΄ Λ√ Λ••	`}*Á⇔¦ÁÓã∩*	ΔαΛάΛ	•1!~ <i>ጲፙ</i> ነ*				
Biegung	Feld	x	Ek	My,d		Z	a s,o	a s,o,erf
		[ma]		[] ch loo /oo]		[]	a s,u	a s,u,erf
	Pu.	[m] 0.15	2	[kNm/m] 7.40		[cm] 1.28	[cm ² /m]	[cm ² /m]
	ru.	0.15	2	7.40	2	1.20	0.76	3.38 ^M
	Tr.	2.13	2	58.36	2	0.63	-	-
			_	00.00	_	0.00	6.20	6.20
	Po.	0.00	2	7.40	2	1.28	- 0.70	- - 20 M
	M: Tậå^∙	cà^, ^@~}*ÁÖ~\	cajãuêoÁ,æ&≪	ØÄÖOD•ÁÖÞÁFJJŒË	ËE BODEÃO ÖL	ÚÁZ*ÁJÈÐÈÈÇF	0.76 D	3.38 ^M
	Ó^{ ^••	`}*Á⊳¦ÁTāja	å^∙cà^,	,^@°}*Áδα^	¦ Á Û ^¦à	^, ^@`}*	•	
Querbewehrung	Feld		-	b/h	as,I,e		a s,q,vorh,o	a s,q,min,o
					as,l,e		a s,q,vorh,u	a s,q,min,u
					[cm ² /	/m]	[cm ² /m]	[cm ² /m]
	Pu.			3.85	0	-	0.54	- 0.00
	Tr.			2.05	3.	38	2.51	0.68
	11.			3.85	6	20	2.51	1.24
	Po.			3.85	0.	-	2.01	-
				0.00	3.	38	2.51	0.68
	Ó^{ ^••	`}*Á⇒¦ÁÛ`^	.¦∖¦ææà	^æ}•]¦*&@	} *			
Schub	Feld	x	Ek	$V_{z,d}$		$V_{rd,max}$	$V_{rd,c}$	asw,erf
		[m]		[kN/m]	Žá	[kN/m]	[kN/m]] [cm ² /m ²]
	Pu.	0.00	2	50.69	18.4	554.63	113.49	
	Tr.	0.15	2	46.50	18.4	554.63		
	Po.	4.55	2	-50.69	18.4	554.63	113.49	-
Bewehrungswahl	Biege- u	nd Querkra	ftbewe	hrung				
	untere B	Bewehrung						
	<i>Á</i> WA <i>Á</i> F€	ÁÐÁF€ÈÉÁ&{				a s,I	l,u =	7.85 &{ E}
		İAÐÓ€ÈÅ{					,u =	2.51 & Đ

Position

2023 300

TR-6.1


ÙVPËÜPÄÄÛ¢4&\@@ã ÁÛ>å

Seite: 6-6

Nachweise (GZT)

<u>Ausklinkungen</u>

Antritt M 1:10

Abmessungen

hĸ	lk	hs	ls	b x,PI	a k
[cm]	[cm]	[cm]	[cm]	[cm]	[cm]
13.0	16.0	23.0	40.0	2.5	6.0

Belastungen

Ek	h	f e,d
	[kN/m]	[kN/m]
2	10.14	50.69

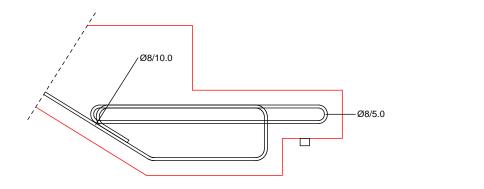
20% der Vertikallast werden als Horizontallast angesetzt.

Ó^{ ^••`}*Æ`*•œâ^

Stab	EK	Fi	$A_{s,erf}$	gew.	$A_{s,vorh}$
		[kN/m]	[cm ² /m]	[-]	[cm ² /m]
1	2	196.4	4.52	<Ì∯È€	10.05
2	2	50.7	1.17	<Ì# F €È€	5.03

Verankerung

Stab	Kn.	Art	D_{min}	i	Verbund	l bd	lbd,vorh
			[mm]	[-]		[cm]	[cm]
1	1	Haken	32	0.7	gut	6.0	6.4
1	3	gerade	-	1.0	gut	12.9	12.9


Knotenspannungen

Kn.	Bez.	Kraft	a_i	t _i		rd	
		[kN]	[cm]	[cm]	[N/mm ²]	[N/mm ²]	[-]
1	F ₁	50.7	2.5	100.0	2.03	14.45	0.14
2	F ₂	50.7	8.8	100.0	0.58	12.75	0.05

Ö¦ « & : [} ^ } @ 4 @ ^

a_0	d_k		a _{0,grenz}	
[cm]	[cm]	[-]	[cm]	[-]
1.5	3.8	0.45	1.7	0.88

M 1:10

Auftrags-Nr. Position ÙVPËÜPÆÄÛ¢4&\@A ÁÛ>å 2023 300 TR-6.1 Seite: 6-7 Mindestabmessungen, Abs. Ed/fcd **a**1 **a**2 a1,min **a**2,min 10.9.5.2 [mm] [mm] [mm] [mm] 0.12 1.00 50 0.10 25 25 a3,min **a**3 **a**2 **a**3 а **a**erf [mm] [mm] [mm] [mm] [mm] [mm] 15 88 0.17 10 55 163 0.34 Randabstand Bewehrung, Ci ai \mathbf{r}_{i} di Bild 10.5 [mm] [mm] [mm] [mm] [mm] 0.75 40 16 66 88 Knotenverankerung, Bild 10.5 a₁+ a+r $I_{b,vorh}$ [mm] [mm] 73 51 0.70 Austritt M 1:10 12 3 1 Abmessungen hĸ lk hs ls bx.PI aĸ [cm] [cm] [cm] [cm] [cm] [cm] 13.0 16.0 33.0 40.0 2.5 6.0 Ek Belastungen h fe,d [kN/m][kN/m]2 10.14 50.69 20% der Vertikallast werden als Horizontallast angesetzt. Ó^{ ^••`}*Æ`*•œâ^ $A_{s,\text{erf}} \\$ gew. Stab ΕK Fi $A_{s,vorh} \\$ [kN/m][cm²/m] [cm²/m] < Ì Ð È€ 1 2 196.4 4.52 10.05 2 2 50.7 1.17 <Ì#F€È€ 5.03 Verbund Verankerung Stab Kn. Art $\mathsf{D}_{\mathsf{min}}$ lbd Ibd, vorh [-] 0.7 [mm] [cm] [cm] 1 Haken 32 gut 6.0 6.4 1 3 gerade 1.0 gut 12.9 12.9 Knotenspannungen Kn. Kraft Bez. a_i ti [N/mm²] [kN] [cm] [cm] [N/mm²][-] 0.14 $\overline{1}$ F₁ 2.03 14.45 50.7 2.5 100.0 F_2 2 8.8 0.58 50.7 100.0 12.75 0.05

Ö¦ « & : [} ^ } @ 4 @ ^

 a_0

[cm]

1.5

 d_k

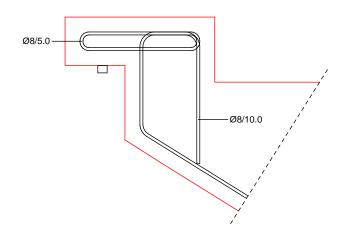
[cm]

3.8

a_{0,grenz}

0.45

[cm]


1.7

0.88

Auftrags-Nr. Position ÙVPËÜPÆÄÛ¢4&\@^ãį ÁÛ>å 2023 300 TR-6.1

M 1:10

Mindestabmessungen, Abs. 10.9.5.2

Ed/ † cd	a1,min	a 1		a 2,min	a 2	
	[mm]	[mm]		[mm]	[mm]	
0.12	25	25	1.00	5	50	0.10

a 3,min	a 3		a 2	a 3	a erf	а	
[mm]	[mm]		[mm]	[mm]	[mm]	[mm]	
15	88	0.17	10	2	55	163	0.34

Randabstand Bewehrung, Bild 10.5

	di	i	ri	\mathbf{a}_{i}	Ci
	[mm]	[mm]	[mm]	[mm]	[mm]
0.75	88	66	16	10	40

Knotenverankerung, Bild 10.5

lb,vorh	a ₁ + a+r	
[mm]	[mm]	
73	51	0.70

Nachweise (GZG)

im Grenzzustand der Gebrauchstauglichkeit nach DIN EN 1992-1-1:2011-01

Biegeschlankheit

Begrenzung der Biegeschlankheit

Referenzbewehrungsgrad

$$_{0} = 0.55$$
 %

Seite: 6-8

Ö^\ÁX^*\4i ^*\ * • ~a\ (\ \ACC_s, vorh/A_s, erf) in Gl. 7.17 wurde auf 1,1 begrenzt.

Feld	vorh.l/d		'	K	zul.l/d	
	[-]	[%]	[%]	[-]	[-]	[-]
Tr.	21.16	0.29	0.00	1.00	35.00	0.60

Einw. Gk

Einw. Qk.N

Char. Auflagerkr.

Aufl.	$F_{z,k}$
	[kN/m]
A	24.91
В	24.91
A	11.38
В	11.38 11.38

Ó^{ I ## 4æ ^!\ | ê-e^

•œ} åð fg[>à^ * È	Aufl.	F _{z,d,min} [kN/m]	EK	F _{z,d,max} [kN/m]	EK
	Ā	24.91	3	50.69	2
	В	24.91	3	50.69	2

Auftrags-Nr.	Position	mar Ingenie	tens+puller eurgesellschaft mbH			
2023 300	TR-6.1	ÙVPËÜPÆÄÙ¢1&\@	ą̃ ÁÚ>å			Seite: 6-9
Zusammenfassung	Zusammenfas	sung der Nachweise				
Nachweise (GZT)	Nachweise im	Grenzzustand der Trag	gfêhigkeit			
	Nachweis					
	Antritt Austritt				OK OK	[-]
Betonstahl	Ó^, ^@`}*•,	æ@Á } c^} Áê} * ∙ rahl unten quer			OK OK	
Nachweise (GZG)	Nachweise im	Grenzzust. der Gebrau	uchstauglichkeit			
	Nachweis			Feld		[-]
	Biegeschlankh	neit		Tr.	OK	0.60
Bewehrungswahl	ˇ } c^\^ÁŠê} *• à [à^\^ÁŠê} *• à^ obere und unte	^¸ ^@ˇ } * Á ^¸ ^@ˇ } * ere Querbewehrung	<Ì⊞F€ <Ì⊞FÍ <Ì⊞F€			

Version: 1.14.0

7 gzg 1,00 1,00

1,00 1,00

0,00

1,00

Auftrags-Nr. Position 2023 300 IK-6.1 Seite: 6-10

Pos. IK-6.1 **Isokorbanschluss Balkon**

Bemessungssoftware: Schöck Isokorb® Typ Beton-Beton

Produkt Schöck Isokorb® Isokorb®-Datenbank Deutschland - EC2

Hauptnorm EC2 - NAD **Datenbank-Version** 20.00

Vorschrift 1 bauaufsichtliche Zulassung

Vorschrift 2 Typenprüfung Bemerkung -/-

HINWEISE

- Für den Schöck Isokorb® bestehen die allgemeinen bauaufsichtlichen Zulassungen des DIBt, sowie die europäische technische Bewertung gemäß EAD 050001-01-0301.
- Die Ergebnisse des Programms beziehen sich nur auf die Berechnung von Schöck Isokorb®. Die Gesamtsituation muss vom Anwender auf Plausibilität geprüft werden!
- Bitte entnehmen Sie die Randbedingungen für das Bauteil sowie weitere Einbauhinweise der aktuellen technischen Information Schöck Isokorb®.
- Der Formschluss zwischen den Drucklagern und dem Beton muss gewährleistet werden, daher sind Betonierfugen unterhalb der Drucklager anzuordnen. Bei Druckfugen zwischen Fertigteilen und dem Schöck Isokorb® muss ein Ortbeton- bzw. Vergussstreifen von ≥ 100 mm Breite ausgeführt werden.
- Mit FEM berechnete max. Durchbiegung der Balkonplatte (inkl. Isokorb) im GZG

allgemeine Daten zum Produkt		char. Werte der Einwirkungen			
Betondeckung	CV = 35 mm	Eigengewicht	$g1,k = 5,00 \text{ kN/m}^2$	ў с zт 1,35	
Dämmschichtdicke	D = 120 mm	Putz und Belag	$g2,k = 3,00 \text{ kN/m}^2$	1,35	
lsokorb®-Höhe	H = 200 mm	Verkehrslast	$q,k = 4,00 \text{ kN/m}^2$	1,50	
Isokorb® vorgesetzt	ja	Randlast	r,k = 1,00 kN/m	1,35	
Brandschutz	ja	Randlast umlaufend	ja		
Ausführungsvariante	Standard	Randmoment	mr,k = 0,00 kNm/m	1,50	
		Linienlast	$v_{,k} = 0.00 \text{ kN/m}$	1,35	

Geometrie der Balkonplatte

Occinionic aci Danieri	D.acco
Balkontyp	rechteckiger Balkon
Länge (X)	lx = 4,86 m
Auskragung (Y)	ky = 1,35 m
Plattendicke	h = 200 mm
Überstand links	ul = 0,00 m
Überstand rechts	ur = 0,00 m

Baustoffe

Bemessungsbetongüte	C30/37
Betonstahl	B500B

Ho	rizo	nta	llast

Abstand Linienlast

Last parallel zur x-Achse	Fdx = 0.00 kN
Last parallel zur y-Achse	Fdy = 0.00 kN

av = 0.15 m

2023 300 IK-6.1 ÜVPEÜPÄÄÜ¢4&\ @ ą ÁÜ>å

Version: 1.14.0

0,0

Seite: 6-11

Tabelle '	1: Ansch	lussdaten		Höhen-	Platten-	- War	nd-							
Bereich	Achse	Art	Länge	versatz	dicke	dick	e L	.ager						
			m	mm	mm	mm								
1	Χ	Platte-Platte	4,86	0	200	200	а	utomati	sch					
Tabelle 2	2: Ergebi	nisse				min.	min.	max.	max.	max.	max.	min.	min.	
Bereich	Iso	korb®			n	M Ed	M Rd	V Ed	V Rd	M Ed	M Rd	V Ed	V Rd	
Nr.	Be	zeichnung			Stück	kNm	kNm	kN	kN	kNm	kNm	kN	kN	
1 Isoko	orb® XT	Tvp K-M3-V2-RFI	120-CV35-X	120-H200-	-6.0									

λeq,Mittel= 0,113 W/(K*m)

 $\lambda eq = 0,113 \text{ W/(K*m)}$

(KXT30-CV35-V8-H200-REI120)

Gesamtlänge des Anschlusses = 4,86 m

λeq,Mittel: λeq,Mittel ist der längengewichtete Mittelwert der Wärmeleitfähigkeit λeq aller Produkte eines Anschlusses.

5,00 -19,2 -30,3 25,4

64%

62,7

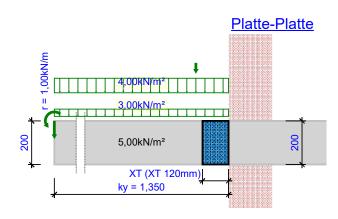
41%

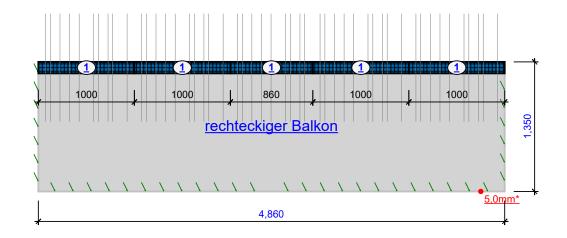
ΔLw,Mittel= 14,9 dB

Gesamtlänge des Anschlusses = 4,86 m

 Δ Lw,Mittel: Δ Lw,Mittel ist der längengewichtete Mittelwert der bewerteten Trittschallminderung Δ Lw aller Produkte eines Anschlusses.

λeq: Äquivalente Wärmeleitfähigkeit nach EAD 050001-00-0301 ΔLw: Bewertete Trittschallminderung nach EAD 050001-01-0301


 Δ Lw = 14,9 dB



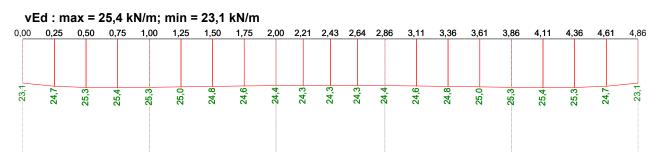
2023 300 IK-6.1 ÙVPËÜPĀĀÚc4&\ @ ą ÁÚ>å

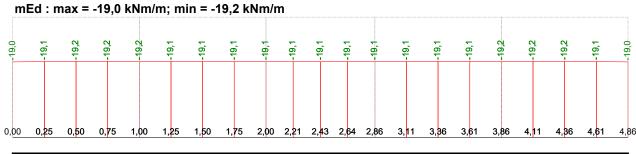
Version: 1.14.0

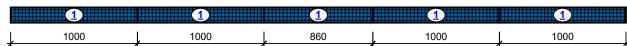
Seite: 6-12

Position

2023 300


IK-6.1


ÙVPËÜPÄÄÛ¢4&\@`ãį ÁÛ>å


Seite: 6-13

Version: 1.14.0

Grenzzustand der Tragfähigkeit

5x Isokorb® XT Typ K-M3-V2-REI120-CV35-X120-H200-6.0 mRd = -30,3 kNm/m (64%); vRd = +62,7 kN/m (41%)

Version: 1.14.0

Y gzg 1,00 1,00 1,00 1,00

0,00 1,00

Pos. IK-6.2 Isokorbanschluss Balkon

Bemessungssoftware: Schöck Isokorb® Typ Beton-Beton

Produkt Schöck Isokorb® Isokorb®-Datenbank Deutschland - EC2

Hauptnorm EC2 - NAD Datenbank-Version 20.00

Vorschrift 1 bauaufsichtliche Zulassung

Vorschrift 2 Typenprüfung Bemerkung -/-

HINWEISE

- Für den Schöck Isokorb® bestehen die allgemeinen bauaufsichtlichen Zulassungen des DIBt, sowie die europäische technische Bewertung gemäß EAD 050001-01-0301.
- Die Ergebnisse des Programms beziehen sich nur auf die Berechnung von Schöck Isokorb®. Die Gesamtsituation muss vom Anwender auf Plausibilität geprüft werden!
- Bitte entnehmen Sie die Randbedingungen für das Bauteil sowie weitere Einbauhinweise der aktuellen technischen Information Schöck Isokorb®.
- Der Formschluss zwischen den Drucklagern und dem Beton muss gewährleistet werden, daher sind Betonierfugen unterhalb der Drucklager anzuordnen. Bei Druckfugen zwischen Fertigteilen und dem Schöck Isokorb® muss ein Ortbeton- bzw. Vergussstreifen von ≥ 100 mm Breite ausgeführt werden.
- Mit FEM berechnete max. Durchbiegung der Balkonplatte (inkl. Isokorb) im GZG

allgemeine Daten zum Produkt

angemente Daten Zam i Todakt		Cital. Welle aci Elli	I GZT	
Betondeckung	CV = 35 mm	Eigengewicht	$g1,k = 5,00 \text{ kN/m}^2$	1,35
Dämmschichtdicke	D = 120 mm	Putz und Belag	$g2,k = 3,00 \text{ kN/m}^2$	1,35
lsokorb®-Höhe	H = 200 mm	Verkehrslast	$q,k = 4,00 \text{ kN/m}^2$	1,50
Isokorb® vorgesetzt	ja	Randlast	r,k = 1,00 kN/m	1,35
Brandschutz	ja	Randlast umlaufend	ja	
Ausführungsvariante	Standard	Randmoment	mr,k = 0,00 kNm/m	1,50
		l injenlast	v k = 0.00 kN/m	1.35

Geometrie der Balkonplatte

Balkontyp	rechteckiger Balkon
Länge (X)	1x = 4,55 m
Auskragung (Y)	ky = 1,65 m
Plattendicke	h = 200 mm
Überstand links	ul = 0.00 m
Überstand rechts	ur = 0,00 m

Baustoffe

Bemessungsbetongüte	C30/37
Betonstahl	B500B

Ho	rizo	nta	llast

Abstand Linienlast

Last parallel zur x-Achse	Fdx = 0.00 kN
Last parallel zur y-Achse	Fdy = 0.00 kN

av = 0.15 m

char Werte der Finwirkungen

2023 300 IK-6.2 ÙVPËÜPÄÄÜ¢&\ @ i ÂÛ>å

Version: 1.14.0

Seite: 6-15

Tabell	e 1: Ansch	lussdaten		Höhen-	Platten	- War	nd-						
Bereic	n Achse	Art	Länge	versatz	dicke	dick	e L	ager					
			m	mm	mm	mm							
1	Χ	Platte-Platte	4,55	0	200	240	a	utomati	sch				
Tabell	e 2: Ergebi	nisse				min.	min.	max.	max.	max.	max.	min.	min.
Bereic	n Iso	korb®			n	M Ed	M Rd	V Ed	V Rd	M Ed	M Rd	V Ed	V Rd
Nr.	Be	zeichnung			Stück	kNm	kNm	kN	kN	kNm	kNm	kN	kN
1 Iso	korb® XT	Гур K-M5-V2-RE	1120-CV35-X	120-H200	-6.0								
(KXT45-CV3	35-V8-H200-REI	120)		5,00	-27,8	-38,7	30,9	62,7	0,0	0,0	0,0	0,0
λ	eq = 0,129	W/(K*m)	Δ Lw = 13,0	dB			72%		50%				

λeq,Mittel= 0,129 W/(K*m)

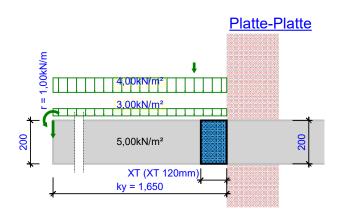
Gesamtlänge des Anschlusses = 4,55 m

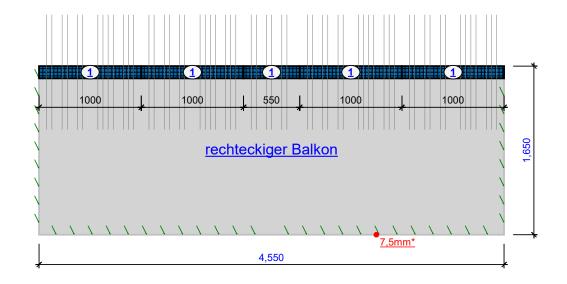
λeq,Mittel: λeq,Mittel ist der längengewichtete Mittelwert der Wärmeleitfähigkeit λeq aller Produkte eines Anschlusses.

ΔLw,Mittel= 13,0 dB

Gesamtlänge des Anschlusses = 4,55 m

 Δ Lw,Mittel: $\dot{\Delta}$ Lw,Mittel ist der längengewichtete Mittelwert der bewerteten Trittschallminderung Δ Lw aller Produkte eines Anschlusses.


 λ eq: Äquivalente Wärmeleitfähigkeit nach EAD 050001-00-0301 Δ Lw: Bewertete Trittschallminderung nach EAD 050001-01-0301



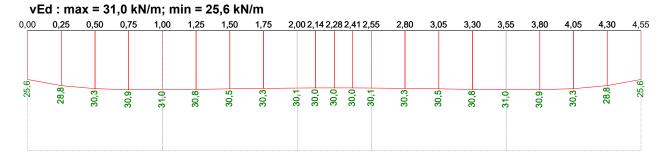
2023 300 IK-6.2

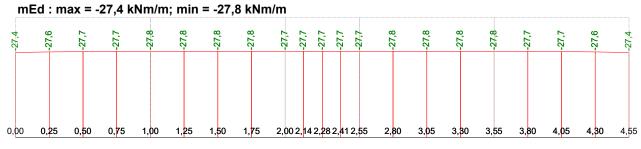
Seite: 6-16

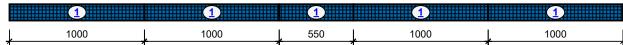
Version: 1.14.0

Position

2023 300


IK-6.2


ÙVPËÜPÄÄÛ¢4&\@^ą̃ÁÛ>å


Grenzzustand der Tragfähigkeit

Version: 1.14.0

Seite: 6-17

1 <u>5x Isokorb® XT Typ K-M5-V2-REI120-CV35-X120-H200-6.0</u> mRd = -38,7 kNm/m (72%); vRd = +62,7 kN/m (50%)

lw =

lo =

500

200000

3.00

3.00

m

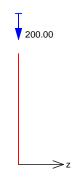
m

Auftrags-Nr.	Position	martens+puller	
2023 300	W-6.1	ÙVPËÜPÄÄÛ¢4&\@ã ÁÛ>å	Seite: 6-18
Pos. W-6.1	<u>Stahlbeto</u>	nwand Aufzug	

Beidseitig gelenkig gelagerte Wand

	S} &\ ê} *^ System ist unverschieblich.
Belastungen	Öæ•ÁÖā*^}*^¸&&@Ás^¦Ávæ)åÁ¸ālåÁs^¦>&∖•&&@ãdÈ

Yæ)å@4@^


Vertikallasten	Einwirkung	e _z	f_{x}
		[cm]	[kN/m]
	Gk	0.00	500.00
	Qk.N	0.00	200.00

EW Gk M 1:100 in z-Richtung

System

EW Qk.N in z-Richtung M 1:100

Kombinationen	{ æi *^à^} å^Æ[{ a			
•œ̂} åð t͡ð̞[¦>à^¦* È	Nr. Faktor * Einv 2 +1.35*Gk	virkung +1.50*Qk.N		
Ó^{ \	{ æi *^à^}å^ÁS[{ á	à ā a a a ā a a a a a a a a a a a a a a		
	Nr. x	n_{Ed}	m_{Edy}	VEdz
	[m]	[kN/m]	[kNm/m]	[kN/m]
∙œ̂} åðã Ð҈[¦>à^¦* È	2 0.0	999.30	0.00	0.00
Mat./Querschnitt	Material- und Quers	schnittswerte nach DIN EN 199	92-1-1:2011-01	
Material	Material	f _{yk}	f _{ck}	E [N]/22 22 21
		[N/mm²]	[N/mm ²]	[N/mm ²]
	C 25/30		25	31000

B 500SA

Auftrags-Nr. Position W-6.1 ÙVPËÜPÆÄÛ¢4&\@A ÁÛ>å 2023 300 Seite: 6-19 Querschnitt Art by h Α [cm] [cm²] [cm⁴] [cm] 115200 RE 100.0 24.0 2400 RE: Rechteckquerschnitt Querschnittsgrafik <u>Grafik</u> Querschnitt M 1:20 # 100.0 Bewehrungsanordnung OE&@ æà•œê}å^ 4.00 ď cm Minimaler Bewehrungsgrad 0.00 % min % Maximaler Bewehrungsgrad 4.00 max → |Ás^ }ÁÕ | ^ }:: * • @ åÁs^ |ÁV | æ ê @ t \ ^ãA, æ&@Ö OD ÁD ÞÁFJJ Œ Ë KÆFFËEF Bemessung (GZT) Ùcæàãããec Nachweis der Knicksicherheit $(\dot{0}^{\ })^{\ } \cdot (\dot{0}^{\ })^{\ } \cdot (\dot{0}^{\ })^{\ } = (\dot{0}^{\ })^{\ } \cdot (\dot{0}^{\ })$ Schlankheiten Ek Achse lο lim [-] 43.3 Abs. 5.8.3.1(1) [m][cm] 29.5 2 3.00 6.9 Imperfektionen 1/ iz h e_{iz} Abs. 5.2(7) [-] [1/rad] [cm] 1.000 200 0.75 S¦>{ { `}*•à^ã ^¦c 10 c = Theorie II. Ordnung Ek K_r K_{1y} 1/ry e_{2z} Abs. 5.8.8.3 [-] [1/m][cm] [-] 2 1.00 1.00 2.42E-2 2.17 Ó^{ \(\overline{\overlin M_{2y} Х M_{0Edy} M_{Edy} [kNm] [kNm] [kNm] [m] Komb. 2 (GK) 7.49 0.00 7.49 3.00 7.49 21.72 29.22 1.50 7.49 0.00 0.00 7.49 Þæ&@^ã/Ás^¦ÁÓað*^ËÁ}åÁÞ[¦{æ|\¦æedæ*-ê@ā*\^ão **Biegung** Abs. 6.1 Ek NEdMEdyA_{s1} Х [m] [kN] [kNm] [cm²] $\overline{2}$ 1.50 999.30 29.22 1.80_M

As =

3.60

&{

Õ^•æ{ c^ÂÛcæ@\|ê&@ M: Tậå^•œ^,^@`}*Á⊳¦Áræ)å

Auftrags-Nr. Position ÙVPËJPÆÄJO4& @ã ÁJ>å 2023 300 W-6.1 Seite: 6-20 im Grenzzustand der Gebrauchstauglichkeit nach DIN EN 1992-1-1:2011-01 Nachweise (GZG) <u>Spannungen</u> Nachweis der Spannungen Abs. 7.2 Endkriechzahl 0.00 $_{\text{c,perm}}/f_{\text{ck}}$ Cd/fck Х NEd MEd C_d/f_{ck} c,char/fck s,char/fyk C_d/f_{yk} [kN] [kNm] [m] [-] [-] $\overline{(L = 3.00 \text{ m})}$ 578.00 0.45 0.00 0.09 0.00 718.00 0.12 0.60 Keine Zugspannung im Stahl vorhanden. Bewehrungswahl Šê}*••œêà^Án∿ÁÛ^ãn^ÁWWÁ````»,#%)"\$"fl"")"Wa #aŁ ç[| @#AÛcæ@}|ê&@ A_s 6.70 &{ Ð vorh. Bewehrungsgrad 0.28 % charakteristische Werte Einwirkung $F_{x.k}$ $M_{y,k}$ $F_{z,k}$ æ{ÁYæ}å~ĭi [kN/m][kNm/m] [kN/m]Gk 518.00 0.00 0.00 Qk.N 200.00 0.00 0.00 Einwirkung $F_{x,k}$ $M_{y,k}$ $F_{z,k}$ am Wandkopf [kNm/m] [kN/m] [kN/m] Gk 0.00 0.00 -0.000.00 Qk.N 0.00 -0.00 Zusammenfassung Zusammenfassung der Nachweise Nachweise (GZT) Nachweise im Grenzzustand der Tragfêhigkeit **Nachweis** [-] Ùœàããéc OK Biegung OK Bewehrungswahl OK Nachweise (GZG) Nachweise im Grenzzust. der Gebrauchstauglichkeit

Begrenzung Betondruckspannungen

Χ [m]

OK

0.00

Nachweis

2023 300 W-6.2 ÙVPËÜPĀĀŪd& @ā ĀÛ>å

Pos. W-6.2

Allgemeine Angaben KS-Mauerwerk

Abmessungen Dicke $h \ge 0,115 \text{ m}$

Höhe: l ≤ 2,80 m

Beschreibung

Das Mauerwerk besteht aus Kalksandstein-Planelementen – bezeichnet als "KS-P" – im Dünnbettverfahren, Druckfestigkeitsklasse 20 nach DIN EN 1996.

Seite: 6-21

Die Anwendung von KS-P ist mit Erscheinen von DIN EN 1996/NA normativ geregelt. Allgemeine bauaufsichtliche Zulassungen (abZ) werden nicht mehr ausgestellt.

DIN EN 1996-3/NA gibt die charakteristische Mauerwerksdruckfestigkeit für verschiedene Stein-Mörtel-Kombinationen in tabellarischer Form an. Die in DIN EN 1996-3/NA tabellierten Werte wurden mit den in DIN EN 1996-1-1/NA angegebenen Formeln und Parameter berechnet, so dass die Anwendung der Gleichungen (4.1) und (4.2) in Deutschland ohne Vorteil ist. Die charakteristische Mauerwerksdruckfestigkeit von Mauerwerk aus Kalksandsteinen kann sowohl für das vereinfachte als auch für das genauere Berechnungsverfahren den Tafeln 4.1 bis 4.3 entnommen werden.

Tafel 4.3: Charakteristische Druckfestigkeit $I_{\rm k}$ [N/mm²] von Einsteinmauerwerk aus Kalksand-Plansteinen und Kalksand-Planclementen mit Dünnbettmörtel

	Planel	emente	Plansteine		
Dünnbettmörtel DM Steindruckfestigkeitsklasse	KS XL	KS XL-E	KS P KS -R P	KS L-P KS L-R P	
101	8-11	-	-	5,0	
12	9,4	7,0	7,0	5,6	
16 ¹⁾	11,2	8,8	8,8	6,6	
20	12,9	10,5	10,5	2	
281)	16,0	_	13,8	2	

KS XL: KS-Planelement chine Längshut, ohne Lochung KS-RLE: KS-Planelement ohne Längshut, mit Lochung KS-P: KS-Planstein mit einem Lochanteil > 15 % KS-LP: KS-Planstein mit einem Lochanteil > 15 %

1) Auf Anfrage regional lieferbar

Die statischen Nachweise des Mauerwerks werden innerhalb separater Positionen geführt.

Rissmindernde Maßnahmen

- 1. Decke mit einer Überhöhung herstellen (L/300).
- 2. Montagestützen möglichst spät entfernen.
- Zwischen dem Entfernen der Stützen und dem Aufmauern der OG-Wände eine Wartezeit einhalten.
- 4. OG-Wände zunächst nur bis Unterkante der Stürze mauern und danach wieder eine Wartezeit einlegen bevor die restlichen Schichten gemauert werden.
- 5. Den Wandputz der OG-Wände möglichst spät aufbringen (z.B. 10 Tage nach der Estrich Aufbringung)

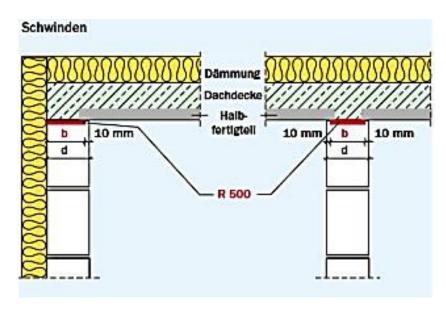
IIID-Vidwel Versical 2022 - Oppyright 2021 - IIID ALO Oottwale Official

2023 300

ÙVPËÜPÄÄÜ¢4&\@`ã ÁÙ>å

W-6.2

Seite: 6-22


Deckenauflager Dachgeschossdecke

Die Austrocknung von bindemittelgebundenen Baustoffen (z. B. Beton, Mauerwerk) führt zu Schwindverkürzugen.

Einbau von Trennschichten: Verwendung einer besandeten Bitumendachbahn R500 mit Rohfilzeinlage, Dicke = 3 mm, nach DIN EN 13969 in Verbindung mit DIN V 20000-202

Einbau wie folgt: Breite (b) kleiner als Wanddicke (d), und zwar bei Außenwänden ca. 10 mm, bei Innenwänden beidseitig je ca. 10 mm.

Die Anordnung eines Ringbalkens ist nicht erforderlich.

Schlitze und Aussparungen

Die maximale Tiefe und Breite vertikaler Schlitze und Aussparungen im Mauerwerk ohne weiteren Nachweis können nachfolgender Tabelle entnommen werden.

Tabelle NA.19 — Ohne Nachweis zulässige Größe /ch,v vertikaler Schlitze und Aussparungen im Mauerwerk

1	2	3	4	5	6	7
	Nachträglich hergestellte Schlitze Mit der Errichtung des Mauerv und Aussparungen ^c Aussparungen im g			_		
Wanddicke mm	maximale Tiefe ^a	maximale Breite ^b (Einzelschlitz)	Verbleibende Mindest- wanddicke	maximale Breite ^b		der Schlitze und rungen
	mm	mm	mm	mm	von Öffnungen	untereinander
115 bis 149	10	100				
150 bis 174	20	100			1	
175 bis 199	30	100	115	260	≥ 2fache	
200 bis 239	30	125	115	300	Schlitzbreite bzw. ≥ 240 mm	≥ Schlitzbreite
240 bis 299	30	150	115	385		
300 bis 364	30	200	175	385		
≥ 365	30	200	240	385	1	

a Schlitze, die bis maximal 1 m über den Fußboden reichen, dürfen bei Wanddicken ≥ 240 mm bis 80 mm Tiefe und 120 mm Breite ausgeführt werden.

Die Gesamtbreite von Schlitzen nach Spalte 3 und Spalte 5 darf je 2 m Wandlänge die Maße in Spalte 5 nicht überschreiten. Bei geringerer Wandlängen als 2 m sind die Werte in Spalte 5 proportional zur Wandlänge zu verringern.

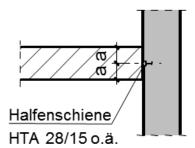
C Abstand der Schlitze und Aussparungen von Öfnungen ≥ 115 mm.

2023 300 W-6.2 ÙVPËÜPÆÄJØ4&\@@@(ÅÚ>å Seite: 6-23

Die maximale Tiefe und Breite vertikaler Schlitze und Aussparungen im Mauerwerk ohne weiteren Nachweis können nachfolgender Tabelle entnommen werden.

DIN EN 1996-1-1/NA:2012-05:

Tabelle NA20. enthält entsprechende Grenzwerte für t_{ch,h} (maximale Schlitztiefe). Sofern die Schlitztiefen die in Tabelle NA.20 angegebenen Werte überschreiten, ist die Tragfähigkeit auf Druck, Schub und Biegung mit dem infolge der horizontalen und schrägen Schlitze reduzierten Mauerwerksquerschnitt rechnerisch zu überprüfen.


Tabelle NA.20 — Ohne Nachweis zulässige Größe $t_{\mathrm{ch,h}}$ horizontaler und schräger Schlitze im Mauerwerk

Wanddicke mm	Maximale Schlitztiefe t _{ch,h} a mm				
	Unbeschränkte Länge	Länge ≤ 1 250 mm ^b			
115-149	-	-			
150-174	-	0 c			
175–239	O _c	25			
240-299	15°	25			
300-364	20°	30			
über 365	20°	30			

a Horizontale und schräge Schlitze sind nur zulässig in einem Bereich ≤ 0,4 m ober- oder unterhalb der Rohdecke sowie jeweils an einer Wandseite. Sie sind nicht zulässig bei Langlochziegeln.

Anschlüsse

Alle Mauerwerkswände, die an Stahlbeton-Wände oder -Stützen anbinden, sind mit HTA 28/15 und Mauer-werksankern oder gleichwertig anzuschließen!

b Mindestabstand in L\u00e4ngsrichtung von \u00f6ffnungen ≥ 490 mm, vom n\u00e4chsten Horizontalschlitz zweifache Schlitzl\u00e4nge.

C Die Tiefe darf um 10 mm erh\u00f6ht werden, wenn Werkzeuge verwendet werden, mit denen die Tiefe genau eingehalten werden kann. Bei Verwendung solcher Werkzeuge d\u00fcrfen auch in W\u00e4nden ≥ 240 mm gegen\u00fcberliegende Schlitze mit jeweils 10 mm Tiefe ausgef\u00fchrt werden.