BAUGRUNDUNTERSUCHUNG und BODENGUTACHTEN

Bauvorhaben: Ersatzneubau BW II/02 - Brücke Schlossweg III

im Schlosspark Lützschena in Leipzig, OT Lützschena

Bauherr: Stadt Leipzig, Verkehrs- und Tiefbauamt

Abt. Brückenbau und -unterhaltung

Prager Straße 118, Haus C

D-04317 Leipzig

Bauwerksplaner: Böger + Jäckle & Partner

Ingenieursgesellschaft mbH

Cöthner Straße 51 D-04155 Leipzig

Arbeitsgemeinschaft: GGL Geophysik und Geotechnik Leipzig GmbH

Bautzner Straße 67 D-04347 Leipzig

BAUGRUNDBÜRO BARTHEL

Beratender Ingenieur IK Sachsen / VBI

Magdeborner Straße 9 D-04416 Markkleeberg

baugrundbuero-barthel@t-oline.de

geotechnische

Kategorie: (DIN 4020)

2 (Hauptuntersuchung)

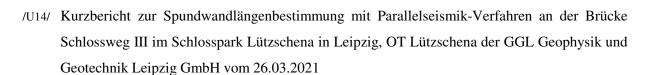
Umfang: 24 Seiten Text, 10 Tabellen, 9 Anlagen

Ausfertigung: von 4 [BG 1425/21]

(3 x AG und 1 x Archiv)

Dipl.-Ing. N. Barthel öffentl. best. u. vereid. Sachverständiger für Baugrunduntersuchung

Markkleeberg, den 15. April 2021



<u>INH</u>	ALTSVERZEICHNIS	<u>Seite</u>
1	UNTERLAGEN	3
2 2.1 2.2 2.3	VORGANG Veranlassung Bauvorhaben Geländeverhältnisse	4 4
3	BAUGRUNDERKUNDUNG UND LABORUNTERSUCHUNGEN	
4 4.1 4.2	BAUGRUND	8
5 5.1 5.2 5.3 5.4 5.5	BAUGRUNDBEURTEILUNG Baugrundmodell Baugrundeigenschaften Homogenbereiche gemäß VOB, Teil C von 09-2019 Tragfähigkeit Bodenkennwerte	
6 6.1 6.2	GEOTECHNISCHE FACHBERATUNG	18
7 7.1 7.2 7.3	BAUTECHNISCHE EMPFEHLUNGEN Baugrubengestaltung Wasserhaltung, Betonschutz und Korrosionsverhalten Hinweise zum Erdbau ZUSAMMENFASSUNG UND SCHLUSSBEMERKUNGEN	21 21 22
<u>v</u>	ERZEICHNIS DER ANLAGEN	
Anlag	e 1: Übersichtsplan	(M 1 : 20.000)
Anlag	ge 2: Aufschlussplan	(M 1 : 200)
_	e 3: Geotechnischer Baugrundschnitte e 4: Schichtenverzeichnisse, Protokolle der Schweren Rammsondie	
A mla a	und Materialprobenentnahme	
	e 5: Protokolle der geotechnischen Laboruntersuchungen e 6: Bewertung der Ausbaumaterialien mit Prüfberichten	
	e 7: Kurzbericht Spundwandlängenbestimmung von der GGL Gm	hН
	e 8: PC-Ausdrucke der geotechnischer Berechnungen	~
	e 9: Körnungsbänder der Homogenbereiche	

1 UNTERLAGEN

- /U1/ Vertrag (Vertrag-Nr. 6640/2021/013); zur Baugrunduntersuchung und geophysikalischen Messung für den Ersatzneubau der Brücke Schlossweg II im Schlosspark Lützschena in Leipzig; bestätigt vom Verkehrs- und Tiefbauamt der Stadt Leipzig am 24.02.2021
- /U2/ Aufgabenstellung zur Baugrunduntersuchung und geophysikalischen Messung für den Ersatzneubau der Brücke Schlossweg III im Schlosspark Lützschena in Leipzig; übergeben von Herrn Hoffmann von der Abt. Brückenbau und –unterhaltung des Verkehrs-und Tiefbauamtes der Stadt Leipzig per E-Mail am 10.02.2021
- /U 3/ Bestandsvermessungsplan der Brücke Schlossweg III über die Weiße Elster im Schlosspark Lützschena in Leipzig; übergeben von Herrn Patitsinis von der Abt. Brückenbau und unterhaltung des Verkehrs-und Tiefbauamtes der Stadt Leipzig als dwg-Datei per E-Mail am 06.04.2021
- /U 4/ Protokolle zur Kampfmittelfreisuche der Aufschlusspunkt für Baugrunduntersuchung Messung für den Ersatzneubau der Brücke Schlossweg III im Schlosspark Lützschena in Leipzig: erarbeitet von der GEOTECH GmbH aus Delitzsch am 26.02.2021
- /U 5/ Angaben zu den Grundwasserverhältnissen im Baubereich der Brücke Schlossweg II im Schlosspark Lützschena in Leipzig, von Frau Renner vom Sachgebiet Wasserbehörde des Amtes für Umweltschutz der Stadt Leipzig per E-Mail vom 12.04.2021
- /U6/ Altlastenauskunft von Frau Pietzsch, technische Sachbearbeiterin der Abfall- und Bodenschutzbehörde des Umweltamtes der Stadt Leipzig im Baubereich der Brücke Schlossweg II im Schlosspark Lützschena in Leipzig, Anschreiben vom 06.04.2021
- /U 7/ Geologische Spezialkarte von Sachsen, Blatt Leipzig, Nr. 11 / II. Auflage/; erarbeitet vom Geologischen Landesamt 1924, M 1 : 25.000
- /U 8/ Lithofazieskarte Quartär, Blatt Leipzig, Nr. 2565; erarbeitet durch das Zentrale Geologische Institut der DDR April 1973, M 1 : 50.000
- /U 9/ Protokolle der Schweren Rammsondierungen; aufgestellt durch die Bohrfirma Dietmar Unteutsch vom 01.03.2021
- /U 10/ Schichtenverzeichnisse der Trockenbohrungen; aufgestellt durch die Bohrfirma Dietmar Unteutsch vom 04.03. und 04.03.2021
- /U 11/ Koordinatenliste der Baugrundaufschlusspunkte für den Ersatzneubau der Brücke Schlossweg II im Schlosspark Lützschena in Leipzig; übergeben vom Vermessungsbüro Dipl.-Ing Ulf Becker aus Nobitz - Oberarndorf per E-Mail am 08.03.2021
- /U 12/ Ergebnisse der bodenmechanischen Laborprüfungen der Bodenproben; ausgeführt von der Erdbaulabor Leipzig GmbH vom 04.03.bis zum 16.03.2021
- /U 13/ Prüfberichte der untersuchten Wasserproben nach DIN 4030 und DIN 50929; ausgeführt von der Analysen Service GmbH aus Leipzig vom 11.03. und 12.03.2021

/U15/ Bericht zur abfallrechtlichen Bewertung der Ausbaumaterialien der untersuchten Material- und Bodenproben mit den chemischen Prüfberichten; ausgeführt durch die MULTI TEC GmbH aus Leipzig vom 13.04.2021

2 VORGANG

2.1 Veranlassung

Das

Verkehrs- und Tiefbauamt

der Stadt Leipzig plant den Ersatzneubau BW II/02 - Brücke Schlossweg III über die Weiße Elster im Schlosspark Lützschena in Leipzig, OT Lützschena (s. Übersichtsplan - Anlage 1).

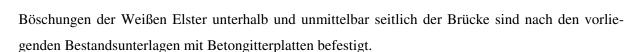
Die bautechnische Planung für den geplanten Ersatzneubau der Brücke Schlossweg III wurde vom Verkehrs- und Tiefbauamt der Stadt Leipzig an die Böger + Jäckle & Partner Ingenieursgesellschaft mbH aus Leipzig übertragen. Im Rahmen der Erarbeitung der Planungsunterlagen wurde die GGL Geophysik und Geotechnik Leipzig GmbH und das Baugrundbüro Barthel durch das Verkehrs- und Tiefbauamt beauftragt, die Baugrundverhältnisse im Bereich der Brücke Schlossweg III zu untersuchen und in einem zu erarbeitenden Bodengutachten /Hauptuntersuchung gemäß DIN EN 1997-2 und DIN 4020/ zu bewerten. Im Zuge der Baugrunduntersuchung sollte mit Hilfe von geophysikalischen Bohrlochmessungen die Längen/Absetztiefen der vorhandenen Stahlrammgründungen beider Brückenwiderlager ermittelt werden. Weiterhin sollte auch eine Schadstoffuntersuchung und Bewertung für die beim Neubau anfallenden Materialien und des Bodenaushubes vorgenommen werden.

2.2 Bauvorhaben

Die derzeitige Brücke Schlossweg III wurde im Jahre 1991/92 als 1-Feld-Brücke mit einer Gesamtstützweite von ca. 23,5 m und einer Durchgangsbreite von ca. 2 m als Rad-Gehweg-Brücke errichtet. Im Zuge der Bauwerksüberwachung wurden diverse Schäden am Holzüberbau der Brücke aufgenommen. Für die Gewährleistung der Verkehrssicherheit ist der Rückbau und Neubau des Brückenüberbaus auf die vorhandene Tiefgründung vorgesehen. Nach dem übergebenen Auszug des Brückenbuches wurden je Brückenwiderlager jeweils 2 Rammpfahl-Stahl-Rohre aus 2 verschweißten Larssen Spundwandprofilen 24/12 eingerammt. Die Länge der Rammpfahlgründungen wird nach den ausgeführten geophysikalischen Bohrlochmessungen mit ca. 9,9 m bzw. 10,4 m angenommen. Nach dem aktuellen Planungsstand soll die vorhandene Rammpfahlgründung für einen neuen Brückenüberbau

als Brückengründung genutzt werden. Ist der Nachweis der Tragfähigkeit und Gebrauchstauglichkeit nicht möglich, ist eine Gründungsertüchtigung oder Neugründung auszuführen.

Weitergehende Bauangaben für den geplanten Ersatzneubau der Brücke Schlossweg III, waren zum Zeitpunkt der Gutachtenbearbeitung nicht verfügbar.


2.3 Geländeverhältnisse

Die Brücke Schlossweg III über die Weiße Elster, befindet unmittelbar südlich des Schlossgebäudes Lützschena ca. 8 km nordwestlich der Innenstadt von Leipzig im Auebereich der Weißen Elster (s. Anlage 1 / Übersichtsplan). Die Rad-/Gehwegbrücke liegt innerhalb bzw. am Rande mehrerer Schutzgebiete (FFH-Gebiet "Leipziger Auensystem", Europäisches Vogelschutz-Gebiet "Leipziger Auwald" und Landschaftsschutzgebiet "Leipziger Auwald"). Die Bäume und Sträucher des Auwaldes reichen bis an die Brücke heran.

Die im Brückenbereich von Südost nach Nordwest fließende Weiße Elster besitzt hier ein ca. 18 m breites Flussbett. Unmittelbar östlich des nördlichen Brückenwiderlagers verläuft der Grundstückszaun des Schlossgartens einschließlich einer Sockelmauer aus Natursteinblöcken. Die Deckschicht des vorhandene Rad-/ Gehwegs seitlich der Brückenwiderlager besteht aus unbearbeiteten Natursteinen.

⇒ Brücke Schlossweg III über die Weiße Elster (Foto Barthel vom 05.01.2021)

Die Geländehöhe des ebenen Geländes seitlich der Brücke schwankt nach dem Bestandsvermessungsplan zwischen 102,0 m NHN und ca. 102,5 m NHN.

Nach einem eingesehenen Übersichtslageplan fällt die natürliche Geländeoberfläche im Aue-Bereich mit der Fließrichtung der Weißen Elster von begrenzt Ost nach West ab. In Richtung Norden steigt das Gelände von der Aue der Weißen Elster ca. 102 m NHN bis zur Halleschen Straße auf ca. 107 m NHN an.

Nach Auskunft des Sachgebietes Abfall-/Bodenschutzbehörde des Amtes für Umweltschutz der Stadt Leipzig /U6/ sind im unmittelbaren Baubereich der Brücke Schlossweg III keine Altlastenverdachtsflächen im Sächsischen Altlastenkataster ausgewiesen.

3 BAUGRUNDERKUNDUNG UND LABORUNTERSUCHUNGEN

Entsprechend den Vorgaben der DIN EN 1997-2 bzw. der DIN 4020 zur Baugrunduntersuchung wurden direkte und indirekte Baugrundaufschlüsse seitlich der Bestandswiderlager angeordnet. Von der Bohrfirma Bohrungen und Sondierungen Dietmar Unteutsch wurden nachfolgende Baugrundaufschlüssen für den geplanten Ersatzneubau

2 Trockenbohrungen /TB/ (nach DIN EN ISO 22475-1) und

2 Schwere Rammsondierungen /DPH/ (nach DIN EN ISO 22476-2)

bis maximal 17 m u. OK Gelände ausgeführt. Die seitlich der Brückenwiderlager zusätzlich vorgesehenen Kleinrammbohrungen wurden nicht abgeteuft, da die Trockenbohrungen für die geophysikalischen Messungen unmittelbar seitlich der Rammpfahlgründungen angeordnet werden mussten.

Trockenbohrungen (TB)

Zur Erkundung der örtlichen Baugrundverhältnisse wurden an den beiden Widerlager der Brücke, jeweils eine Baugrundbohrung angeordnet. Das Bohrverfahren entspricht dem Rotations-Trockenbohrverfahren der DIN EN ISO 22475-1 mit einem Durchmesser von 178 mm. Aus den Bohrungen wurden gestörte Bodenproben für die Laboruntersuchungen entnommen. Zur Durchführung der geplanten geophysikalischen Bohrlochmessungen mit dem Parallelseismik-Verfahren wurden beide Trockenbohrungen mit PVC-Vollrohen DN 80 bis 17 m u. OK Gelände ausgebaut. Die Baugrundbohrungen wurden von der Bohrfirma Bohrungen und Sondierungen Dietmar Unteutsch in der Zeit am 04.03. und am 05.03.2021 abgeteuft. Nach der Bohrlochmessung in der 10. Kalenderwoche wurden die PVC-Vollrohre zurückgebaut und die Bohrlöcher mit Quellton verfüllt.

Schwere Rammsondierungen (DPH)

Für die quantitative Prüfung des Bodenzustandes und zur korrelativen Ableitung von Bodenkennwerten wurden von der Bohrfirma Unteutsch parallel zu den Trockenbohrungen, jeweils eine Schwere Rammsondierung gleichfalls bis maximal 14,7 m. u. OK Gelände ausgeführt. Um eine Beeinflussung der Rammergebnisse durch die Bohrarbeiten auszuschließen, wurden die Schweren Rammsondierungen nach DIN EN ISO 224 76-2 mit einem Spitzenquerschnitt von 15 cm² im Vorfeld der Bohrarbeiten am 01.03.2021 ausgeführt. Als wesentlicher Messwert für die Beurteilung der Konsistenz bzw. der Lagerungsdichte, der Rammbarkeit und für die Ableitung von Bodenkennwerten wurde die Schlagzahlen pro 10 cm Eindringtiefe ermittelt

Material probe - Sediment probe

Zur abfallrechtlichen Untersuchung und Beurteilung des Betons und des Betonanstrichs der Widerlagerauflager wurde an jedem Brückenwiderlager ein Handschurf bis ca. 1 m u. OK Gelände ausgehoben und entsprechende Materialproben von der Bohrfirma entnommen.

Weiterhin wurde durch den Gutachtenbearbeiter eine Holzprobe des Brückenüberbaus und eine Sedimentprobe aus 4 Teilproben aus dem Flussbett der Weißen Elster entnommen.

Die Lage der einzelnen Aufschlusspunkte kann dem Aufschlussplan /Anlage 2/ entnommen werden. Die Ergebnisse der Trockenbohrungen und der Schweren Rammsondierungen sind als geotechnischer Baugrundschnitt in der Anlage 3 als schematische Säulenprofile bzw. Liniendiagramme aufgetragen. Die Schichtenverzeichnisse der Aufschlüsse und Protokolle der Schweren Rammsondierungen sowie die Materialproben wurden dem Gutachten als Anlage 4 beigefügt. Die Aufschlusspunkte wurden in Vorbereitung zur Felderkundung vom Gutachtenbearbeiter abgesteckt und gemäß der Auskunft zur Kampfmittelbelastung des Ordnungsamtes der Stadt Leipzig am 26.02.2021 durch die Firma GOTECH aus Delitzsch auf Kampfmittelfreiheit abgesucht. Die Aufschlusspunkte wurden am 08.03.2021 durch das Vermessungsbüro Dipl.-Ing Ulf Becker aus Nobitz lage- und höhenmäßig eingemessen. Die Koordinatenliste der Aufschlusspunkte mit den m NHN-Höhen wurde als Beiblatt der Anlage 4 beigeheftet.

Laboruntersuchungen

Zur Durchführung von bodenphysikalischen und chemischen Laborversuchen wurden aus den Aufschlüssen gestörte Bodenproben und Materialproben entnommen. Im Einzelnen wurden von der Erdbaulabor Leipzig GmbH nach Vorgaben des Gutachtenbearbeiters, folgende bodenphysikalische und bodenmechanische Daten zur Beurteilung der Bodenschichten erhoben:

- ◆ 2 x Wassergehalt nach DIN EN ISO 17892-1,
- ♦ 4 x Korngrößenverteilungen nach DIN EN ISO 17892-4,

Zur Beurteilung der Betonaggressivität und des Korrosionsverhaltens gegenüber Stahl des Wassers im Brückenbereich, wurde eine Grundwasserprobe aus der TB 1 und eine Wasserprobe aus der Weißen Elster entnommen und gemäß DIIN 4030 und DIN 50929 untersucht.

Zur abfallrechtlichen Bewertung, der im Baubereich der Brücke Schlossweg III vorhandenen Ausbaumaterialien, wurden separate Material- und Bodenproben entnommen und der MULTITEC GmbH aus Leipzig, zur Untersuchung und Bewertung übergeben. Der Bericht zur abfallrechtlichen Bewertung der Ausbaumaterialien mit den Prüfberichten wurde dem Bodengutachten als Anlage 6 beigeheftet.

4 BAUGRUND

4.1 Regionalgeologie

Der untersuchte Baustandort befindet sich aus regionalgeologischer Sicht im Bereich der quartären Aue der Weißen Elster. Nach den ausgewerteten geologischen Spezialkarten steht im Untersuchungsgebiet bei ungestörten Bodenverhältnissen, oberflächlich eine ca. 2m bis 4 m dicke holozäne Auelehmschicht an. Durch den Bau der Brücke und durch eine Geländeregulierung wird die Auelehmschicht im Untersuchungsbereich durch Auffüllung überdeckt bzw. oberflächlich ersetzt oder ausgehoben. Im Liegenden der bindigen Aueböden stehen bis ca. 10 m u. OK Gelände bzw. ca. 11 m u. OK Gelände fluviatile Lockersedimente aus dem Holozän bis Weichselkaltzeit als Flussschotter der Niederterrasse (sog. Niederterrassenschotter) an. Die Quartärbasis ist nach der ingenieurgeologischen Recherche und den aktuellen Bohrprofilen bei etwa 92 m NHN bis 91 m NHN ausgebildet. Die erkundete Schichtabfolge /eine bindige bis gemischtkörnige Auelehmschicht über einem grobkörnigen Flusssediment/ entspricht der natürlichen Sedimentationsabfolge in einer Flussaue.

Unter den pleistozänen Flussschotter stehen die sog. Bitterfelder Schichten aus dem Oligozän (oberes Tertiär) an. Nach den geologischen Unterlagen sind die Bitterfelder Schichten hier als Wechsellagerung von Tertiärsand und Braunkohle bis ca. 75 m NHN ausgebildet. Im Bereich der Brücke Schlossweg III wurde durch beide Trockenbohrungen bis 17 m u. OK Gelände /bis ca. 85 m NHN/ Tertiärsand bis 85 m NHN erkundet.

Aus ingenieurgeologischer Sicht sind im Bebauungsgebiet keine Schwächezonen des Untergrunds zu erwarten. Der Untersuchungsbereich liegt nach der Übersichtkarte der DIN 4149:2005-04 in der Erdbebenzone 0. Der im Untersuchungsbereich anstehende Baugrund ist nach DIN EN 1998-1:2010-12 /EC 8 - Auslegung von Bauwerken gegen Erdbeben/ der Baugrundklasse C zuzuordnen.

4.2 Hydrogeologische Standortverhältnisse

In den abgeteuften Baugrundaufschlüssen wurde das Grundwasser im Übergangsbereich Auelehm/Flussschotter bzw. im Schichtniveau der Flussschotter ab ca. 3 m u. Bohransatzhöhe angeschnitten. Der holozäne bis weichselkaltzeitliche Flussschotter als Hauptgrundwasserleiter im Untersuchungsgebiet wird nach dem hydrogeologischen Großraummodell für Leipzig als sog. Niederterrassenschotter – Grundwasserleiter HWL 1.1 eingestuft. Der nach Bohrende gemessene Ruhewasserspiegel, stellte sich bei den Felduntersuchungen bei 99,1 m NHN und 99,2 m NHN ein.

Nachfolgend sind die während der Bohrarbeiten am 04.03. und 05.03.2021 ermittelten Grundwasserstände in der Tabelle 1 zusammengestellt:

Tabelle 1: Grundwasserstände im September 2020

Aufschlussnummer -	Wasserspiegelanschnitt	Ruhewasserspiegel nach Bohrende	
Geländehöhe in m NHN	m u. OKG / m NHN	m u. OKG / m NHN + Datum	
TB 1 – 102,14	3,0 / 99,1	3,0 / 99,1 am 05.03.2021	
TB 2 – 102,21	3,0 / 99,2	3,0 / 99,2 am 04.03.2021	
Wasserspiegel Weiße Elster = 100,27 m NHN am 08.03.2021			

Entsprechend der erkundeten hydrogeologischen Standortverhältnissen und denen, bei den Felduntersuchungen gemessenen Grundwasserständen, ist für den untersuchten Brückenbereich davon auszugehen, dass der Grundwasserspiegel im Schichtniveau der Flussschotter durch Uferfiltration durch den Wasserspiegel der Weißen Elster beeinflusst wird. Bei einer deutlich erhöhten Wasserführung (ab einem Wasserspiegel der Weißen Elster von ca. 101,5 m NHN) muss mit einer Überflutung von tieferliegenden Geländebereichen im Brückenumfeld gerechnet werden.

Nach den Angaben des Sachgebietes Wasserbehörde des Umweltamtes der Stadt Leipzig /U5/ ist bei mittleren Grundwasserverhältnissen im Untersuchungsbereich von einer freien mittleren Grundwasserspiegelhöhe von ca. 99,3 m NHN auszugehen. Auf der Grundlage der aktuell erkundeten Grundwasserspiegellagen und den Angaben der Wasserbehörde, ist für die Bauausführung von einem Bemessungswasserspiegel von ca. 100,5 m NHN auszugehen.

Bei einem Hochwasserereignis der Weißen Elster HQ 25 ist nach dem vorliegenden Längsschnitt aus dem Hochwasserschutzkonzept Weiße Elster /Gefahr der Überschwemmung – Stand 2005/ im Brückenbereich, ein Wasserspiegel der Weiße Elster von ca. 101,2 m NHN auszugehen.

Bei den erkundeten ingenieurgeologischen und hydrogeologischen Standortverhältnissen im Brückenbereich muss davon ausgegangen werden, dass der ausgepegelte, höchste Grundwasserspiegel /HGW/ der Geländeoberfläche des Auwaldes entspricht. Bei extremen Hochwasserereignissen kann, wie bereits angesprochen, eine Überflutung des Geländes im Umfeld der Brücke nicht ausgeschlossen werden.

5 **BAUGRUNDBEURTEILUNG**

5.1 Baugrundmodell

Nach der erkundeten Baugrundschichtung kann für den Untersuchungsbereich der Brücke Schlossweg III im Schlosspark Lützschena von einem

4-Schichten-Baugrundmodell

ausgegangen werden. Die einzelnen Baugrundschichten sind nachfolgend in der Tabelle 2 angeführt:

Tabelle 2: Baugrundmodell

Baugrundschichten /Stratigrafie	Teufenbereich der Baugrundschichten u. OK Gelände / m NHN	erkundete Schichtmächtigkeit
Schicht 1: Auffüllung / Holozän	GOK bis 2,0 m u. GOK/	von 1,5 m bis 2,0 m
	102,2 m NHN bis 100,2 m NHN	
Schicht 2 : Auelehm / Holozän	von 2,0 m bis 4,0 m u. GOK /	2,0 m nur TB 2
	100,2 m NHN bis 98,2 m NHN	
Schicht 3 : Flussschotter / Holozän-	von 1,5 m bis 11,0 m u. GOK/	von 6,0 m bis 9,5 m
Pleistozän	100,6 m NHN bis 91,1 m NHN	
Schicht 4 : Tertiärsand / Tertiär	von 10,0 m bis 17,0 m u. GOK /	von 6,0 m bis 7,0 m
	92,2 m NHN bis 85,1 m NHN	

5.2 Baugrundeigenschaften

Schicht 1a: Auffüllung (Holozän)

Nach den vorliegenden Aufschlussergebnissen steht seitlich der Brückenwiderlager oberflächlich eine anthropogene Auffüllung über der gewachsenen Baugrundschichtung an. Unter der 10 cm bzw. 15 cm dicken Deckschicht aus unbearbeiteten Natursteinen wurde eine hellgraue bis braune Auffüllungsschicht bis 1,5 m bzw. bis 2,0 m u. OK Gelände aufgeschlossen.

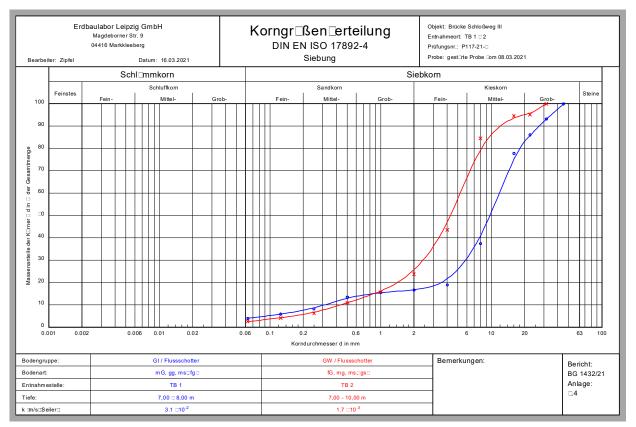
Die anthropogene Auffüllung besteht aus einem Gemisch aus Schluff, Sand, Kies Steine. Die grobbis gemischtkörnige Auffüllung besitzt nach den aufgenommenen Schlagzahlen der Schweren Rammsondierungen, eine locker bis mittel dichte Lagerung bzw. eine weiche bis steife Konsistenz. Nach DIN 18916 sind diese Auffüllungsbereiche als Sand-Kies-Gemisch /SW – SU/ Schluff-Sand-Gemisch bis mittel plastischer Ton /SU* – TM/ einzustufen.

Die Basis der anthropogenen Auffüllung wurde an den beiden Aufschlusspunkten bei ca. 100,6 NHN (TB 1) bzw. bei ca. 100,2 m NHN (TB 2) erkundet.

Schicht 2: Auelehm (Holozän)

Im Liegenden der Auffüllung steht am Bohrpunkt TB 2 als gewachsene Bodenschicht von 2,0 m bis 4,0 m unter OK Gelände, eine braune Auelehmschicht an. Der Auelehm wird gemäß DIN 18 196 als leicht bis mittel plastischer Ton (TL – TM) eingestuft.

Die Auelehmschicht besitzt nach den spezifizierten Bodenproben im Standortbereich eine weiche Konsistenz. Der natürliche Wassergehalt des Auelehms wurde bei einer untersuchten Bohrprobe mit von ca. 16,4 % ermittelt.


Der Auelehm im Untersuchungsbereich ist nach den spezifizierten Bohrproben als Schluff, feinsandig, tonig bis Feinsand, stark schluffig, schwach kiesig anzusprechen. Der Auelehm wird infolge des Feinkornanteils nach DIN 18 310 als schwach bis sehr schwach durchlässig (k_f – Wert von ca. < 1 x 10^{-6} m/s bis < 1 x 10^{-9} m/s) beurteilt.

Die Schichtbasis des Auelehms wurde durch die Baugrundbohrung TB 2 am südlichen Brückenwiderlager bei ca. 98,2 m NHN erkundet.

Schicht 3: Flussschotter (Holozän bis Pleistozän)

Unter der Auelehmschicht bzw. direkt unter der Auffüllungsschicht folgen bis 10,0 m u. OK Gelände bzw. bis 11,0 m u. OK Gelände die quartären (Holozän bis Weichselkaltzeit) Flussschotter der sog. Niederterrasse der Weißen Elster als Sand- bzw. Kiesschichten. Die gelbbraune bis graue Flussschotterschicht ist nach den vorliegenden Korngrößenverteilungen und spezifizierten Bohrproben überwiegend als Fein-/ Mittelkies, grobkiesig, grob- bis mittelsandig anzusprechen. Durch die TB 1 wurde im Tenfenbereich von 5,3 m bis 6,5 m u. OK Gelände ein brauner Mittelsand, schluffig, kiesig angetroffen.

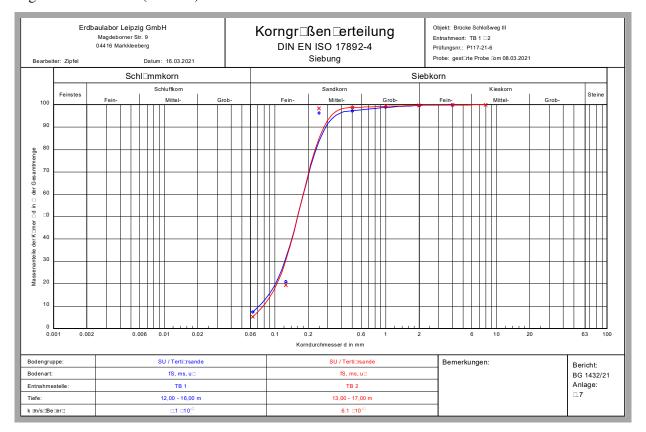
Allgemein können die Flussschotter nach DIN 18196 als intermittierend bis weit gestuftes Kies-Sand-Gemisch (GI - GW) eingestuft werden. Bereichsweise ist der Flussschotter auch als Sand-Schluff-Gemische (SU) abgelagert.

→ Korngrößenverteilungslinien der Flussschotter im Untersuchungsbereich

Der Flussschotter wird nach den abgeleiteten Durchlässigkeitsbeiwerten von ca. 4 x 10^{-3} m/s bis ca. 1 x 10^{-3} m/s als sehr durchlässig eingestuft.

Die Lagerungsdichte des Kies-Sand- bzw. Sand-Kies-Gemisches wird nach den Ergebnissen der ausgeführten Schweren Rammsondierungen bis ca. 8,5 m u. OK Gelände (bis ca. 93,5 m NHN) als locker bis mittel dicht und ab 8,5 m bis 10,0 m bzw. 11,0 m u. OK Gelände als mitteldicht bis dicht gelagert eingestuft.

Die Schichtbasis der Flussschotter wurde durch die beiden Trockenbohrungen im Bereich der Brücke Schlossweg III im Höhenniveau von ca. 92,2 m NHN bis ca. 91,1 m NHN angetroffen.


Die quartären Lockergesteinssedimente (Schicht 2 und 3) können im Untersuchungsbereich durch die wechselhafte Flusssedimentation bzw. -erosion (zeitlich und örtlich) und den mäandernden Flussverlauf in Schichtausbildung und -dicke unterschiedlich ausgebildet sein.

Schicht 4:Tertiärsand (Tertiär)

Im Liegenden der quartären Flusssedimente (Auelehm und Flussschotter) wurde durch die Aufschlussbohrungen ab 10,0 m u. OK Gelände bzw. ab 11,0 m u. OK Gelände grauer Tertiärsand bis zur Endteufe erbohrt.

Nach der vorliegenden Korngrößenverteilungen und der ingenieurgeologischen Bodenaufnahme ist der Tertiärsand gemäß DIN 18196 als Sand-Schluff-Gemisch (Feinkornanteil 6 % bzw. 8 %) bzw. eng abgestufter Feinsand (SU –SE) einzustufen.

⇒ Korngrößenverteilungslinien des Tertiärsandes im Untersuchungsbereich

Die nach dem Regressionsansatz von Hazen abgeleiteten Durchlässigkeitsbeiwerte des Tertiärsandes schwanken im Bereich von ca. 6 x 10⁻⁵ m/s bis ca. 5 x10⁻⁵ m/s. Der Tertiärsand ist somit nach DIN 18130 als durchlässige Bodenschicht einzustufen.

Nach den aufgenommenen Schlagzahlen > 20 bzw. > 30 Schläge pro 10 cm Eindringtiefe der Schweren Rammsondierungen sind die Tertiärsande im Untersuchungsbereich als dicht gelagert bis lokal sehr dicht gelagert einzustufen.

Die Aufschlussergebnisse bestätigen die Angaben der ingenieurgeologischen Recherche.

In Anlehnung an die DIN 18 196 /Bodenklassifikation für bautechnische Zwecke/ werden die bautechnischen Eigenschaften und die Eignung der beschriebenen Baugrundschichten nachfolgend in der Tabelle 3 dargestellt:

Tabelle 3:Bautechnische Eigenschaften und Eignung

Bautechnische Eigen- schaften/ Eignung	Schicht 1 Auffüllung	Schicht 2 Auelehm	Schicht 3 Flussschotter	Schicht 4 Tertiärsand
Tragfähigkeit	gering bis groß	gering bis sehr ge- ring	mittel	sehr groß
Verformbarkeit	groß bis gering	groß bis sehr groß	gering	sehr gering
Verdichtbarkeit	schlecht bis gut	sehr schlecht	gut bis sehr gut	mittel
Durchlässigkeit	groß bis gering	gering	groß bis sehr groß	groß
Witterungs-/ Erosionsempfindlichkeit	groß bis gering	groß	gering	gering bis mittel
Frostempfindlichkeit	groß bis gering	groß	gering	gering
Rammbarkeit	leicht bis schwer*	leicht bis mittel schwer	mittel schwer bis sehr schwer*	mittel schwer
Bohrbarkeit	leicht bis sehr schwer*	leicht	mittel schwere lokal sehr schwer*	schwere
Eignung als Gründungsschicht	ungeeignet	ungeeignet	geeignet	gut geeignet

- * Wasserbausteine, Gerölllagen usw. schwer bohrbar und Rammung (mögliche Rammhindernisse)
- / Einbringhilfe Auflockerungsbohrungen erforderlich;

Die Eigenschaften bzw. die Eignung des Flussschotters und des Tertiärsandes hängen wesentlich von der Lagerungsdichte und dem Feinkornanteil ab.

5.3 Homogenbereiche gemäß VOB, Teil C von 2019-09

Mit der Aktualisierung der Vergabe- und Vertragsordnung für Bauleistungen /VOB; Teil C/ im Jahre 2015 und 2016 sowie 2019 wurden die Boden- und Felsklassen in 10 Tiefbaunormen durch Homogenbereiche ersetzt. Nachfolgend sind die Homogenbereiche mit den Angaben gemäß der Normen DIN 18300:2019-09 /Erdarbeiten/, DIN 18301:2019-09 /Bohrarbeiten/ und DIN 18304:2019-09 /Ramm-Rüttel- und Pressarbeiten/ der im Untersuchungsbereich angetroffenen Böden tabellarisch zusammengestellt (s. Tabelle 4,Tabelle 5, und Tabelle 6).

Tabelle 4: Homogenbereiche E 1 bis E 4 für Erdarbeiten gemäß DIN 18300:2019-09

Kennwerte / Eigenschaften	E 1	E 2	E 3	E 4
ortsübliche Bezeichnung	Auffüllung	Auelehm	Flussschotter	Tertiärsand
Korngrößenverteilung	Band E 1	Band E 2	Band E 3	Band E 4
Anteil Steine u. Blöcke [%]	< 20	< 5	< 15	< 5
Anteil großer Blöcke [%]	< 10	< 5	< 10	< 5
Dichte, feucht [g/cm³]	1,8-2,0	1,5 – 1,8	1,8-2,0	1,8– 1,9
undränierte Scherfestigkeit [kN/m²]	40 - 180	30 - 70	n. b. ø	n. b. o
Wassergehalt [%]	10 - 90	15 - 40	8 - 35	8 - 35
Konsistenz	n. e. @	n. e. @	n. b. ø	n. b. ø
Konsistenzzahl [-]	0,30-0,75	0,40 - 0,90	n. b. ø	n. b. ø
Plastizität	n. e. @	n. e. @	n. b. ø	n. b. ø
Plastizitätszahl [-]	0,10-0,25	0,15-0,35	n. b. ø	n. b. o
Lagerungsdichte I _D [%]	n. b. ø	n. b. ø	25 – 50	65 – 90
Organischer Anteil [%]	< 20	< 20	< 5	< 15
Bodengruppe nach DIN 18 196	[SW]-[TL]	TM - SU / OU	GI, GW, SU	SE, SU

[⊃] n. b. • nicht bestimmbar; n. e • nicht erforderlich;

Tabelle 5: Homogenbereiche B 1 bis B 4 für Bohrarbeiten gemäß DIN 18301:2019-09

Kennwerte /	B 1	В 2	В 3	B 4
Eigenschaften				
ortsübliche Bezeichnung	Auffüllung	Auelehm	Flussschotter	Tertiärsand
Korngrößenverteilung	Band E 1	Band E 2	Band E 3	Band E 4
Anteil Steine u. Blöcke [%]	< 20	< 5	< 15	< 5
Anteil großer Blöcke [%]	< 10	< 5	< 10	< 5
Dichte, feucht [g/cm³]	1,8-2,0	1,5 – 1,8	1,8 – 2,0	1,8– 1,9
Kohäsion [kN/m²]	n. b. ø	0 - 20	n. b. ø	n. b. o
undrän. Scherfestigkeit [kN/m²]	40 - 180	30 - 70	n. b. ø	n. b. o
Wassergehalt [%]	10 - 90	15 - 40	8 - 35	8 - 35
Konsistenz	n. e. @	n. e. @	n. b. ø	n. b. o
Konsistenzzahl [-]	0,30-0,75	0,40 - 0,90	n. b. ø	n. b. o
Plastizität	n. e. @	n. e. @	n. b. ø	n. b. o
Plastizitätszahl [-]	0,10-0,25	0,15-0,35	n. b. ø	n. b. o
Lagerungsdichte I _D [%]	n. b. ø	n. b. o	25 – 50	65 – 90
Abrasivität [-]	schwach abrasiv bis	schwach abrasiv	stark abrasiv -	stark abrasiv
	strak abrasiv		extrem abrasiv	
Bodengruppe nach DIN 18 196	[SW]-[TL]	TM - SU / OU	GI, GW, SU	SE, SU

[⊃] n. b. • nicht bestimmbar; n. e • nicht erforderlich;

Tabelle 6: Homogenbereiche R 1 bis R 4 für Ramm-/Rüttel- und Pressarbeitet gemäß DIN 18304:2019-09

Kennwerte / Eigenschaften	R 1	R 2	R 3	ER4
ortsübliche Bezeichnung	Auffüllung	Auelehm	Flussschotter	Tertiärsand
Korngrößenverteilung	Band E 1	Band E 2	Band E 3	Band E 4
Anteil Steine u. Blöcke [%]	< 20	< 5	< 15	< 5
Anteil großer Blöcke [%]	< 10	< 5	< 10	< 5
Dichte, feucht [g/cm³]	1,8-2,0	1,5 – 1,8	1,8 – 2,0	1,8-1,9
Wassergehalt [%]	10 - 90	15 - 40	8 - 35	8 - 35
Konsistenz	n. e. ø	n. e. ø	n. b. o	n. b. ø
Konsistenzzahl [-]	0,30 - 0,75	0,40 - 0,90	n. b. o	n. b. ø
Plastizität	n. e. ø	n. e. ø	n. b. o	n. b. ø
Plastizitätszahl [-]	0,10 - 0,25	0,15-0,35	n. b. o	n. b. ø
Lagerungsdichte I _D [%]	n. b. ø	n. b. ø	25 – 50	65 – 90
Bodengruppe nach DIN 18 196	[SW]-[TL]	TM - SU / OU	GI, GW, SU	SE, SU

[⊃] n. b. • nicht bestimmbar; n. e • nicht erforderlich;

Für die Verbauarbeiten wird in der DIN 18303:2016-09 im Abschnitt 2.3 -Beschreibung und Einteilung von Boden und Fels- ausgeführt, dass die Reglung der DIN 18300:2019-09 (s. 1. Geltungsbereich) für Erdarbeiten auch für die Verbauarbeiten gemäß DIN 18303 gelten.

Die Homogenbereiche E 1 bis E 4; B 1 bis B 4 und R 1 bis R 4 entsprechen den Baugrundschichten 1a bis 4 des Baugrundmodells. Die Körnungsbänder E 1, E 2, E 3 und E 4 sind dem Bodengutachten als Anlage 9 beigeheftet.

5.4 Tragfähigkeit

Die ausgeführten Sondierungen DPH 1 und 2 mit der Schweren Rammsonde (DPH) nach DIN EN ISO 22476-2 belegen anhand der Schlagzahl N des Rammbären je 10 cm Eindringtiefe, dass die ober-

flächlich anstehende Auffüllung und der Auelehm, in Abhängigkeit der vorliegenden Konsistenz bzw. Kornzusammensetzung, im Regelfall geringe bis sehr geringe Rammwiderstände (Schlagzahlen von 0 bis 3) aufweisen.

Im Schichtbereich der Flussschotterschicht ab 1,5 m bzw. ab 4,0 m bis ca. 8,5 m u. Ansatzhöhe /ab ca. 93,5 m NHN/schwanken die Schlagzahlen im Bereich von $N_{10} \ge 5$ bis > 8/10 cm. Bereichsweise weisen die Schweren Rammsondierungen für einzelne Flussschotterabschnitte, Schlagzahlen von ca. 15 Schläge / 10 cm Eindringtiefe aus. Nach unseren Erfahrungen muss in diesen Schichtbereichen mit eingelagerten Grobkies und Steinen gerechnet werden. Ab ca. 8,5 m u. OK Gelände steigen die Schlagzahlen auf $N_{10} \ge 10$ bis > 20/10 cm und zeigen eine mitteldichte bis dichte Lagerung des unteren Schichtbereichs des Flussschotters an.

Im Bereich des Tertiärsandes steigen die Schlagzahlen auf über 30 bis 40 Schläge, pro 10 cm Eindringtiefe an. Bei der Rammtiefe von ca. 14,7 m u. OK Gelände / bei ca. 87,5 m NHN/ wurden die beide Schwere Rammsondierungen abgebrochen, da die Schlagzahlen auf > 60 / 10 cm Eindringtiefe anstiegen.

In Anlehnung an die DIN 4094-3 kann die Lagerungsdichte für ein weit gestuftes Kies-Sand-Gemisch (Flussschotter) bzw. einem eng abgestuften Sand (Tertiärsande) nach folgenden Gleichungen eingeschätzt werden:

Schwere Rammsonde DPH

Flussschotter

 $D = -0.18 + 0.545 \lg N_{10}$ (über Grundwasser)

 $N_{10, \ddot{u}} = 1.2 * N_{10, u} + 4.5$ (Umrechnung im Grundwasser).

Tertiärsande

 $D = 0.15 + 0.455 \lg N_{10}$ (im Grundwasser)

Entsprechend der DIN 1055, Teil 2 wird bei dem erkundeten weit gestuften Kies-Sand-Gemisch mit einer Schlagzahl $N_{I0} \ge 4$ (im Grundwasser) von einer mittel dichten Lagerung (D > 0,30) und einer Schlagzahl $N_{I0} \ge 12$ (im Grundwasser) von einer dichten Lagerung (D > 0,50) ausgegangen. Der eng abgestufte Tertiärsand wird mit $N_{I0} \ge 10$ Schläge pro 10 cm Eindringtiefe als dicht gelagert (D > 0,50) und mit $N_{I0} \ge 25$ Schläge pro 10 cm Eindringtiefe als sehr dicht gelagert (D > 0,75) eingestuft.

Nach den ermittelten Schlagzahlen der ausgeführten Rammsondierungen wird der erkundete Flussschotter bis 93,5 m NHN als locker gelagert bis mittel gelagert und ab 93,5 m NHN als mittel dicht bis dicht gelagert eingestuft. Die liegenden Tertiärsande sind als dicht bis sehr dicht gelagert zu beurteilen.

Allgemein kann die Tragfähigkeit und Scherfestigkeit der erkundeten Baugrundschichten im Baubereich der Brücke Schlossweg III in Schlosspark Lützschena wie folgt eingeschätzt werden:

Auffüllung (Schicht 1): geringe Tragfähigkeit / Scherfestigkeit,

Auelehm (Schicht 2): geringe Tragfähigkeit / Scherfestigkeit,

Flussschotter (Schicht 3): mittlere bis groß Tragfähigkeit / Scherfestigkeit und Tertiärsand (Schicht 4): große bis sehr große Tragfähigkeit / Scherfestigkeit.

5.5 Bodenkennwerte

Nach den vorliegenden Aufschlussergebnissen kann bei den geotechnischen Berechnungen für den Ersatzneubau der Brücke Schlossweg III im Schlosspark Lützschena vereinfacht von einem 4-Schichten-Baugrundmodell ausgegangen werden. Den einzelnen Baugrundschichten werden auf Grundlage der vorliegenden Erkundungsergebnisse, Laborprüfungen und Erfahrungswerte folgende bodenphysikalische Kennwerte und Zustandsgrößen als charakteristische Bodenkennwerte in der Tabelle 7 zugeordnet:

Tabelle 7: Charakteristische Bodenkennwerte

Kennwerte /	Auffüllung	Auelehm	Flussschotter	Tertiärsande
Zustandsgrößen	(Schicht 1)	(Schicht 2)	(Schicht 3)	(Schicht 4)
Teufenbereich (m u. OK Gel./	0,0-2,0/	2,0 – 4,0 /	1,5 – 11,0 /	10,0 – 17,0 /
m NHN)	102,2 - 100,2	100,2 - 98,2	100,6 – 91,1	92,2 bis 85,1
Bodenarten (DIN 4022)	S; G, U, (o)	U, s, g, (o)	mG, fg-ms, gg bis mS, u, gs-mg	fS, ms, uʻ
Bodengruppen (DIN 18196)	[SW]-[TL]	TM - SU / OU	GI, GW, SU	SE, SU
Durchlässigkeit k _f (m/s)	10 ⁻⁴ - 10 ⁻¹⁰	10 ⁻⁶ - 10 ⁻¹⁰	5 x10 ⁻³ - 10 ⁻⁴	$10^{-4} - 10^{-5}$
Frostgefährdung (ZTVE)	F1-3	F 3	F 1	F1-2
Rohwichte γ / γ ^c (kN/m³)	15 - 20/5 -10 ¹	16 - 19/6 - 9 ¹	18 -19 / 8 -9 ¹	19 /9¹
wirksam. Steifemodul $\mathbf{E}_{\mathbf{S}^k}$ (MN/m²)	3 - 5 [1] ²	3 - 5 [1] ²	60 - 120	100 – 160
wirksam. Reibungswinkel φ _k ' (°)	22,5 – 30	22,5 [15] ²	32,5 – 37,5	32,5 - 35
wirksam. Kohäsion c _k ' (kN/m²)	0 - 5	3 [0] 2	0	0

 ¹ Rohwichte unter Auftrieb;

^{• []&}lt;sup>2</sup> - Kennwerte für weiche bis breiige Schichtbereiche

6 GEOTECHNISCHE FACHBERATUNG

6.1 Allgemeine Einschätzung der Baugrund- und Gründungsverhältnisse

Der untersuchte Baubereich des geplanten Ersatzneubaus der Brücke Schlossweg III im Schlosspark Lützschena ist nach den vorliegenden Ergebnissen der Felduntersuchungen und Laborprüfungen aus geotechnischer Sicht als bedingt geeignet einzustufen.

Die oberflächlich vorhandene inhomogene Auffüllung und der bereichsweise darunter anstehende Auelehm sind als begrenzt scherfest und deutlich verformbar zu beurteilen. Für eine statisch sichere und verformungsarme Ausführung einer Ertüchtigung der vorhandenen Bauwerksgründung sind die Bauwerks- und Verkehrslasten /Einwirkungen/ in die tragfähigen Flussschotter bzw. in den gut bis sehr gut tragfähigen Tertiärsand einzuleiten.

Die hydrogeologischen Standortverhältnisse sind für eine Gründungsertüchtigung mittels einer klassischen Flachgründung im Schichtniveau der Flussschotter als ungünstig einzuschätzen, da die erforderliche Gründungsebene deutlich unterhalb des Ruhewasserspiegels des Grundwassers im Baubereich liegt.

Alternativ zu klassischen Flachgründungen können die Bauwerks- und Verkehrslasten/Einwirkungen im Zuge der gegebenenfalls erforderlichen Gründungsertüchtigung über Tiefgründungen (z. B. Mikropfähle) im Schichtniveau des Tertiärsandes oder mittels Brunnengründung als "tiefe Flächengründung" im Schichtniveau der Flussschotter statisch sicher und verformungsarm abgeleitet werden.

6. 2 Gründungsberatung

Gemäß der Aufgabenstellung ist als 1. Schritt der Nachweis der Tragfähigkeit und Gebrauchstauglichkeit der Bestandsgründung zu führen.

Für die Beurteilung der vertikalen Tragfähigkeit der vorhandenen Rammpfahlgründung mittels der verschweißten Larssen-Spundwandprofilen in nichtbindige Bodenschichten (Flussschotter und tertiärsande) wurde auf die Erfahrungswerte für eine Vorbemessung der EAU 2012 zurückgegriffen. Die charakteristischen Bodenkennwerte für die einzelnen Gründungsbereiche sind in der nachfolgenden Tabelle 8 zusammengestellt:

Tabelle 8: Charakteristische Werte für Mantelreibung und Spitzenwiderstand gerammter Spundwände

Bodenschicht	Bruchwert der Pfahlmantelreibung ρ _{s,k} im kN/m²	Pfahlspitzendruck ρ _{bik} in MN/m²
Auffüllung und Auelehm von 102,2 m bis 98,2 m NHN	-/-	-/-
Flussschotter bis 93,5 m NHN ⁻	-/-	-/-
Flussschotter bis 92 m NHN - Widerlager Süd bis 91 m NHN - Widerlager Nord	30	15
Tertiärsande bis 85 m NHN	50	20

Nach der Auswertung der von der GGL GmbH vorgenommenen geophysikalischen Bohrlochmessungen, wurden die Stahlspundwandprofile am Nordwiderlager bis 92,25 m NHN und am Südwiderlager bis 91,84 m NHN eingerammt (s. Anlage 7 – Kurzbericht zur Spundwandlängenermittlung).

Kann eine ausreichende Standsicherheit der Bestandsgründung für den neuen Brückenüberbau nicht nachgewiesen werden, muss eine Gründungsertüchtigung bzw. alternativ eine Neugründung ausgeführt werden.

Eine Tiefgründung mittels Bohr-, Fertigramm-, Schraub- und Ortbetonrammpfählen mit einer Pfahlgründung im Schichtniveau der holozänen bis pleistozänen Flussschotter kann nach den Ergebnissen der Baugrunduntersuchung gemäß den Vorgaben der EA Pfähle nicht dimensioniert werden. Der erkundete Flussschotter besitzt bis ca. 8,5 m u. OK Gelände für eine Bemessung der o. g. Pfahlsysteme nach Tabellenwerten der EA Pfähle eine zu geringe Lagerungsdichte.

Bei den örtlichen Standortverhältnissen, den erkundeten Baugrundverhältnissen und der vorhandenen Bestandsgründungs wird aus Sicht des Baugrundsachverständigen eine gegebenenfalls erforderliche Ertüchtigung der Bauwerksgründung mittels Mikropfählen $D_s \leq 30$ cm gemäß DIN EN 14199 empfohlen. Über verpresste Mikropfähle könnten die Bauwerkslasten im Zuge einer Gründungsertüchtigung oder Neugründung im unteren, mittel dicht bis dicht gelagerten Flussschotterbereich und in die liegenden dicht bis sehr dicht gelagertem Tertiärsande abgetragen werden.

Der Entwurf und die Bemessung von Pfählen ist gemäß der DIN EN 1997-1:2009-09 vorzugsweise auf der Grundlage von statischen bzw. dynamischen Probebelastungen oder empirischer bzw. analytischer Berechnungsverfahren vorzunehmen. In der DIN 1054:2010-12 als deutscher Anhang zur DIN EN 1997-1:2009-09 wird unter Ansatz 7.6.2.3 /Grenzwert des Druckwiderstandes aus Ergebnissen

von Baugrundversuchen/ für Mikropfähle darauf hingewiesen, dass die Pfahlwiderstände aus Erfahrungswerten nach der EA - Pfähle /Empfehlungen des Arbeitskreis "Pfähle" - 2. Auflage von 2012/ nur in begründeten Ausnahmefällen verwendet werden dürfen.

Zur ersten Abschätzung der zulässigen axialen Pfahltragfähigkeiten von verpressten Mikropfählen wurden mit dem Programm AXPILE der GGU - Software GmbH aus Braunschweig /Version 7.11 von 01-2021/ für den Baubereich der Brücke Schlossweg III, mit dem geotechnischen Baugrundprofil der TB 1 ausgeführt. Für den mittel dicht bis dicht gelagerten Flussschotterbereich und die Tertiärsande als tragfähige Schichten, wurde nach der EA – Pfähle, Tabelle 5.29 ein Bruchwert $q_{s,k}$ für die Pfahlmantelreibung von 135 kN/m² und 250 kN/m² angesetzt. Bei den exemplarischen Berechnungen wurde die zulässige, axiale Vertikallast für Mikropfähle mit einer Pfahllänge von 9,00 m bis 12,00 m ermittelt. Bei den berechneten Pfahllängen wird der o. g. Mindestabstand von \geq 4 x D eingehalten. In der Tabelle 9 wurden exemplarisch, die Berechnungsergebnisse für Mikropfähle zusammengestellt.

> Tabelle 9: Berechnungsansätze und Berechnungsergebnisse für verpresste Mikropfähle gem. EA - Pfähle

Berechnungsansätze	Mikropfahldurchmesser	Mikropfahldurchmesser	
Berechnungsergebnisse	$D = 135 \ mm$	D = 155 mm	
Anlagennummer des PC - Ausdruckes	7.1	7.2	
angesetzte OK Mikropfähle (m NHN)	100,0	100,0	
Unterkante Pfahl (m NHN)	91,0 - 88,0	90,0 - 88,0	
Einbindetiefe Flussschotter und Tertiärsande (m)	2,5 - 5,5	2,5 - 5,5	
Bohrpfahllänge (m)	9,0 - 12,0	9,0 - 12,0	
zulässige axiale Pfahltragfähigkeit zul. V (kN)	73 - 210	84 - 241	
Pfahlkopfsetzung bei zulässiger Pfahltragfähigkeit (cm)	0,29 - 0,36	0,29 - 0,37	

Die PC-Ausdrucke der Berechnungen mit den Einzelergebnissen für die Mikropfähle sind dem Gutachten als Anlage 7.1 und 7.2 beigeheftet.

Da die Lastabtragung von Mikropfählen nur axial möglich ist, sind zur Lastabtragung von H-Lasten bzw. Momenten geneigte Mikropfähle anzuordnen.

Beim Ansatz des berechneten Bemessungswertes für einen axial belasteten Mikropfahl wird ein Pfahlmindestabstand von ≥ 80 cm vorausgesetzt. Wird der Mindestabstand nicht eingehalten, ist eine Abminderung des berechneten Bemessungswertes, infolge der Gruppenwirkung, erforderlich. Weiterhin wird eine normgerechte Ausführung der Mikropfähle vorausgesetzt.

7 <u>BAUTECHNISCHE EMPFEHLUNGEN</u>

Unter Berücksichtigung der erkundeten Baugrundverhältnisse einerseits und der Planungsvorgaben für den Bau der bauzeitlichen Umfahrung mit Behelfsbrücke östlich der Gustav-Esche-Brücke I ande-

rerseits, werden für die Bauausführung folgende Empfehlungen gegeben:

7.1 Baugrubengestaltung

Bei denen im Baubereich oberflächlich erkundeten Bodenschichten (Auffüllung und steife bis weiche Auelehmbereiche) wird die Ausführung von geböschten Baugruben bis 3 m Tiefe nach DIN 4124 /Baugruben und Gräben – Böschungen, Verbau, Arbeitsraumbreite/ mit einem Böschungswinkel von

$$\beta = 45^{\circ}$$

empfohlen. Werden durch die Baugruben locker gelagerte stark inhomogene Auffüllungsbereiche oder Wasser angeschnitten, ist der Böschungswinkel weiter abzuflachen oder ein Verbau vorzusehen. Gemäß der DIN 4124 ist die Standsicherheit bei Böschungen mit einer Höhe von mehr als 5 m nach DIN 4084, objektbezogen nachzuweisen. Die offen liegenden Baugrubenböschungen sind vor Wasser z. B. durch die Abdeckung mit Industriefolie zu schützen, um Erosionserscheinungen vorzubeugen.

Bei der Auslegung der Baugrubenböschungen bzw. des Baugrubenverbaus müssen die jeweiligen Randbedingungen (z. B. Bestandsbauwerke, Wasserverhältnisse, Verkehrslasten) berücksichtigt werden. Weitere Hinweise und Forderungen bezüglich der Böschungsgestaltung und Baugrubensicherung können der DIN 4124 und den Empfehlungen des Arbeitskreises Baugruben (EAB) entnommen werden.

Grundsätzlich ist mit jeder Ausschachtung eine Spannungsänderung im Baugrund verbunden, die zu Verformungen und Veränderungen des umliegenden Bodengefüges führt. Im Vorfeld der Bauarbeiten sollte eine Beweissicherung an den im Umfeld der Brückenwiderlager vorhandenen baulichen Anlagen erfolgen, um den Ist-Zustand zu dokumentieren.

7.2 Wasserhaltung, Betonschutz und Korrosionsverhalten

Zum Fassen und Abpumpen von möglichem Schichten- und/oder Oberflächenwasser ist bauzeitlich eine leistungsstarke offene Wasserhaltung vorzuhalten und gegebenenfalls einzusetzen. Bei der Ausführung einer Tiefgründung mittels verpresster Mikropfähle als Ertüchtigung bzw. Neugründung wird davon ausgegangen, dass die Arbeitsebenen oberhalb des Grundwasserspiegels und dem bauzeitlichen Wasserspiegel der Weißen Elster liegen.

Zur Beurteilung der Betonaggressivität und der Korrosionswahrscheinlichkeit des Grundwassers im Flussschotter und des Wassers der Weißen Elster, wurde im Rahmen der Felduntersuchungen für den Ersatzneubau eine Wasserprobe aus der TB 1 und eine Wasserprobe aus der Weißen Elster entnom-

men. Beide Wasserproben wurden in unserem Auftrag von der Analysen Service GmbH aus Leipzig nach DIN 4030 /Beurteilung betonangreifender Wässer, Böden und Gase/ nach DIN 50 929 /Korrosionswahrscheinlichkeit metallischer Werkstoffe bei äußerer Korrosionsbelastung/ untersucht. Auf der Grundlage des übergebenen Prüfberichtes wird die Wasserprobe aus der TB 1 gemäß der o. g. DIN-Vorschriften in der Tabelle 10 beurteilt.

Tabelle 10: Wasserbeurteilung nach DIN 4030 und DIN 50 929

Wasserent-	Betonaggressivität	Grenzwertüberschreitung	Bewertungszahl Wo	Bewertungszahl W ₁
nahmestelle	nach DIN 4030	nach DIN 4030	nach DIN 50929	nach DIN 50929
	schwach angrei-	Sulfat / 210 mg/l	-1 ⇒ geringe Mulden-	-4 ⇒ geringe Mulden-
TB 1	fend / XA1	Grenze >200 – 600 mg/l	/Lochkorrosion und sehr	/Lochkorrosion und sehr
			geringe Flächenkorrosion	geringe Flächenkorrosion
Wasser	schwach angrei-	Sulfat / 250 mg/l	-6 ⇒ mittlere Mulden-	-9 ⇒ hohe Mulden-
der Weiße	fend / XA1	Grenze >200 – 600 mg/l	/Lochkorrosion und gerin-	/Lochkorrosion und mitt-
Elster			ge Flächenkorrosion	lere Flächenkorrosion

Bewertungszahl W₀ - Freie Korrosion im Unterwasserbereich D Bewertungszahl W₁ - Korrosion an der Wasser/Luft-Grenze

Die Prüfberichte der Wasser- und der Bodenuntersuchungen wurden dem Gutachten als Anlage 5.8 bis 5.9 beigeheftet.

7.3 Hinweise zum Erdbau

Die im Baubereich oberflächlich anstehende gemischtkörnige Auffüllung und der Auelehm sind als frost- und witterungsempfindlich einzustufen. Die Erdbauarbeiten sollten nach Möglichkeit in einer niederschlagsarmen und frostfreien Jahreszeit ausgeführt werden. Die Verminderung der Tragfähigkeit der Baugrubensohle durch Auflockerung, Durchfrieren bzw. Aufweichen ist zu vermeiden.

Die im Rahmen des Baugrubenaushubs auszubauende Auffüllung und der Auelehm sind für den Wiedereinbau nur bedingt bzw. nicht geeignet, da eine ordnungsgemäße Verdichtung dieses Erdstoffes nicht möglich ist.

Die Hinterfüllung der Brückenwiderlager ist gemäß der Richtzeichnung WAS 7 mit Grundrohr nach der ZTVE-StB 17 lagenweise einzubauen und entsprechend den Vorgaben der gen. Richtzeichnung zu verdichten.

Zur Gewährleistung einer scherfesten und verformungsarmen Baugrubenverfüllung wird empfohlen, ein korngestuftes, verdichtungswilliges Kies-Sand-Gemisch als Schüttboden lagenweise einzubauen und bis zu einem Verdichtungsgrad von D_{Pr} ≥ 100 % der einfachen Proctordichte zu verdichten.

Die Verdichtungsvorgaben sollten nach den Mindestforderungen der ZTVE-StB 17 unabhängig von der Eigenkontrolle bzw. der Eigenüberwachung des Baubetriebes, von einem unabhängigen Prüflabor überprüft werden.

8 ZUSAMMENFASSUNG UND SCHLUSSBEMERKUNGEN

Nach den vorliegenden Ergebnissen der ausgeführten Baugrunduntersuchung steht im Bereich des Ersatzneubaus der Brücke Schlossweg III im Schlosspark Lützschena in Leipzig, unter einer oberflächlichen anthropogenen Auffüllung und/oder einer Auelehmschicht, ab ca. 1,5 m bzw. ab 4,0 m u. OK Gelände (ab ca. 100,6 m NHN bzw. ab ca. 98,2 m NHN) Flussschotter an. Im Liegenden des Flussschotters wurde bis 17 m u. OK Gelände Tertiärsand erkundet. Der ausgepegelte Grundwasserspiegel wurde in den Baugrundbohrungen bei ca. 99,1 m NHN bzw. 99,2 m NHN eingemessen.

Bei der erkundeten Baugrundschichtung und den örtlichen Gegebenheiten könnte eine gegebenenfalls erforderliche Ertüchtigung der Bauwerksgründung bzw. eine Neugründung aus der Sicht des Baugrundsachverständigen mittels verpresster Mikropfähle gemäß DIN EN 14 199 vorgenommen werden.

Zur abfallrechtlichen Bewertung der Rückbaumaterialien und des Bodenaushubes wurde im Rahmen der Baugrunduntersuchung 6 Material- und Bodenproben auf Schadstoffe untersucht und von der MULTI TEC GmbH in einem separaten Bericht (s. Anlage 6) bewertet. Nachfolgend sind die Ergebnisse zusammengefasst:

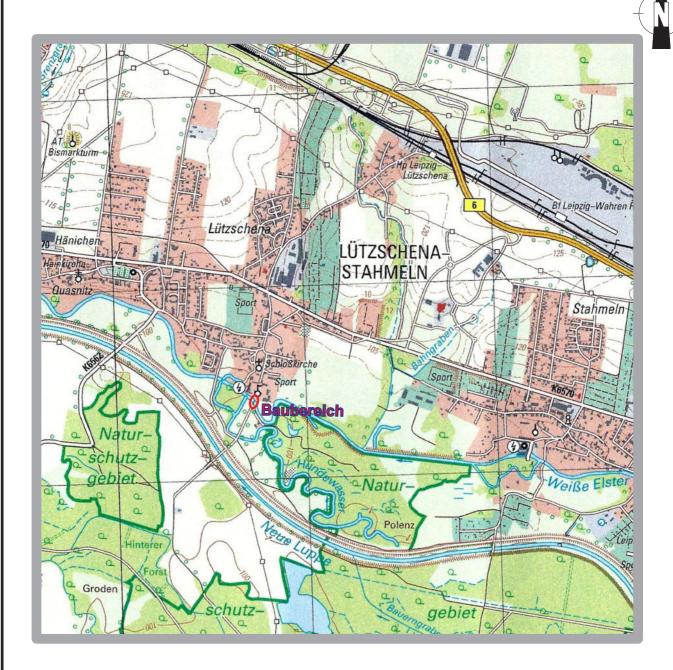
\Rightarrow BOP 1 – Auffüllung/WL Nord – TB 1	Z 0 nach LAGA M 20 von 2004 – Boden
⇒ BOP 2 – Auffüllung/WL Süd – TB 2	Z 1.2 nach LAGA M 20 von 2004 – Boden
⇒ BP 3 – Beton WL Nord + WL Süd	>Z 2 nach LAGA TR Bauschutt - Chrom
	> W 2 - Chrom
	DK I
⇒ TP 4 – Anstrich/Sperrschicht WL Nord	kein gefährlicher Abfall
⇒ BOP 5 – Sediment Weiße Elster	>Z 2 nach LAGA M 20 von 2004 – Boden
	DK I* - TOC
⇒ HP 6 – Holz Brückenoberbau	kein Grenzwertüberschreitung für eine
	energetische Verwertung

Die ermittelten chemischen Parameter und die abfallrechtliche Bewertung der untersuchten Rückbaumaterialien sowie die Prüfberichte sind dem Bericht der MULTITEC GmbH in der Anlage 6 zu entnehmen bzw. einzusehen.

Im Untersuchungsgebiet wurden bei den Felduntersuchungen nach organoleptischer Prüfung der aufgeschlossenen Bodenschichten, keine Hinweise auf Altlasten festgestellt. Nach Auskunft der zuständigen Bodenschutzbehörde des Umweltamtes der Stadt Leipzig /U6/ sind im Untersuchungsbereich der Brücke Schlossweg III keine Altlastenlastenverdachtsflächen registriert.

Allgemein ist festzustellen, dass entsprechend der DIN EN ISO 1997-2 und der DIN 4020 /Geotechnische Untersuchungen/ die Ergebnisse der Feld- und Laboruntersuchungen nur für die jeweilige Aufschlussstelle gelten und den Boden zum Zeitpunkt der Untersuchung beschreiben. Naturgemäße Abweichungen im Schichtenverlauf bzw. -zusammensetzung zwischen den Aufschlussstellen sind möglich.

Das vorliegende Bodengutachten gilt in seiner inhaltlichen und räumlichen Abgrenzung für den unter dem Punkt Vorgang beschriebenen Ersatzneubau der Brücke Schlossweg III über die Weiße Elster im Schlosspark Lützschena in Leipzig. Alle Folgerungen und Empfehlungen basieren ausschließlich auf den angeführten Unterlagen. Diese Einschränkung ist bei der Anwendung des Gutachtens zu beachten.


Für sich ergebende Rückfragen zum vorliegenden Bodengutachten stehe ich zu Ihrer Verfügung.

ANLAGEN

zum Bodengutachten

Ersatzneubau Brücke Schlossweg III über die Weiße Elster im Schlosspark Lützschena in Leipzig, OT Lützschena

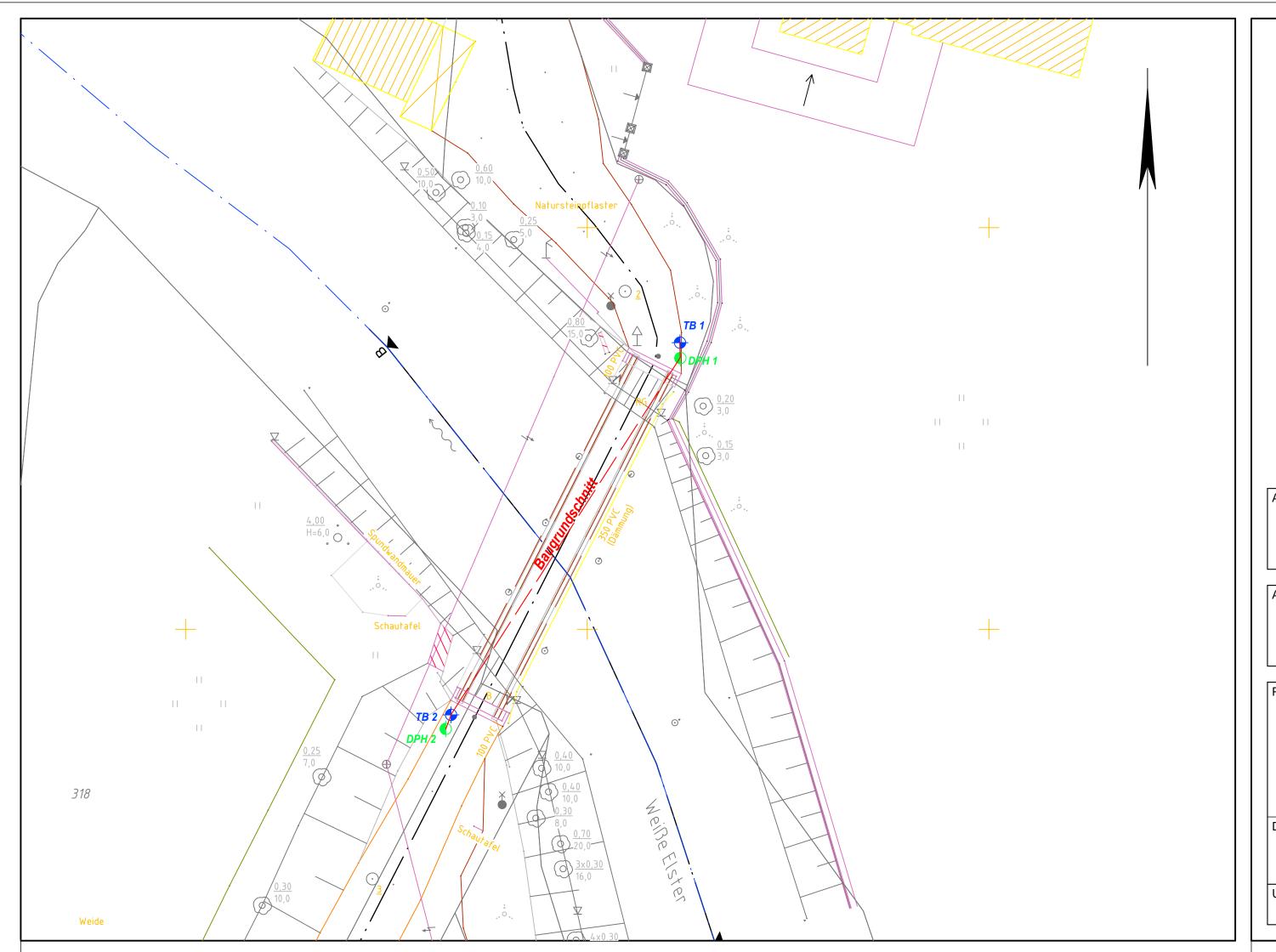
(BG 1425/21 vom 12. April 2021)

Anlage: 1
Blatt: 1

Bauvorhaber

Ersatzneubau BW II/61 Brücke Schlossweg III über die Weiße Elster in Leipzig, OT Lützschena

Bauherr :


STADT LEIPZIG

Verkehrs- und Tiefbauamt, Abt. Straßenentwurf D-04317 Leipzig, Prager Straße 118, Haus C

Projekt:

Baugrunduntersuchung / Übersichtsplan

Projekt-Nr.:	BG 1425/21 - 1.1 [22.03.21]	Verfasser: Baugrundbüro Barthel
Maßstab :	ca. 1:20.000	D-04416 MARKKLEEBERG, Magdeborner Str. 9 Tel. 03 42 97/678 - 0; Fax 03 42 97/678 - 11

LEGENDE:

TB - Trockenbohrung

DPH - Schwere Rammsondierung

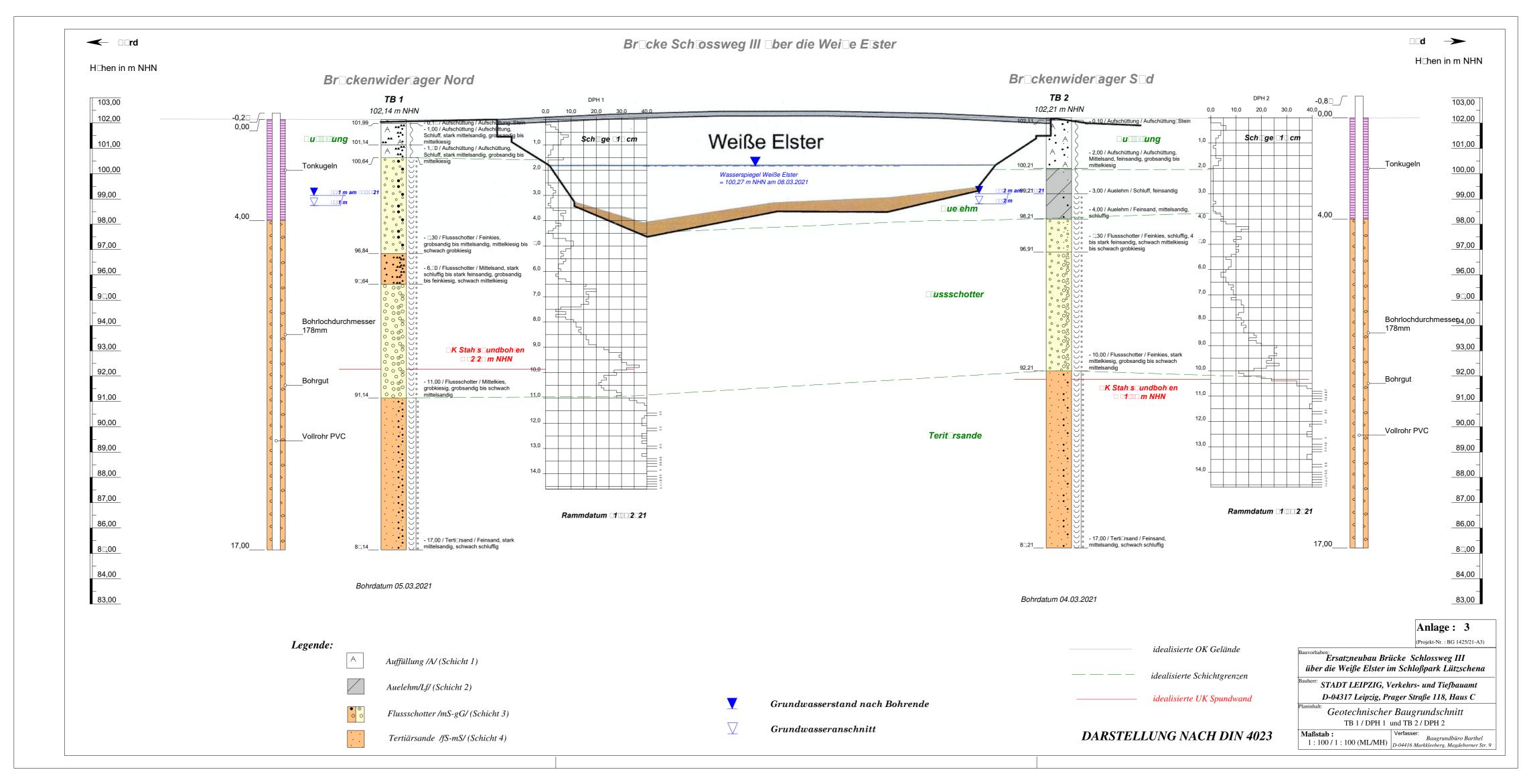
Auftraggeber

STADT LEIPZIG Verkehrs- und Tiefbauamt Prager Straße 118, Haus C D-04317 Leipzig

Auftragnehmer

BAUGRUNDBÜRO BARTHEL Magdeborner Straße 9 D-04416 Markkleeberg baugrundbuero-barthel@t-online.de

Projekt-Nr.	BG 14125/21 Name Datum Barthel 06.04.2021 Barthel 06.04.2021				
	Name	Datum			
bearbeitet	Barthel	06.04.2021			
gezeichnet	Barthel	06.04.2021			
geprüft	Barthel	12.04.2021			


Projekt

Ersatzneubau BW II/02 Brücke Schlossweg III über die Weiße Elster in Leipzig, OT Lützschena

Baugrunduntersuchung / Aufschlussplan mit Baugrundschnittlinie

Anlagen-Nr. Maßstab 1:200

URHEBERRECHT Das Urheberrecht an diesen Zeichnungen nebst allen ihren Teilen sowie Anlagen verbleibt bei m Baugrundbürio Barthel. Die Zeichnungen sind als vertrauliche Dokumente zu behandeln. Jede Verwertung ohne unsere ausdrückliche schriftliche Zustimmung ist unzulässig und strafbar. Dies gilt insbesondere für Vervielfältigungen, Mikroverfilmungen, die fototechnische Wiedergabe sowie die Einspeicherung und Verarbeitung in elektronischen Systemen.

ANLAGE 4 zum Bodengutachten

Ersatzneubau Brücke Schlossweg III über die Weiße Elster im Schlosspark Lützschena in Leipzig, OT Lützschena

(BG 1425/21 vom 12. April 2021)

Schichtenverzeichnisse, Protokolle der Schweren Rammsondierungen und der Materialprobenentnahme

	opfblatt nach DIN 4022 z r Baugrundbohrung	um Schichtenverzeichr		Archiv-Nr.: 4.1 Aktenzeichen: unt			
1	Objekt: Brücke Schloß	weg III		des Schichtenverzeichnisses erichte und ähnliches :	2 0		
2	Höhe des	zschena	eck: Baugrunderk Lotrecht	undung Nr: Richtung: 0°			
3	Lageskizze (unmaßstä	blich)					
4	Auftraggeber: Baugrund Fachaufsicht: Herr Bart		berg				
5	Bohrunternehmen: Fa. Unteutsch, Bohrungen und Sondierungen Leipzig gebohrt von: 05.03.21 bis: Tagesbericht Nr.: Projekt Nr.: Geräteführer: Qualifikation: Bohrzeugführer Qualifikation: Geräteführer: Qualifikation:						
6	Bohrgerät Typ: RBUT-F Bohrgerät Typ:	Raupe		Baujahr: 200 Baujahr:)7		
7	Messungen und Tests i	m Bohrloch:					
8	Probenübersicht:	Art - Behälter	Anzahl	Aufbewahrungsort			
	Bohrproben	Becher	17	AG			
	Bohrproben						
	Bohrproben						
	Sonderproben						
	Wasserproben	Flaschen	1	AG			

9 Bohrtechnik 9.1 Kurzzeichen 9.1.1 Bohrverfahren 9.1.1.1 Art: BK = Bohrung mit durchgehender Gewinnung gekernter Proben	BP = Bohrung mit durchgehender Gewinnung nichtgekernter Proben BuP = Verfahren mit Gewinnung unvollständiger Proben BS = Sondierbohrungen	BKR = BK mit richtungsorientierter Kernentnahme BKB = BK mit beweglicher Kernumhüllung BKF = BK mit fester Kernumhüllung
9.1.1.2 Lösen: rot = drehend	ram = rammend druck = drückend	schlag = schlagend greif = greifend
9.1.2 Bohrwerkzeug 9.1.2.1 Art: EK = Einfachkernrohr DK = Doppelkernrohr TK = Dreifachkernrohr S = Seilkernrohr	HK = Hohlkrone VK = Vollkrone H = Hartmetallkrone D = Diamantkrone Gr = Greifer Schap = Schappe	Schn = Schnecke Spi = Spirale Kis = Kiespumpe Ven = Ventilbohrer Mei = Meißel SN = Sonde
9.1.2.2 Antrieb G = Gestänge SE = Seil	HA = Hand F = Freifall V = Vibro	DR = Druckluft HY = Hydraulik
9.1.2.3 Spülhilfe: WS = Wasser LS = Luft	SS = Sole DS = Dickspülung Sch = Schaum	d = direkt id = indirekt

9.2 Bohrtechnische Tabelle

in m	Bohrve	erfahren		Bohrwerkzeug			Verrohrung			
	Art	Lösen	Art	ø mm	Antrieb	Spül- hilfe			Tiefe m	Bemerkungen
17,0	BuP	rot	Schn	140	G		178		17,0	
		ge in m bis Art	ge in m bis Art Lösen	ge in m bis Art Lösen Art	ge in m bis Art Lösen Art ø mm	ge in m bis Art Lösen Art ø mm Antrieb	ge in m bis Art Lösen Art ø mm Antrieb Spül- hilfe	ge in m bis Art Lösen Art ø mm Antrieb Spül- hilfe mm	ge in m bis Art Lösen Art ø mm Antrieb Spül- hilfe mm mm	ge in m bis Art Lösen Art ø mm Antrieb Spül- Außen ø Innen ø Tiefe mm mm mm

9.3 Bohrkronen

H,/D,	Nr:	ø Außen/Innen:	
H ₂ /D ₂	Nr:	ø Außen/Innen:	
H ₃ /D ₃	Nr:	ø Außen/Innen:	
H ₄ /D ₄	Nr:	ø Außen/Innen:	
H _s /D _s	Nr:	ø Außen/Innen:	
H ₆ /D ₆	Nr:	ø Außen/Innen:	

9.4 Geräteführer-Wechsel

Nr	Datum Tag/Monat	ag/Monat Uhrzeit Tiefe			Name Geräteführer		
	Jahr			für	Ersatz		
1							
2							
3							
4							

10 Angaben über Grundwasser, Verfüllung und Ausbau

Wasser erstmals angetroffen bei 3.00 m, Anstieg bis ---- m unter Ansatzpunkt. Höchster gemessener Wasserstand 3.00 m unter Ansatzpunkt bei 17.00 m Bohrtiefe.

Verfüllung von: Verfüllung von: 17.00 m bis: 4.00 m Art: Füllsand von: 0.00 m bis: 0.00 m Art: ----

	Filterrohr		Filterschüttung			Sperrschicht			OK Peilrohr		
Nr	von m	bis m	ø mm	Art	von m	bis m	Körnung mm	von m	bis m	Art	m über Ansatzpunkt
								4,0	0,0	Q-Ton	

11 Sonstige Angaben

temporärer Ausbau PVC-DN 80

Bohrungen und Sondierungen für geologische Gutechten Dietmer Unteutsch Wetzelweg 10 04249 Leibzig

Datum: 13.04.2021 Firmenstempel:

Anlage 4.1 Bohrungen und Sondierungen Schichtenverzeichnis **Dietmar Unteutsch** Bericht: wetzelweg 10 · 04249 Leipzig | für Bohrungen ohne durchgehende Gewinnung von gekernten Proben Az.: unt. Bauvorhaben: Brücke Schlossweg III **Bohrung** Datum: 5.3.2021 rechts: 310730.91 Nr TB/1 /Blatt 1 0.00 mNN Sohurf hoch 5695416.82 2 1 3 4 5 6 a) Benennung der Bodenart Entnommene und Beimengungen Proben Bemerkungen Bis b) Ergänzende Bemerkung 1) Sonderprobe ...m Tiefe Wasserführung unter in m c) Beschaffenheit d) Beschaffenheit e) Farbe Nr Art Bohrwerkzeuge Ansatz-(Unternach Bohrgut nach Bohrvorgang Kernverlust punkt kante) f) Übliche g) Geologische h) 1) i) Kalksonstiges Benennung Benennung Gruppe gehalt a) Auffüllung, b) Natursteinpflaster 0.15 d) Handschurf c) e) braun h) i) f) Auffüllung g) feucht GP 1 1.00 a) Auffüllung, schluffig, stark mittelsandig, grobsandig, mittelkiesig 1.00 c) weich d) mäßig schwer e) braun f) Auffüllung g) i) a) Auffüllung, schluffig,stark feucht mittelsandig, grobsandig, mittelkiesig b) 1.50 d) mäßig schwer e) braun c) weich f) Auffüllung g) h) i) a) Feinkies, grobsandig, mittelsandig, mittelkiesig, schwach GWSP 3,0 m GP 2 2.00 grobkiesig GWSP in Ruhe 3.00 GP 3 3,0 m 4.00 GP 4 b)

d) mäßig schwer

d) mäßig schwer

g)

g)

1) Eintragungen nimmt der wissenschaftliche Bearbeiter vor.

a) Mittelsand, stark schluffig, stark

feinsandig, grobsandig, feinkiesig

e) grau

e) grau

h)

|i)

i)

h)

5.30

6.50

c) locker

b) mg

c) locker

f) Flussschotter

f) Flussschotter

nass

nass

GP

GP

5

6

5.00

6.00

Bohrungen und Sondierungen **Dietmar Unteutsch**

Schichtenverzeichnis

Wetzelweg 10 · 04249 Leipzig für Bohrungen ohne durchgehende Gewinnung von gekernten Proben

Anlage

Bericht:

Az.: unt.

Bohrur S ehur f	Nr IB/1 /Blatt:	2		310730.91 6695416.82	0.00 mNN	Datu	m: 5	.3.2021
1		2			3	4	5	6
	a) Mittelkies, grobkie	sig,grobsandig,sch	wach mitte	elsandig	nass	GP GP GP	7 8	7.00 8.00 9.00
	(b)					GP	9 10	10.00
11.00	c) locker-mitteldicht	d) mäßig schwer	e) grau	-braun		GP	11	11.00
	f) Flussschotter	g)	h)	1)				
	a) Feinsand, stark m	ittelsandig,schwach	schluffig	·	nass	GP GP	12 13	12.00 13.00
	b)					GP GP	14 15	14.00 15.00
17.00	c) dicht-sehr dicht	d) mäßig schwer	e) grau			GP GP	16 17	16.00 17.00
	f)	g)	h)	i)				
	a)							
	b)							
	c)	d)	e)					
	f)	g)	h)	i)				
	a)							
	b)							
	c) d) e)							
	f)	g)	h)	i)				
	a)							
	b)				:			
	c)	d)	e)					
	f)	g)	h)	i)		:		
	a)		:					
	b)							
	c)	d)	e)					
	f)	g)	h)	i)	-			

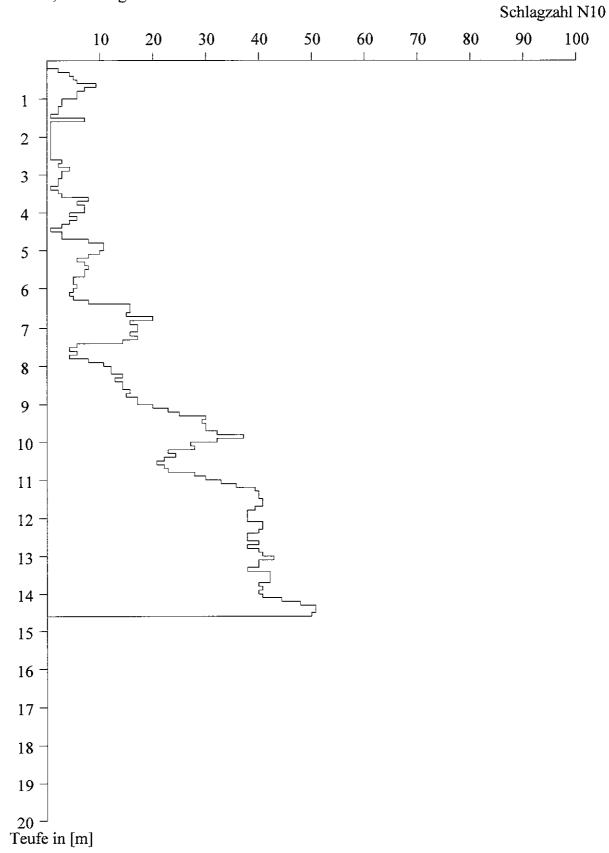
Auftragnehmer : Bohrungen & Sondierungen Unteutsch
Objekt : 04159 Leipzig, Brücke Schlossweg III

Sondierung Nr. : DPH 1 Datum : 01.03.2021 Sondierart : DPH

Sonstige Angaben : Anlage 4.1

Ansatzpunkt (bezogen auf Bezugspunkt)

Ansatzpunkt (bezogen auf m ueber NN) : DHHN 102,14


I XXXXXXXX	punkt	(bezogen auf in deber NN)	: DHH	102,14	
Tiefe	N 10	Tiefe N 10	Tiefe N 10	Tiefe N 10	Tiefe N 10
0.10 :	0	4.10 : 4	8.10 : 12	12.10 : 38	16.10 :
0.20:	0	4.20 : 6	8.20 : 12	12.20 : 41	16.20 :
0.30:	2	4.30 : 4	8.30 : 14	12.30 : 41	16.30 :
0.40:	4	4.40 : 3	8.40 : 13	12.40 : 40	16.40 :
0.50:	5	4.50 : 1	8.50 : 14	12.50 : 38	16.50:
0.60:	6	4.60 : 3	8.60 : 14	12.60 : 38	16.60:
0.70:	9	4.70 : 3	8.70 : 16	12.70 : 40	16.70 :
0.80:	7	4.80 : 8	8.80 : 15	12.80 : 38	16.80 :
0.90:	6	4.90 : 11	8.90 : 17	12.90 : 40	16.90 :
1.00 :	6	5.00 : 11	9.00 : 17	13.00 : 41	17.00 :
1.10 :	3	5.10 : 10	9.10 : 20	13.10 : 43	17.10 :
1.20 :		5.20 : 8	9.20 : 23	13.20 : 40	17.20 :
1.30 :		5.30 : 6	9.30 : 25	13.30 : 40	17.30 :
1.40 :	2	5.40 : 7	9.40 : 30	13.40 : 38	17.40 :
1.50 :		5.50 : 8	9.50 : 29	13.50 : 42	17.50 :
1.60 :		5.60 : 7	9.60 : 30	13.60 : 42	17.60 :
1.70 :		5.70 : 7	9.70 : 30	13.70 : 42	17.70 :
1.80 :		5.80 : 5	9.80 : 32	13.80 : 40	17.80 :
1.90 :	1	5.90 : 5	9.90 : 37	13.90 : 41	17.90 :
2.00 :		6.00 : 6	10.00 : 32	14.00 : 40	18.00 :
2.10		(10 7	10.10 . 27	14.10 - 41	10.10
2.10:		6.10 : 5	10.10 : 27	14.10 : 41	18.10:
2.20 :		6.20 : 4	10.20 : 28	14.20 : 44	18.20 :
2.30 :		6.30 : 5	10.30 : 23	14.30 : 48	18.30 :
2.40 :		6.40 : 8	10.40 : 24	14.40 : 51	18.40 :
2.50 :	1	6.50 : 16 6.60 : 16	10.50 : 22 10.60 : 21	14.50 : 51 14.60 : 50	18.50 : 18.60 :
2.60 : 2.70 :		6.70 : 15	10.70 : 22	14.70 : 0	18.70 :
2.80 :		6.80 : 20	10.80 : 23	14.80 : 0	18.80 :
2.90 :		6.90 : 16	10.90 : 28	14.90 : 0	18.90 :
3.00 :		7.00 : 17	11.00 : 30	15.00 : 0	19.00 :
3.10:	3	7.10 : 17	11.10 : 33	15.10:	19.10:
3.20:		7.20 : 16	11.20 : 36	15.20 :	19.20:
3.30:	2	7.30 : 17	11.30 : 39	15.30 :	19.30 :
3.40:	1	7.40 : 14	11.40 : 40	15.40 :	19.40 :
3.50:	2	7.50 : 6	11.50 : 40	15.50 :	19.50:
3.60:		7.60 : 4	11.60 : 41	15.60 :	19.60 :
3.70 :		7.70 : 6	11.70 : 41	15.70 :	19.70 :
3.80:	6	7.80 : 4	11.80 : 39	15.80 :	19.80 :
3.90 :	7	7.90 : 8	11.90 : 38	15.90 :	19.90 :
4.00 :	7	8.00 : 11	12.00 : 38	16.00 :	20.00 :

Bohrungen & Sondierungen Unteutsch

04159 Leipzig, Brücke Schlossweg III DPH 1 01.03.2021

DHHN 102,14 Anlage 4.1

Kopfblatt nach DIN 4022 zum Sch für Baugrundbohrung	ichtenverzeichnis	Archiv-Nr.: 4.2 Aktenzeichen: unt				
1 Objekt: Brücke Schloßweg III			es Schichtenverzeichnisses: hte und ähnliches :	2 0		
Höhe des a) zu NN		Baugrunderkund Lotrecht	dung Nr: Richtung: 0°			
3 Lageskizze (unmaßstäblich)						
4 Auftraggeber: Baugrundbüro Ba Fachaufsicht: Herr Barthel	ırthel, Markkleeberç	g 				
5 Bohrunternehmen: Fa. Unteutso gebohrt von: 04.03.21 bis Geräteführer: Wolf Geräteführer: Geräteführer:		Sondierungen Le Tagesbericht Nr. Qualifikation: Bo Qualifikation: Qualifikation:	: Projekt Nr.:			
6 Bohrgerät Typ: RBUT-Raupe Bohrgerät Typ:			Baujahr: 2007 Baujahr:	7		
7 Messungen und Tests im Bohrlo	och:					
8 Probenübersicht:	Art - Behälter	Anzahl	Aufbewahrungsort			
Bohrproben	Becher	17	AG			
Bohrproben						
Bohrproben						
Sonderproben						
Wasserproben						

9 Bohrtechnik 9.1 Kurzzeichen 9.1.1 Bohrverfahren 9.1.1.1 Art: BK = Bohrung mit durchgehender Gewinnung gekernter Proben	BP = Bohrung mit durchgehender Gewinnung nichtgekernter Proben BuP = Verfahren mit Gewinnung unvollständiger Proben BS = Sondierbohrungen	BKR = BK mit richtungsorientierter Kernentnahme BKB = BK mit beweglicher Kernumhüllung BKF = BK mit fester Kernumhüllung
9.1.1.2 Lösen: rot = drehend	ram = rammend druck = drückend	schlag = schlagend greif = greifend
9.1.2 Bohrwerkzeug 9.1.2.1 Art: EK = Einfachkernrohr DK = Doppelkernrohr TK = Dreifachkernrohr S = Seilkernrohr	HK = Hohlkrone VK = Vollkrone H = Hartmetallkrone D = Diamantkrone Gr = Greifer Schap = Schappe	Schn = Schnecke Spi = Spirale Kis = Kiespumpe Ven = Ventilbohrer Mei = Meißel SN = Sonde
9.1.2.2 Antrieb G = Gestänge SE = Seil	HA = Hand F = Freifall V = Vibro	DR = Druckluft HY = Hydraulik
9.1.2.3 Spülhilfe: WS = Wasser LS = Luft	SS = Sole DS = Dickspülung Sch = Schaum	d = direkt id = indirekt

9.2 Bohrtechnische Tabelle

Tiefe in m Bohrverfahren			Bohrwerkzeug			Verrohrung					
	ige in m bis	Art	Lösen	Art	ø mm	Antrieb	Spül- hilfe	Außen ø mm	Innen ø mm	Tiefe m	Bemerkungen
0,0	17,0	BuP	rot	Schn	140	G		178		17,0	

9.3 Bohrkronen

H,/D,	Nr:	ø Außen/Innen:	
H ₂ /D ₂	Nr:	ø Außen/Innen:	
H ₃ /D ₃	Nr:	ø Außen/Innen:	
H ₄ /D ₄	Nr:	ø Außen/Innen:	
H ₅ /D ₅	Nr:	ø Außen/Innen:	
H ₆ /D ₆	Nr:	ø Außen/Innen:	

9.4 Geräteführer-Wechsel

Nr	Datum Tag/Monat Jahr	Uhrzeit	Tiefe	Name Geräteführer für Ersatz		Grund
1						
2						
3						
4						

10 Angaben über Grundwasser, Verfüllung und Ausbau

Wasser erstmals angetroffen bei

3.00 m, Anstieg bis ---- m unter Ansatzpunkt.

Höchster gemessener Wasserstand 3.00 m unter Ansatzpunkt bei 17.00 m Bohrtiefe.

Verfüllung von: Verfüllung von: 17.00 m bis: 4.00 m Art: Füllsand von: 0.00 m bis: 0.00 m Art: ----

		Filterrohr		F	Filterschüttu	ing	4		Sperrsc	hicht	OK Peilrohr
Nr	von m	bis m	ø mm	Art	von m	bis m	Körnung mm	von m	bis m	Art	m über Ansatzpunkt
								4,0	0,0	Q-Ton	

11 Sonstige Angaben

temporärer Ausbau PVC-DN 80

Bohrungen und Sondierungen für geologische Gutechten Dietmar Urtau Wetzehweg 10 04249 Leinzig

Datum: 13.04.2021

Firmenstempel:

Unterschrift:

Bohrungen und Sondierungen Dietmar Unteutsch

Schichtenverzeichnis

Wetzelweg 10 · 04249 Leipzig für Bohrungen ohne durchgehende Gewinnung von gekernten Proben

Anlage 4.2

Bericht:

Az.:

. .

ericht:

unt.

Bauvorhaben: Brücke Schlossweg III

Bohrun S ehurf	g Nr TB/2 /Blat	t 1	rechts :3 ^a		0.00 mNN	Datu	m: 4.	3.2021	
1		2			3	4	5	6	
Bis		Benennung der Bodenart und Beimengungen					Entnommene Proben		
m	b) Ergänzende Ben	Sonderprobe Wasserführung			Tiefe				
unter Ansatz- punkt	c) Beschaffenheit nach Bohrgut	d) Beschaffenheit nach Bohrvorgang	e) Farbe		Bohrwerkzeuge Kernverlust	Art	Nr	in m (Unter-	
punkt	f) Übliche Benennung	g) Geologische Benennung	h) ¹) Gruppe	i) Kalk- gehalt	sonstiges			kante)	
	a) Auffüllung,								
0.40	b) Natursteinpflaste	er							
0.10	c)	d) Handschurf	e) braun						
	f) Auffüllung	g)	h)	i)					
	a) Auffüllung, mitte	sandig,feinsandig,grob	sandig, mi	ttelkiesig	feucht	GP GP	1 2	1.00 2.00	
2.00	b)								
	c) weich	d) mäßig schwer	e) braun						
	f) Auffüllung	g)	h)	i)					
	a) Schluff, feinsand	GWSP 3,0 m GWSP in Ruhe 3,0 m	GP	3	3.00				
3.00	b)		1-		feucht				
3.00	c) weich	d) mäßig schwer	e) braun						
	f) Auelehm	g)	h)	i)					
	a) Feinsand, mittels	sandig,schluffig			nass	GP	4	4.00	
4.00	b)		T						
4.00	c) locker	d) mäßig schwer	e) grau	·		•			
	f) Auelehm	g)	h)	:i) :		:			
	mittelkiesig,schw	g,stark feinsandig,schv ach grobkiesig	wach		nass	GP	5	5.00	
5.30	b)	4) 20' (
	c) locker	d) mäßig schwer	e) grau	l s		:			
	f) Flussschotter	g)	h)	i)		:			

Anlage 4.2 Bohrungen und Sondierungen Schichtenverzeichnis Dietmar Unteutsch Bericht: Wetzelweg 10 · 04249 Leipzig | für Bohrungen ohne durchgehende Gewinnung von gekernten Proben Az.: unt. Bauvorhaben: Brücke Schlossweg III **Bohrung** Datum: 4.3.2021 rechts:310716.70 Nr TB/2 /Blatt 2 0.00 mNN **Schurf** hoch 5695394.73 1 2 3 4 5 6 a) Feinkies, stark mittelkiesig,grobsandig,schwach mittelsandig nass GΡ 6 6.00 GΡ 7.00 7 GΡ 8.00 8 b) GP 9.00 9 10.00 10.00 GP 10 c) locker-mitteldicht d) mäßig schwer e) grau-braun f) Flussschotter g) i) a) Feinsand, mittelsandig, schwach schluffig GP 11.00 11 nass 12.00 GP 12 GP 13.00 13 b) GP 14.00 14 16.00 GΡ 15.00 15 c) dicht-sehr dicht d) mäßig schwer e) grau GP 16.00 16 g) i) a) Feinsand, stark mittelsandig, schwach schluffig GP 17 17.00 nass 17.00 c) dicht-sehr dicht d) mäßig schwer e) grau ! i) g) a) b) c) d) e) f) g) i) a) b) c) d) e) f) h) g) i) a)

b)

c)

f)

d)

g)

1) Eintragungen nimmt der wissenschaftliche Bearbeiter vor.

e)

h)

i)

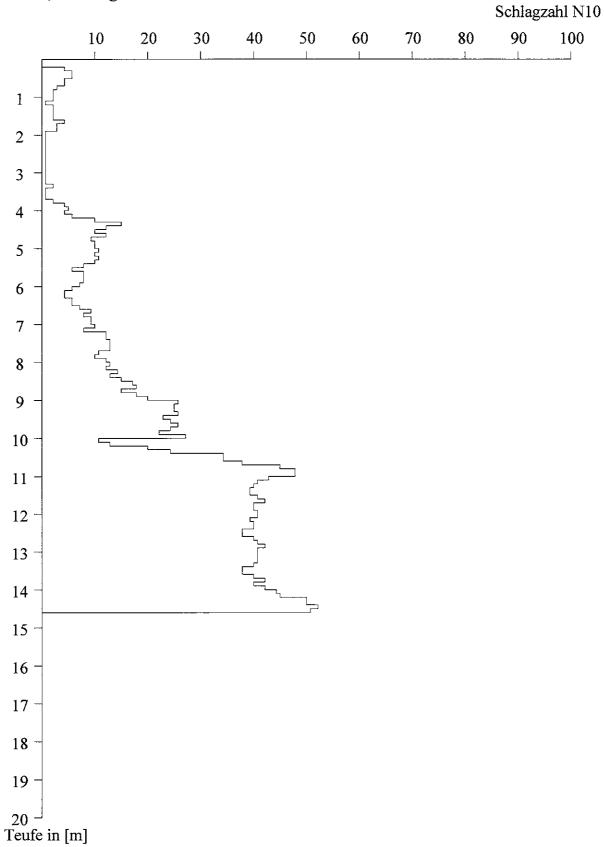
Auftragnehmer : Bohrungen & Sondierungen Unteutsch Objekt : 04159 Leipzig, Brücke Schlossweg III

Sondierung Nr. : DPH 2 Datum : 01.03.2021 Sondierart : DPH

Sonstige Angaben : Anlage 4.2

Ansatzpunkt (bezogen auf Bezugspunkt)

Ansatzpunkt (bezogen auf m ueber NN) : DHHN 102,21


Tiefe	N 10	Tiefe N 10	Tiefe N 10	Tiefe N 10	Tiefe N 10
0.10 :	0	4.10 : 4	8.10 : 13	12.10 : 41	16.10 :
0.20:	0	4.20 : 6	8.20 : 12	12.20 : 39	16.20:
0.30:	4	4.30 : 10	8.30 : 14	12.30 : 40	16.30 :
0.40:	6	4.40 : 15	8.40 : 13	12.40 : 40	16.40:
0.50:	6	4.50 : 12	8.50 : 15	12.50 : 38	16.50:
0.60:	4	4.60 : 10	8.60 : 17	12.60 : 38	16.60:
0.70:	4	4.70 : 12	8.70 : 18	12.70 : 40	16.70 :
0.80:	3	4.80 : 9	8.80 : 15	12.80 : 41	16.80 :
0.90:	2	4.90 : 10	8.90 : 18	12.90 : 42	16.90:
1.00 :	2	5.00 : 10	9.00 : 20	13.00 : 41	17.00 :
1.10 :	2	5.10 : 11	9.10 : 26	13.10 : 41	17.10 :
1.20 :	1	5.20 : 10	9.20 : 25	13.20 : 41	17.20 :
1.30 :	2	5.30 : 11	9.30 : 25	13.30 : 41	17.30 :
1.40 :	2	5.40 : 10	9.40 : 26	13.40 : 40	17.40 :
1.50 :	2	5.50 : 8	9.50 : 23	13.50 : 38	17.50 :
1.60 :	2	5.60 : 6	9.60 : 24	13.60 : 38	17.60 :
1.70 :	4	5.70 : 8	9.70 : 26	13.70 : 40	17.70 :
1.80 :	3	5.80 : 8	9.80 : 24	13.80 : 42	17.80 :
1.90 :	3	5.90 : 8	9.90 : 22	13.90 : 40	17.90 :
2.00 :	1	6.00 : 7	10.00 : 27	14.00 : 42	18.00 :
2.10:	1	6.10 : 6	10.10 : 11	14.10 : 44	18.10:
2.20:	1	6.20 : 4	10.20 : 13	14.20 : 45	18.20 :
2.30:	1	6.30 : 4	10.30 : 20	14.30 : 50	18.30 :
2.40:	1	6.40 : 6	10.40 : 24	14.40 : 50	18.40 :
2.50:	1	6.50 : 6	10.50 : 34	14.50 : 52	18.50 :
2.60:	1	6.60 : 7	10.60 : 34	14.60 : 51	18.60 :
2.70 :	1	6.70 : 9	10.70 : 38	14.70 : 0	18.70 :
2.80 :	1	6.80 : 8	10.80 : 45	14.80 : 0	18.80 :
2.90:	1	6.90 : 9	10.90 : 48	14.90 : 0	18.90 :
3.00 :	1	7.00 : 9	11.00 : 48	15.00 : 0	19.00 :
3.10 :	1	7.10 : 10	11.10 : 43	15.10 :	19.10 :
3.20:	1	7.20 : 8	11.20 : 41	15.20 :	19.20 :
3.30:	1	7.30 : 12	11.30 : 40	15.30 :	19.30 :
3.40:	2	7.40 : 12	11.40 : 39	15.40 :	19.40 :
3.50:	1	7.50 : 13	11.50 : 39	15.50 :	19.50:
3.60:	1	7.60 : 13	11.60 : 41	15.60 :	19.60:
3.70:	1	7.70 : 13	11.70 : 42	15.70 :	19.70:
3.80:	2	7.80 : 11	11.80 : 40	15.80 :	19.80 :
3.90:	4	7.90 : 10	11.90 : 40	15.90 :	19.90:
4.00:	5	8.00 : 12	12.00 : 41	16.00:	20.00:

Bohrungen & Sondierungen Unteutsch

04159 Leipzig Brücke Schlossweg III DPH 2 01.03.2021

DHHN 102,21 Anlage 4.2

	Boommrodr		oromoro	BG 1425/21
	Boorodoro Bormoo			
				1°00 5 /d
☐ G::::::::::::::::::::::::::::::::::::		⊠ B⊡d□□	☐ B⊞d□	
Вологи				
oraniinaaaa Braan ooniinaa oo iiiii oo	00000 r 0 00000000			
Bassion der arad/Massiras er	B□□5			
croad area des Mesiros	0000 r 0 7 0000 cr 0			
	B⊡d⊡			
Goran andro				
	a accimia Bracca accimicos ao ilia			
(für ungeb. TS)	1			
ocranica der erecesse e 10	2			
oroccood der orocc	1(5) Br			
Bacatroom oromoo	□G□ □R B□d□□			
comrderace air da Bacraniae				
oraccasa a deressamerosa	Br			
	12 21			
00 000 d 0r orowoo				
000 0.000				
rwwoorrwor		R		
Kopie Prüfbericht an		ev. Abteilung / Ko	ostenstelle	
00017000000r/B00001r0 000000		rodor	В	oorodooro Bormoo
M_	00 M 0		00 M 0	
1 1 a a a a a a a a a a a a a a a a a a		dır 4		10000 dor 000000 0

	Booodingrander		romomro	BG 1425/21
	Boorodoro Boros			
			000000444	
				r
☐ G0000000000 ☐ 0 00000	odaa raaaaaa	B□d□□	☐ B⊞d□	
Boomin				
ora::::::::::::::::::::::::::::::::::::)			
Bassion der erac/Massirass er	00 0			
croad or a da Mairii				
Gooranii aaanaa				
	Broos 00000000000			
rd (für ungeb. TS)	I			
oranta de crassas a ¹⁰	5			
00 r 000000 d cr 0 r 000	1:5::::Br:::::::::::::::::::::::::::::::			
Boodroom oromoo	Grander de contractor de contr			
oolirdorooo air diii Baaraiiiioo				
oraccaca a d araccacara	Birillin			
00000 C d 0000	12 21			
oo aaa d ar arawaa				
		R		
Kopie Prüfbericht an		ev. Abteilung / Ko	ostenstelle	
001 r 00000r/B0000r0 00000	onironono er/Bononio	rodor	В□	ogradaara Barwaa
	00 M 0		M	
	000 r 000 r 00		o o or o	
10 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		dır 4		0000 d er 000000 0

Vermessungsbüro Dipl Ing	g. Ulf Becker			08.03.202
Ringstraße 14				
04603 Nobitz - Oberarnsdo	rf			
Tel. 03 44 94 / 8 09 14				
Fax 03 44 94/ 8 09 15				
		VEDME	SCHNO	GSBÜRO
Baugrundbüro Barthel		ALLIZIALE	The second secon	
Magdebornder Straße 9	1 (0) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1	Disease.		olIng. Ulf Becker
04416 Markkleeberg	www.vb-becker.d	de Telefon:03449	04 / 80 914 Fax	13 NOBITZ
	ı		1	1

04159 Leipzig, Schlossweg Brücke Schlossweg III Einmessung von Aufschlusspunkten

<u>Y-Wert</u>	X-Wert	Z-Wert	Bemerkung
33310730,91	5695416,82	102,58	OK Abdeckung
		102,39	OK Rohr
		102,14	Gelände
33310716,70	5695394,73	103,11	OK Abdeckung
		103,06	OK Rohr
		102,21	Gelände
33310717,22	5695399,16	100,27	Wasserspiegel
rde maschinell er	stellt und ist aud	h ohne Unt	terschrift gültig!
	33310730,91 33310716,70	33310730,91 5695416,82 33310716,70 5695394,73 33310717,22 5695399,16	33310730,91 5695416,82 102,58 102,39 102,14 33310716,70 5695394,73 103,11 103,06 102,21

System Lage: ETRS89/ UTM Zone 33

System Höhe: DHHN/2016

ANLAGE 5 zum Bodengutachten

Ersatzneubau Brücke Schlossweg III über die Weiße Elster im Schlosspark Lützschena in Leipzig, OT Lützschena

(BG 1425/21 vom 12. April 2021)

Protokolle der geotechnischen Laboruntersuchungen

ERDBAULABOR LEIPZIG GMBH

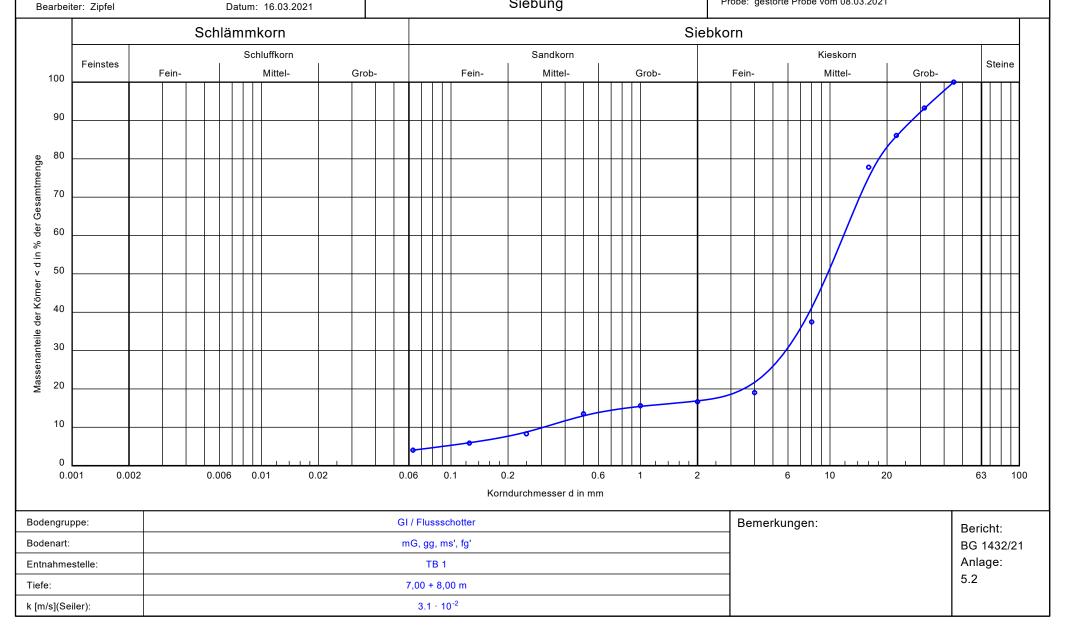
Baugrunderkundung • Erdbauprüfung • Bergbautechnologie • Altlastenerkundung • Bodenmechanisches Labor • ständige Betonprüfstelle

Erdbaulabor Leipzig GmbH · 04416 Markkleeb	erg · Magdeborner Straße 9	Nach RAP-Stra 04 anerkannte Prüfstelle für die Fachbereiche: A1; A3; A4: Böden einschl. Bodenverbesserungen D3: Gesteinskörnungen H1; H3: Hydraulisch gebundene Gemische einschl. Bodenverfestigung I3: Gemische für Schichten ohne Bindemittel				
Prager Straße 118, Hau	s C					
D41						
		Markkl	eeberg, den 14.04	.2021		
Betrifft Br						
	Bd III					
TB 1 TB 2	1,00 / Aueleh 3,00 / Aueleh		7,□0 16,38	- -		
				J		

Telefon: 034297 / 6 78 10
Telefax: 034297 / 6 78 11
Mobil: 0171 / 7 41 54 84
E-mail: Erdbaulabor.Leipzig@t-online.de

Bankverbindung: Sparkasse Leipzig BLZ 860 555 92 Kto. Nr. 1177 621 440 Gerichtsstand:

Amtsgericht Leipzig HRB 6782

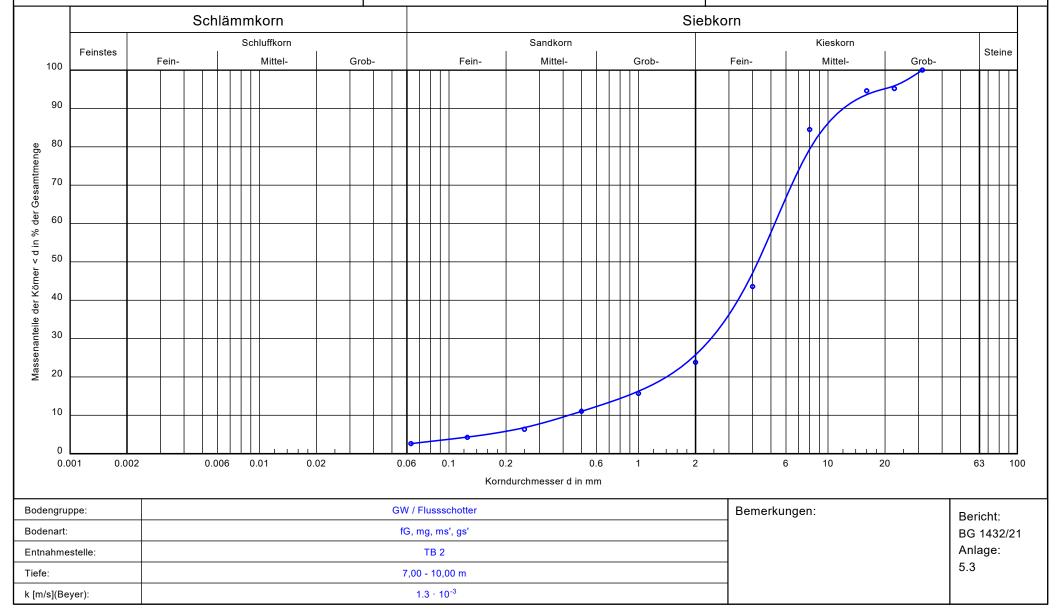

Datum: 16.03.2021

Korngrößenverteilung **DIN EN ISO 17892-4**

Siebung

Objekt: Brücke Schloßweg III

Entnahmeort: TB 1 Prüfungsnr.: P117-21-1


Bearbeiter: Zipfel Datum: 16.03.2021

Korngrößenverteilung DIN EN ISO 17892-4 Siebung

Entnahmeort: TB 2

Objekt: Brücke Schloßweg III

Prüfungsnr.: P117-21-3

TB 1

7,00 + 8,00 m

 $3.1 \cdot 10^{-2}$

Korngrößenverteilung DIN EN ISO 17892-4 Siebung Objekt: Brücke Schloßweg III Entnahmeort: TB 1 + 2 Prüfungsnr.: P117-21-5

Probe: gestörte Probe vom 08.03.2021

Anlage:

5.4

Bearbeiter: Zipfel Datum: 16.03.2021

Entnahmestelle:

k [m/s](Seiler):

Tiefe:

Schlämmkorn Siebkorn Schluffkorn Sandkorn Kieskorn Feinstes Steine Fein-Mittel-Grob-Fein-Mittel-Grob-Mittel-Grob-Fein-100 90 80 Massenanteile der Körner < d in % der Gesamtmenge 70 60 50 30 20 10 0.2 2 0.001 0.002 0.006 0.01 0.02 0.06 0.1 63 Korndurchmesser d in mm Bemerkungen: GI / Flussschotter GW / Flussschotter Bodengruppe: Bericht: mG, gg, ms', fg' fG, mg, ms', gs' BG 1432/21 Bodenart:

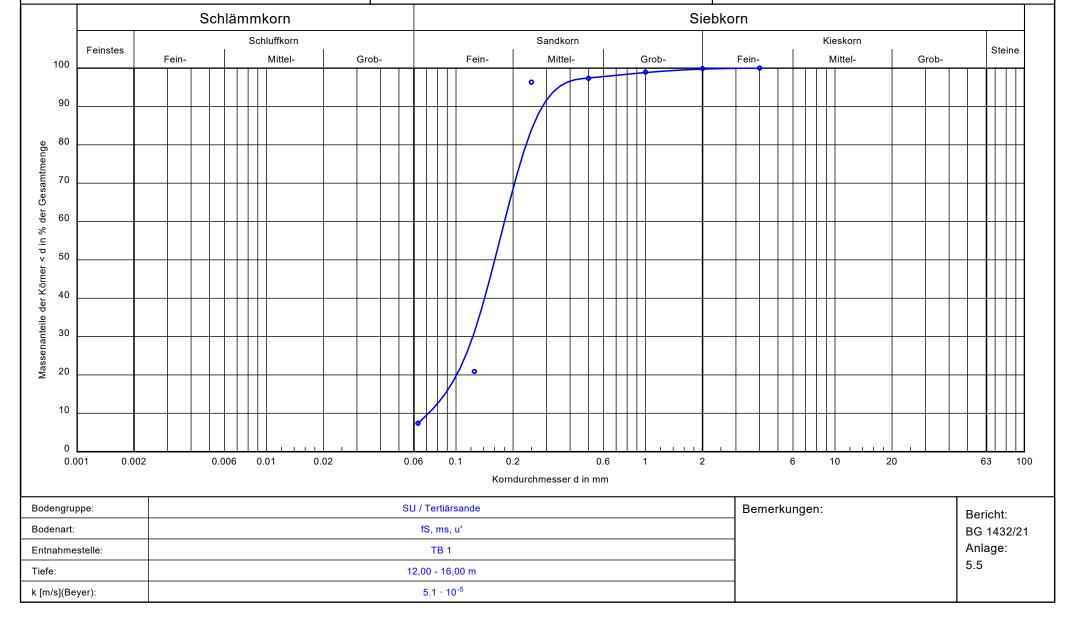
TB 2

7,00 - 10,00 m

 $1.7 \cdot 10^{-3}$

DIN EN ISO 17892-4

Bearbeiter: Zipfel Datum: 16.03.2021

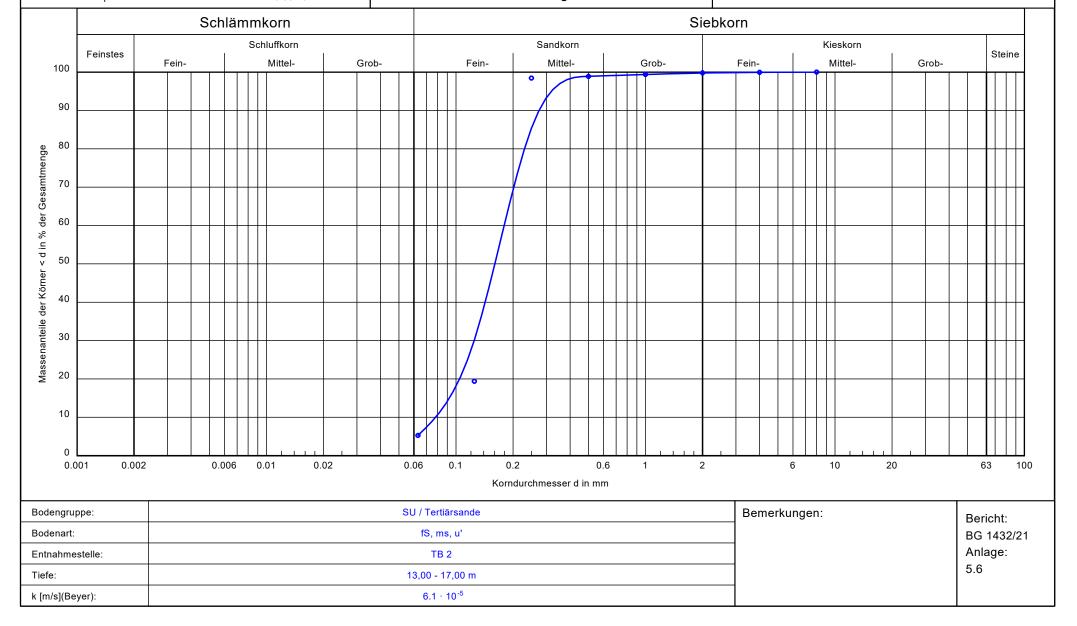

Siebung

Korngrößenverteilung

Objekt: Brücke Schloßweg III

Entnahmeort: TB 1

Prüfungsnr.: P117-21-2

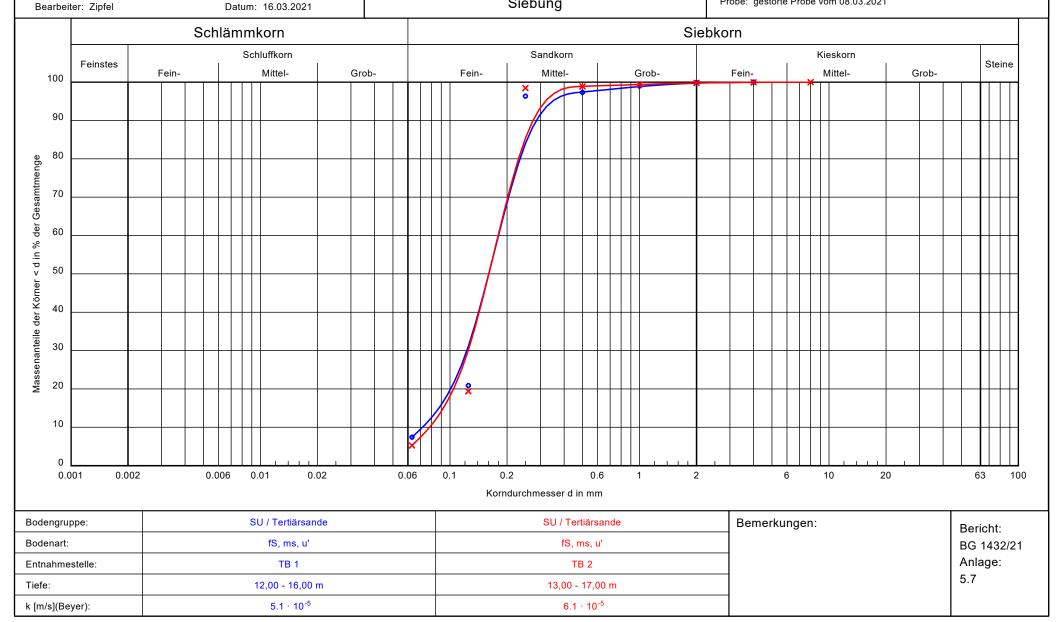

Bearbeiter: Zipfel Datum: 16.03.2021

Korngrößenverteilung DIN EN ISO 17892-4

Siebung

Objekt: Brücke Schloßweg III

Entnahmeort: TB 2
Prüfungsnr.: P117-21-4



Korngrößenverteilung **DIN EN ISO 17892-4**

Siebung

Objekt: Brücke Schloßweg III Entnahmeort: TB 1 + 2

Prüfungsnr.: P117-21-6

Umwelt- und Öllabor Leipzig

Akkreditiertes Prüflabor D-PL-18062-01-00

Prüfbericht 11561-21

1. Ausfertigung

Dieser Prüfbericht ersetzt alle vorhergehenden Prüfberichte vollständig.

Auftraggeber

BAUGRUNDBÜRO BARTHEL

04416 Markkleeberg

Projekt

BV: Neubau Brücke Schlossweg III im Schlosspark Lützschena in Leipzig

Auftrag vom

08.03.2021

Bestellnummer

Probenart

Grundwasser

Probenehmer

Auftraggeber

Probenanzahl

1

Probenahmedatum

Probeneingang

08.03.2021

Prüfbeginn/-ende

08.03.2021 - 11.03.2021

Probennummer

21/13337

Bemerkung

Der Prüfbericht enthält 3 Seiten und 2 Seite(n) Anlage.

Archivierung

Feststoffe

3 Monate

PCB in Öl

3 Jahre

Wasserproben

keine

Gasproben

keine

Hinweise

Die Ergebnisse beziehen sich ausschließlich auf den oben angegebenen Prüfgegenstand.

Dieser Bericht darf nicht auszugsweise ohne die Zustimmung des Labors vervielfältigt werden.

nach Probeneingang

Die Entscheidungsregeln der Analysen Service GmbH sind auf www.analysen-service.de

einzusehen.

BIC: DEUTDEDBLEG

Geschäftsführer: Dipl.-Chem. Arndt Philipp Dipl.-Ing. Dirk Philipp (FH) Amtsgericht Leipzig HRB 13939 Ust.ldNr.: DE191258018 Prüfbericht 11561-21 1. Ausfertigung

Prüfmethode	DIN	Ausgabedatum
Aussehen (Betonaggr.)	DEV B1/2	1971
Betonaggressivität	DIN 4030-2	2008-06
CO2 kalklösend (Betonaggr.)	DIN 4030-2	2008-06
Geruch anges.Pr. (Betonaggr.) *	DEV B1/2	1971
Permanganat-Verbrauch (Betonaggr.)	DIN EN ISO 8467 (H 5)	1995-05
pH-Wert Wasser (Betonaggr.)	DIN EN ISO 10523 (C 5)	2012-04
pH-Wert Wasser (Stahlaggr.)	DIN EN ISO 10523 (C 5)	2012-04
Geruch (Betonaggr.) *	DEV B1/2	1971
Nichtkarbonathärte (Betonaggr.)	DIN 38409-6 (H 6)	1986-01
Gesamthärte (Betonaggr.)	DIN 38409-6 (H 6)	1986-01
Säurekap pH 4,3 Wa (Stahlaggr.)	DIN 38409-7 (H 7)	2005-12
Calcium in Wasser (ICP, Stahlaggr.)	DIN EN ISO 11885 (E 22)	2009-09
Magnesium Wasser (ICP, Betonaggr.)	DIN EN ISO 11885 (E 22)	2009-09
Chlorid in Wasser (IC, Betonaggr.)	DIN EN ISO 10304-1 (D 20)	2009-07
Chlorid in Wasser (IC, Stahlaggr.)	DIN EN ISO 10304-1 (D 20)	2009-07
Sulfat in Wasser (IC, Betonaggr.)	DIN EN ISO 10304-1 (D 20)	2009-07
Sulfat in Wasser (IC, Stahlaggr.)	DIN EN ISO 10304-1 (D 20)	2009-07
Sulfid i.W. (Betonaggr.)	DIN 38405-27	2017-10
Hydrogenkarbonat_mmol (Betonaggr.)	DEV D8	1971
Stahlangreifende Wässer	DIN 50929-3	2018-03
Ammonium (Betonaggr.)	DIN EN ISO 11732	2005-05

mit * gekennzeichnete Prüfmethoden sind nicht Bestandteil des akkreditierten Bereich

Betonaggressivität

Probenbez.			WP 1 - GW aus TKB 1 05.03.2021
Probe-Nr.			21/13337
Betonaggressivität	Ohne	BA	s. Anlage
Aussehen	Ohne	BA	klar mit viel Bodensatz
CO2 kalklösend	mg/l	BA	13,6
Geruch (angesäuerte Pr.)	Ohne	BA	ohne
Permanganat-Verbrauch	mg/l	BA	13,6
pH Wert	Ohne	BA	7,37
Geruch	Ohne	BA	ohne
Nichtkarbonathärte	mmol/l	ВА	2,56
Gesamthärte	mmol/l	BA	5,25
Magnesium	mg/l	BA	32,3
Chlorid	mg/l	BA	100
Sulfat	mg/l	BA	210
Sulfid	mg/l	BA	<0,050
Hydrogenkarbonat	mmol/l	BA	5,38
Ammonium	mg/l	ВА	7,15

Abk.: OS Orignalsubstanz, TS Trockensubstanz, EL Eluat, PE Probenahmeeinheit, n.n. nicht nachweisbar, < kleiner Bestimmungsgrenze

Stahlaggressivität

Probenbez.			WP 1 - GW aus TKB 1 05.03.2021
Probe-Nr.			21/13337
pH Wert	Ohne	SA	7,37
Säurekapazität pH 4,3	mmol/l	SA	5,38
Calcium	mg/l	SA	138
Chlorid	mg/l	SA	100
Sulfat	mg/l	SA	210
Stahlangreifende Wässer	Ohne	SA	s. Anlage

Abk.: OS Orignajsubstanz, TS Trockensubstanz, EL Eluat, PE Probenahmeeinheit, n.n. nicht nachweisbar, < kleiner Bestimmungsgrenze

U. Szymkowiak

Qualitätssicherung

Leipzig, 12.03.2021

Bug un ann Dr. S. Bergmann

Laborleiter

Umwelt- und Öllabor Leipzig
Akkreditiertes Prüflabor D-PL-18062-01-00

Prüfungen und Beurteilung v	on Wasser nach dem	Referenzverfahre	n			
Prüfbericht			Probenahme und Analyse			
über die Prüfung und Beurte	eilung von Wasser		nach DIN 4030 Teil 2			
1. Allgemeine Angaben						
Auftraggeber: BAUGRU	JNDBÜRO BARTHEL		Auftrags-Nr:	11561-2	1	
Bauvorhaben: BV: Neuk	oau Brücke Schlosswe	Probe-Nr:	21/13337	7		
	ark Lützschena in Leip	ozig				
Art des Wassers: Grundwa	sser		Bezeichnung	9		
(z.B. Grund-, Oberflächen-,	Sickerwasser)		des Wassers	s: WP1-0	GW aus TKB 1	
Entnahmestelle:			Entnahmetie	efe: 3,1 m		
z.B. Bohrloch, Schürfgrube,	offenes Gewässer)					
Temperatur des Wassers:	°C Ent	nahmezeit:		Entnahmeda	tum:	
2. Erweiterte Angaben			,			
Fließrichtung:			Fließgeschw	vindigkeit:	m/s	
Höhe des Wasserspiegels:			Hydrostatisc		m	
Beschreibung der Geländev						
(z.B. Wohnhäuser, Industrie	e, Deponie, Halden, Ac	kerland, Wald))				
Ort, Datum		Probenehmer				
Ort, Batum		1 Tobellellillel				
Wasseranalyse		4. Grenzwerte zu	ır Beurteilung	nach DIN 403	30 Teil 2 1)	
Probeneingang	Prüfergebnis				sehr stark	
		schwach angreife	end Stark a	angreifend	angreifend	
Aussehen	Rodonsatz	-		-	-	
Geruch (unveränderte						
Probe)	ohne	-		-	-	
Geruch (angesäuerte	1					
Probe)	ohne			-	-	
pH-Wert	7,37	6,5 bis 5,5	< 5.5	5 bis 4,5	< 4,5	
KMnO₄-Verbrauch	13,6 mg/l			-	-	
Härte	5,25 mmol/l			-		
Hydrogencarbonat	5,38 mmol/l			-	-	
Nichtcarbonathärte	2,56 mmol/l	-	_	_		
Magnesium (Mg ²⁺)	32,3 mg/l	300 bis 1000	> 1000	0 bis 3000	> 3000 mg/l	
Ammonium (NH ₄ ⁺)	7,15 mg/l	15 bis 30) bis 60	> 60 mg/l	
Sulfat (SO ₄ ²⁻)	210 mg/l	200 bis 600		bis 3000	> 3000 mg/l	
Chlorid (Cl ⁻)	100 mg/l	700 SA AMOS 1196 COLLAR	7 000	-	- 5000 mg/l	
CO ₂ (kalklösend)	13,6 mg/l		> 40	bis 100	> 100 mg/l	
	<0,050 mg/l		740	7 DIS 100	> 100 mg/l	
Sulfid (S²)						
Für die Beurteilung ist de wird Liegen zwei oder mehr						
wird. Liegen zwei oder mehr der Angriffsgrad um eine St					ei), so ernont sich	
	ule (ausgehöhlinen M	eerwasser und ivie	ederschlagsw	asser)		
5. Beurteilung			., .			
Das Wasser ist - nicht -	schwach - stark -	sehr stark – beto	nangreifend.			
	1					
Leipzig, 12.03.2021	11		18			
	Un		Du	1 mil	Rem	
Ort. Datum Sachbearbeiter Untersuchungsstelle						

Umwelt- und Öllabor Leipzig Akkreditiertes Prüflabor D-PL-18062-01-00

Abschätzung der Korrossionswahrscheinlichkeit in Wässern nach DIN 50929 gegenüber Stahl

Prüfbericht - Nr. 11561-21

Proben - Nr. 21/13337

Bohrbetrieb: BAUGRUNDBÜRO BARTHEL

Objekt: BV: Neubau Brücke

Entnahmestelle: WP 1 - GW aus TKB 1

Schlossweg III im

Entnahmetiefe: 3,1 m

Schlosspark Lützschena

	,			Bewertungsziffer		Auswertung	
Nr.	Merkmal und Dimension	Einheit	Messung	unlegierte Eisen	verzinkten Stahl	unlegierte Eisen	verzinkten Stahl
1	Wasserart			N1	M1	N1	M1
	fließende Gewässer			0	-2		
	stehende Gewässer			-1	1		
	Küste von Binnenseen			-3	-3		
	anaerob. Moor, Meerküste	22-22-3		-5	-5		
2	Lage des Objektes			N2	M2	N2	M2
	Unterwasserbereich			0	0		
	Wasser/Luft - Bereich			1	-6		
	Spritzwasserbereich			0,3	-2		
3	c (Chlorid) + 2 c (Sulfat)	mol/m³		N3	M3	N3	M3
	<1			0	0		
	1 bis 5			-2	0		
	> 5 bis 25		7,19	-4	-1	-4	-1
	> 25 bis 100			-6	-2		
	> 100 bis 300			-7	-3		
	> 300			-8	-4		
4	Säurekapazität bis pH 4,3 (Alkalität KS 4,3)	mol/m³		N4	M4	N4	M4
	< 1			1	-1		
	1 bis 2			2	1		2
	> 2 bis 4			3	1		
	> 4 bis 6		5,4	4	0	4	0
	> 6			5	-1		
5	c (Ca ² +)	mol/m³		N5	M5	N5	M5
	< 0,5			-1	0		
	0,5 bis 2			0	2		
	> 2 bis 8		3,44	1	3	1	3
	> 8			2	4		
6	pH - Wert			N6	M6	N6	M6
	< 5,5			-3	-6		
	5,5 bis 6,5			-2	-4		
	> 6,5 bis 7,0			-1	-1		
	> 7,0 bis 7,5		7,37	0	1	0	1
	> 7,5			1	1		
7	Objekt/Wasser-Potential U (zur Feststellung der Fremdkathoden)	v		N7		N7	
	> - 0,2 bis - 0,1				-		
	> - 0,1 bis 0,0			1			
	> -0,0 ig 12 03 2021		arhoitor:	//			

Leipzig, 12.03.2021

Bearbeiter:

Umwelt- und Öllabor Leipzig

Akkreditiertes Prüflabor D-PL-18062-01-00

Prüfbericht 11692-21

1. Ausfertigung

Dieser Prüfbericht ersetzt alle vorhergehenden Prüfberichte vollständig.

Auftraggeber

BAUGRUNDBÜRO BARTHEL

04416 Markkleeberg

Projekt

BV: Ersatzneubau Brücke Schlossweg III im Schlosspark Lützschena in

Leipzig

Auftrag vom

11.03.2021

Bestellnummer

-

Probenart

Wasser

Probenehmer

Auftraggeber

Probenanzahl

1

Probenahmedatum

Probeneingang

11.03.2021

Prüfbeginn/-ende

11.03.2021 - 12.03.2021

Probennummer

21/13636

Bemerkung

Der Prüfbericht enthält 3 Seiten und 2 Seite(n) Anlage.

Archivierung

Feststoffe

3 Monate

nach Probeneingang

PCB in Öl

3 Jahre

Wasserproben

keine

Gasproben

keine

Hinweise

Die Ergebnisse beziehen sich ausschließlich auf den oben angegebenen Prüfgegenstand.

Dieser Bericht darf nicht auszugsweise ohne die Zustimmung des Labors vervielfältigt werden.

Die Entscheidungsregeln der Analysen Service GmbH sind auf www.analysen-service.de

einzusehen.

Prüfmethode	DIN	Ausgabedatum
Aussehen (Betonaggr.)	DEV B1/2	1971
Betonaggressivität	DIN 4030-2	2008-06
CO2 kalklösend (Betonaggr.)	DIN 4030-2	2008-06
Geruch anges.Pr. (Betonaggr.) *	DEV B1/2	1971
Permanganat-Verbrauch (Betonaggr.)	DIN EN ISO 8467 (H 5)	1995-05
pH-Wert Wasser (Betonaggr.)	DIN EN ISO 10523 (C 5)	2012-04
pH-Wert Wasser (Stahlaggr.)	DIN EN ISO 10523 (C 5)	2012-04
Geruch (Betonaggr.) *	DEV B1/2	1971
Nichtkarbonathärte (Betonaggr.)	DIN 38409-6 (H 6)	1986-01
Gesamthärte (Betonaggr.)	DIN 38409-6 (H 6)	1986-01
Säurekap pH 4,3 Wa (Stahlaggr.)	DIN 38409-7 (H 7)	2005-12
Calcium in Wasser (ICP, Stahlaggr.)	DIN EN ISO 11885 (E 22)	2009-09
Magnesium Wasser (ICP, Betonaggr.)	DIN EN ISO 11885 (E 22)	2009-09
Chlorid in Wasser (IC, Betonaggr.)	DIN EN ISO 10304-1 (D 20)	2009-07
Chlorid in Wasser (IC, Stahlaggr.)	DIN EN ISO 10304-1 (D 20)	2009-07
Sulfat in Wasser (IC, Betonaggr.)	DIN EN ISO 10304-1 (D 20)	2009-07
Sulfat in Wasser (IC, Stahlaggr.)	DIN EN ISO 10304-1 (D 20)	2009-07
Sulfid i.W. (Betonaggr.)	DIN 38405-27	2017-10
Hydrogenkarbonat_mmol (Betonaggr.)	DEV D8	1971
Stahlangreifende Wässer	DIN 50929-3	2018-03
Ammonium (Betonaggr.)	DIN EN ISO 11732	2005-05

mit * gekennzeichnete Prüfmethoden sind nicht Bestandteil des akkreditierten Bereich

Betonaggressivität

Probenbez.			WP 2 - Flussw. aus Weiße Elster 10.03.2021
Probe-Nr.		143	21/13636
Betonaggressivität	Ohne	ВА	s. Anlage
Aussehen	Ohne	BA	klar
CO2 kalklösend	mg/l	ВА	12,1
Geruch (angesäuerte Pr.)	Ohne	ВА	ohne
Permanganat-Verbrauch	mg/l	BA	18,0
pH Wert	Ohne	BA	6,94
Geruch	Ohne	BA	ohne
Nichtkarbonathärte	mmol/l	BA	2,63
Gesamthärte	mmol/l	BA	3,63
Magnesium	mg/l	BA	25,3
Chlorid	mg/l	ВА	89,0
Sulfat	mg/l	ВА	250
Sulfid	mg/l	BA	<0,050
Hydrogenkarbonat	mmol/l	ВА	2,00
Ammonium	mg/l	ВА	0,280

Abk.: OS Orignalsubstanz, TS Trockensubstanz, EL Eluat, PE Probenahmeeinheit, n.n. nicht nachweisbar, < kleiner Bestimmungsgrenze

Stahlaggressivität

Probenbez.			WP 2 - Flussw. aus Weiße Elster 10.03.2021
Probe-Nr.		110	21/13636
pH Wert	Ohne	SA	6,94
Säurekapazität pH 4,3	mmol/l	SA	2,00
Calcium	mg/l	SA	104
Chlorid	mg/l	SA	89,0
Sulfat	mg/l	SA	250
Stahlangreifende Wässer	Ohne	SA	s. Anlage

Abk.: OS Orignalsubstanz, TS Trockensubstanz, EL Eluat, PE Probenahmeeinheit, n.n. nicht nachweisbar, < kleiner Bestimmungsgrenze

U. Szymkowiak

Qualitätssicherung

Leipzig, 15.03.2021

Dr. S. Bergmann

Laborleiter

Umwelt- und Öllabor Leipzig Akkreditiertes Prüflabor D-PL-18062-01-00

Prüfungen und Beurteilung von Wasser nach dem Referenzverfahren									
Prüfbericht				Probenahme und Analyse					
über die Prüfung und Be	urteilung von Was	ser		nach DIN 4030 Teil 2					
Allgemeine Angaben									
	SRUNDBÜRO BAF			Auftrags-Nr:	11692-2	1			
	rsatzneubau Brück		•	Probe-Nr:	21/13636	3			
	sspark Lützschena	in Lei	ozig						
Art des Wassers: Wass				Bezeichnung WP 2 - Flussw. aus Weiße E					
(z.B. Grund-, Oberfläche	n-, Sickerwasser)		des Wassers:	ster					
Entnahmestelle:			-	Entnahmetiefe:	0,05 m				
z.B. Bohrloch, Schürfgru				T_					
Temperatur des Wasser	rs: °C	En	tnahmezeit:	Er	ntnahmeda	itum:			
2. Erweiterte Angaben				=:: 0					
Fließrichtung:	la.			Fließgeschwind		m/s			
Höhe des Wasserspiege	IS:			Hydrostatischer	Druck:	m			
Beschreibung der Gelän	deverhältnisse am	Entnah	nmeort:						
(z.B. Wohnhäuser, Indus	strie, Deponie, Halo	den, Ac	kerland, Wald))						
Ort, Datum			Probenehmer						
Ort, Datum			Probenenine	46					
3. Wasseranalyse			4. Grenzwerte zu	ır Beurteilung na	ch DIN 40	30 Teil 2 1)			
Probeneingang	Prüfergebnis		schwach angreife	end stark ang	reifend	sehr stark			
			Schwach angient	Stark arig	renena	angreifend			
Aussehen	klar		-	-		-			
Geruch (unveränderte	ohne		_	_		_			
Probe)									
Geruch (angesäuerte	ohne		-	_		-			
Probe)			051: 55						
pH-Wert	6,94		6,5 bis 5,5	< 5,5 bi	s 4,5	< 4,5			
KMnO ₄ -Verbrauch	18	mg/l		-					
Härte		mmol/l		-		-			
Hydrogencarbonat Nichtcarbonathärte		mmol/l	-			-			
		mmol/l	- 200 his 4000	- 1000 1:	- 0000	- 0000 #			
Magnesium (Mg ²⁺) Ammonium (NH ₄ ⁺)	25,3	mg/l	300 bis 1000			> 3000 mg/l			
Sulfat (SO ₄ ²⁻)	0,28 250	mg/l	15 bis 30	30 bis		> 60 mg/l			
	89	mg/l	200 bis 600	> 600 bis	3000	> 3000 mg/l			
Chlorid (Cl ⁻) CO ₂ (kalklösend)	12,1	mg/l	15 bis 40	- 10 bis	100	- 100 //			
	<0,050	mg/l	15 015 40	> 40 bis	100	> 100 mg/l			
Sulfid (S²)		mg/l							
Für die Beurteilung ist wird Liegen zwei oder m									
wird. Liegen zwei oder m						ei), so ernont sich			
der Angriffsgrad um eine Stufe (ausgenommen Meerwasser und Niederschlagswasser) 5. Beurteilung									
Das Wasser ist - nicht	- schwach s	tork	sehr stark – beto	nanaraifand					
Das Wasser ist - Tilcht	- Scriwacii - S	laik -	Serii Stark - Deto	mangrenena.					
		2		0					
Leipzig, 15.03.2021	(/0			1		aue			
		1		- July	me	uce			
Ort, Datum	Sachbeart	peiter		Untersuchu	nasstelle				

Umwelt- und Öllabor Leipzig Akkreditiertes Prüflabor D-PL-18062-01-00

Abschätzung der Korrossionswahrscheinlichkeit in Wässern nach DIN 50929 gegenüber Stahl

Prüfbericht - Nr. 11692-21

Bohrbetrieb: BAUGRUNDBÜRO BARTHEL
Entnahmestelle: WP 2 - Flussw. aus Weiße Elster

Proben - Nr. 21/13636

Objekt: BV: Ersatzneubau

Brücke Schlossweg III

Entr	nahmetiefe: 0,05 m					im Schloss	
				Bewertungs	sziffer	Auswertung	
Nr.	Merkmal und Dimension	Einheit	Messung	unlegierte Eisen	verzinkten Stahl	unlegierte Eisen	verzinkten Stahl
1	Wasserart			N1	M1	N1	M1
	fließende Gewässer			0	-2		
	stehende Gewässer			-1	1		
	Küste von Binnenseen			-3	-3		
	anaerob. Moor, Meerküste			-5	-5		
2	Lage des Objektes			N2	M2	N2	M2
	Unterwasserbereich			0	0		
	Wasser/Luft - Bereich			1	-6		
	Spritzwasserbereich			0,3	-2		
3	c (Chlorid) + 2 c (Sulfat)	mol/m³		N3	M3	N3	МЗ
	<1			0	0		
	1 bis 5			-2	0		
	> 5 bis 25		7,72	-4	-1	-4	-1
	> 25 bis 100			-6	-2		
	> 100 bis 300			-7	-3		
	> 300			-8	-4		
4	Säurekapazität bis pH 4,3 (Alkalität KS 4,3)	mol/m³		N4	M4	N4	M4
	<1			1	-1	1	1
	1 bis 2		2,0	2	1	2	1
	> 2 bis 4		100	3	1		
	> 4 bis 6			4	0		
	> 6			5	-1		
5	c (Ca²+)	mol/m³		N5	M5	N5	M5
	< 0,5			-1	0		1
	0,5 bis 2			0	2		
	> 2 bis 8		2,59	1	3	1	3
	> 8			2	4		
6	pH - Wert			N6	M6	N6	M6
	< 5,5			-3	-6		
	5,5 bis 6,5			-2	-4		
	> 6,5 bis 7,0		6,94	-1	-1	-1	-1
	> 7,0 bis 7,5			0	1	50	
	> 7,5			1	1		
7	Objekt/Wasser-Potential U (zur Feststellung der Fremdkathoden)	v		N7	1	N7	
	> - 0,2 bis - 0,1						
	> - 0,1 bis 0,0						
	> -0,0			/			
	ia 15.02.2021						

Leipzig, 15.03.2021

Bearbeiter:

ANLAGE 6 zum Bodengutachten

Ersatzneubau Brücke Schlossweg III über die Weiße Elster im Schlosspark Lützschena in Leipzig, OT Lützschena

(BG 1425/21 vom 12. April 2021)

→ Bewertung der Ausbaumaterialien mit Prüfberichten

Technische
Komplettausrüstungen
für Klinik, Labor und
Industrie,
Ingenieurtechnische
Beratung,
Koordinierung und
Ausführung von
Bodenuntersuchungen,
Abbruch, Entsorgung
und Recycling

면 첫 큰 트 프 ద 첫 전 전 전 등 MULTI-TEC GmbH ● Permoserstraße 15 ● 04318 Leipzig

Leipzig, den 13.04.2021

Bewertung von Ausbaumaterial

Bauvorhaben: Ersatzneubau Brücke Schlossweg III

Im Schlosspark Lützschena in Leipzig

Auftraggeber: Baugrundbüro Barthel

Magdeborner Straße 9 04416 Markkleeberg

Projekt-Nr.: Barthel-2021

Bearbeiter: Dipl.-Ing. K. Reiners

Staatl. gepr. Techniker R. März

Der Bericht umfasst 1 Deckblatt, 12 Seiten Text und 7 Anlagen:

- Prüfbericht 11695-21 (Auffüllung)
- Prüfbericht 11696-21 (Beton)
- Prüfbericht 11697-21 (Sperrschicht)
- Prüfbericht 11698-21 (Sediment)
- Prüfbericht 11699-21 (Altholz)
- Prüfbericht 12159-21 (Sediment DepV) inkl. Probenbegleitprotokoll
- Prüfbericht 12160-21 (Beton DepV) inkl. Probenbegleitprotokoll

MULTI-TEC GmbH
Permoserstraße 15
04318 Leipzig
Telefon 0341/2 35-32 58
Telefax 0341/2 35-24 89
E-Mail: oliver.modes@nexgo.de
www.multitec-leipzig.de

Sitz der Gesellschaft: Leipzig Registergericht: Amtsgericht Leipzig Eintragungsnummer: HRB 9736 Ust. Id.-Nr.: DE 166363212 Geschäftsführer: Dipl.-Ing. Oliver Modes, Dr. Dieter Modes

Bankverbindung Deutsche Bank Leipzig IBAN: DE68 8607 0000 0143 3507 00 BIC: DEUTDE8LXXX

Bewertung von Ausbaumaterial

- Ersatzneubau Brücke Schlossweg III, im Schlosspark Lützschena in Leipzig -

1. ALLGEMEINE VORBEMERKUNG

Durch das Baugrundbüro Barthel wurden im Zuge des oben genannten Bauvorhabens Proben vom zukünftigen Ausbaumaterial entnommen und wie folgt bezeichnet:

<u>Boden</u>	BOP 1	Widerlagerhinterfüllung Nord	<i>Auffüllung – TB 1 / 0,2-1,5m</i>				
	BOP 2	Widerlagerhinterfüllung Süd	Auffüllung – TB 2 / 0,2-2,0m				
<u>Beton</u>	BP 3	Beton Brückenwiderlager Nord +	Süd				
<u>Dichtung</u>	TP 4	Brückenwiderlager Nord	Sperrschicht / Anstrich				
<u>Sediment</u>	BOP 5	Sedimentprobe Weiße Elster westl	. Brücke aus 4 Teilproben				
<u>Altholz</u>	HP 6	Holzprobe Brückenoberbau Bestandsbrücke					

Die Proben wurden dem Labor Analysenservice Leipzig GmbH zur Analyse übergeben. Die Untersuchung der Boden- und Sedimentproben erfolgte nach LAGA TR Boden, die der Betonprobe nach LAGA TR Bauschutt. Der Betonanstrich wurde auf PAK und die Holzprobe nach den Annahmeanforderungen des BMKW Delitzsch untersucht.

Die Untersuchungen dienen der Bewertung des Ausbaumaterials hinsichtlich seiner Verwertbarkeit.

2. BEWERTUNG DER ERGEBNISSE FÜR BODEN NACH LAGA M 20 VON 2004

Für die Bewertung von Bodenaushub und Baggergut wird in Sachsen aktuell die bisher noch nicht zur Veröffentlichung freigegebene LAGA TR Boden (neu), Stand: 05.11.2004 herangezogen. Bodenmaterial ist im Sinne dieser Richtlinie gewachsener Boden ohne Mutterboden, aber auch Bodenmaterial mit mineralischen Fremdbestandteilen wie Bauschutt und Schlacke. Der Anteil an Fremdbestandteilen darf 10 Vol.% nicht übersteigen.

Bodenähnliche Anwendung

Die LAGA TR Boden (neu) unterscheidet Zuordnungswerte für eine Verwendung in bodenähnlichen Anwendungen (Wiederherstellung der Bodenfunktion, z.B. für Verfüllungen von Abgrabungen) und in Anwendung für technische Bauwerke (z.B. wasserdurchlässige Bauweise Parkplatz Unterbau). Für die bodenähnlichen Anwendungen werden die Feststoffgehalte in Abhängigkeit der Bodenart Sand, Schluff und Ton unterschieden.

Technische Anwendung

Bei technischer Anwendung unterscheidet die neue LAGA TR Boden zwischen dem eingeschränkten offenen Einbau (Einbauklasse 1) und dem eingeschränkten Einbau mit definierten technischen Sicherungsmaßnahmen (Einbauklasse 2). Die Einbauklasse 1 ist unterteilt in Z 1.1 und Z 1.2. In hydrogeologisch günstigen Gebieten kann Material bis Z 1.2 eingebaut werden.

Bis zu einem Zuordnungswert von Z 2 kann der Boden gemäß LAGA TR Boden verwertet werden. Bei Konzentrationen über Z 2 ist der Boden kontaminiert und eine Verwertung nach LAGA ist nicht möglich. Er muss einer Deponie zugeführt werden.

Bei den untersuchten Bodenproben von der Widerlagerhinterfüllung handelt es sich um gemischtkörniges Bodenmaterial. Die Bewertung erfolgt nach den Grenzwerten für Lehm/Schluff.

In den unten stehenden Tabellen sind die Ergebnisse der chemischen Analyse dargestellt. In den rechten Spalten sind die jeweiligen Zuordnungswerte nach LAGA TR Boden von 2004 angegeben.

<u>Tabelle 1:</u> Bewertung der Analysenergebnisse – Widerlagerhinterfüllung Nord

Parameter	Einheit	BOP 1 Widerlager- hinterfüllung Nord	Z 0 Lehm/ Schluff	Z 1.1	Z 1.2	Z 2
Arsen	mg/kg	4,70	15	4	.5	150
Blei	mg/kg	20,4	70	2	10	700
Cadmium	mg/kg	< 0,400	1	(3	10
Chrom	mg/kg	12,2	60	18	30	600
Kupfer	mg/kg	10,5	40	12	20	400
Nickel	mg/kg	9,60	50	1:	50	500
Quecksilber	mg/kg	< 0,0500	0,5	1	,5	5
Zink	mg/kg	37,1	150	4:	50	1500
EOX	mg/kg	< 1,0	1		3	10
MKW C ₁₀ -C ₂₂	mg/kg	< 20,0	100	30	00	1000
MKW C ₁₀ -C ₄₀	mg/kg	< 20,0	100	600		2000
PAK	mg/kg	0,132	3	3(9)*		30
Benzo(a)pyren	mg/kg	< 0,0200	0,3	0,9		3
TOC	Ma %	0,400	0,5	1	,5	5
pH-Wert		8,94	6,5-9,5	6,5-9,5	6-12	5,5-12
Leitfähigkeit	μS/cm	163	250	250	1500	2000
Arsen	μg/l	9,00	14	14	20	60
Blei	μg/l	< 10,0	40	40	80	200
Cadmium	μg/l	< 1,00	1,5	1,5	3	6
Chrom, gesamt	μg/l	< 10,0	12,5	12,5	25	60
Kupfer	μg/l	14,0	20	20	60	100
Nickel	μg/l	< 10,0	15	15	20	70
Quecksilber	μg/l	< 0,100	< 0,5	< 0,5	1	2
Zink	μg/l	< 10,0	150	150	200	600
Chlorid	mg/l	1,4	30	30	50	100
Sulfat	mg/l	20	20	20	50	200
Einstufu nach LAGA TI	R Boden	Z 0		n mit hydroge hten sind Gel		
bestimmender Parameter		-	n.n. nicl	nt nachweisba	r	

Für sämtliche Parameter werden die Zuordnungswerte Z 0 eingehalten. Im Ergebnis ist die Auffüllung im Bereich des nördlichen Widerlagers als Z 0-Material einzustufen und damit in bodenähnlichen Anwendungen verwertbar.

<u>Tabelle 2:</u> Bewertung der Analysenergebnisse – Widerlagerhinterfüllung Süd

		•				
	Einheit	BOP 2 Widerlager- hinterfüllung Süd	7.0	Z 1		
Parameter			Z 0 Lehm/ Schluff	Z 1.1	Z 1.2	Z 2
Arsen	mg/kg	4,90	15	45		150
Blei	mg/kg	6,10	70	2	10	700
Cadmium	mg/kg	< 0,400	1		3	10
Chrom	mg/kg	13,1	60	18	30	600
Kupfer	mg/kg	8,50	40	12	20	400
Nickel	mg/kg	11,7	50	1:	50	500
Quecksilber	mg/kg	< 0,0500	0,5	1	,5	5
Zink	mg/kg	25,6	150	4:	50	1500
EOX	mg/kg	< 1,0	1	(3	
MKW C ₁₀ -C ₂₂	mg/kg	< 20,0	100	300		1000
MKW C ₁₀ -C ₄₀	mg/kg	< 20,0	100	600		2000
PAK	mg/kg	n.n.	3	3(9)*		30
Benzo(a)pyren	mg/kg	< 0,0200	0,3	0,9		3
TOC	Ma %	0,300	0,5	1,5		5
pH-Wert		9,67	6,5-9,5	6,5-9,5	6-12	5,5-12
Leitfähigkeit	μS/cm	30,0	250	250	1500	2000
Arsen	μg/l	< 5,00	14	14	20	60
Blei	μg/l	< 10,0	40	40	80	200
Cadmium	μg/l	< 1,00	1,5	1,5	3	6
Chrom, gesamt	μg/l	12,0	12,5	12,5	25	60
Kupfer	μg/l	< 10,0	20	20	60	100
Nickel	μg/l	< 10,0	15	15	20	70
Quecksilber	μg/l	< 0,100	< 0,5	< 0,5	1	2
Zink	μg/l	11,0	150	150	200	600
Chlorid	mg/l	0,81	30	30	50	100
Sulfat	mg/l	1,2	20	20	50	200
Einstufung nach LAGA TR Boden		Z 1.2	* in Gebieten mit hydrogeologisch günstigen Deckschichten sind Gehalte bis 9 mg/kg zulässig			
bestimmender Parameter		pH-Wert	n.n. nic	ht nachweisba	r	

Die untersuchte Bodenprobe BOP 2 einen erhöhten pH-Wert auf. Im Ergebnis ist die Auffüllung im Bereich des südlichen Widerlagers als Z 1.2-Material einzustufen. In hydrogeologisch günstigen Gebieten ist eine Verwertung in Einbauklasse 1 zulässig (offener Einbau in technischen Bauwerken).

<u>Tabelle 3:</u> Bewertung der Analysenergebnisse – Sedimente Weiße Elster

			Z 0	Z 1		
Parameter	Einheit	BOP 5	Lehm/			Z 2
	Zimen	Sedimentprobe	Schluff	Z 1.1	Z 1.2	
Arsen	mg/kg	26,3	15	45		150
Blei	mg/kg	103	70	210		700
Cadmium	mg/kg	4,10	1	,	3	10
Chrom	mg/kg	151	60	18	80	600
Kupfer	mg/kg	145	40	12	20	400
Nickel	mg/kg	104	50	1:	50	500
Quecksilber	mg/kg	1,10	0,5	1	,5	5
Thallium	mg/kg	0,470	0,7	2	,1	7
Zink	mg/kg	1.310	150	4:	50	1500
Cyanid ges.	mg/kg	0,130	-		3	10
EOX	mg/kg	< 1,0	1	,	3	10
MKW C ₁₀ -C ₂₂	mg/kg	115	100	30	00	1000
MKW C ₁₀ -C ₄₀	mg/kg	727	100	60	00	2000
PAK	mg/kg	6,70*	3	3(9)*		30
Benzo(a)pyren	mg/kg	0,309	0,3	0,9		3
PCB	mg/kg	0,0147	0,05	0,15		0,5
LHKW	mg/kg	n.n.	1		1	1
BTEX	mg/kg	n.n.	1		1	1
TOC	Ma %	9,61	0,5	1	,5	5
pH-Wert		7,70	6,5-9,5	6,5-9,5	6-12	5,5-12
Leitfähigkeit	μS/cm	760	250	250	1500	2000
Arsen	μg/l	< 5,00	14	14	20	60
Blei	μg/l	< 10,0	40	40	80	200
Cadmium	μg/1	< 1,00	1,5	1,5	3	6
Chrom, gesamt	μg/l	< 10,0	12,5	12,5	25	60
Kupfer	μg/l	< 10,0	20	20	60	100
Nickel	μg/l	< 10,0	15	15	20	70
Quecksilber	μg/1	< 0,100	< 0,5	< 0,5	1	2
Zink	μg/l	< 10,0	150	150	200	600
Chlorid	mg/l	28	30	30	50	100
Sulfat	mg/l	88	20	20	50	200
Cyanid ges.	μg/l	< 5,00	5	5	10	20
Phenolindex	μg/l	< 10,0	20	20	40	100
Einstufu	ng	> 7.3	* in Cabiata	n mit broduc =:	eologisch gün	atiaan
nach LAGA TR Boden		> Z 2			alte bis 9 mg	
bestimmender		тос	n.n. nicl	nt nachweisba	r	-
Paramet	er		II.II. IIICIII HACHWEISUAI			

Die untersuchte Sedimentprobe weist für diverse Parameter erhöhte Werte auf. Der TOC-Gehalt überschreitet den Zuordnungswert Z 2. Damit ist eine Verwertung nach LAGA TR Boden nicht zulässig.

3. BEWERTUNG VON DICHTUNGSMATERIAL

Aufgrund des Verdachtes auf das Vorhandensein teerhaltiger Substanzen wurde die angetroffene Sperrschicht/Anstrich auf PAK (nach EPA) untersucht. Die Bewertung erfolgt sowohl aus Sicht des Abfallrechtes als auch des Arbeitsschutzes.

Für die Einstufung der Gefährlichkeit wird als Leitparameter der Gehalt an Benzo(a)pyren herangezogen. Benzo(a)pyren ist nach Anhang VI der CLP-Verordnung unter anderem als krebserzeugend, keimzellmutagen und reproduktionstoxisch eingestuft.

"Im Freistaat Sachsen sind keine Vollzugshinweise für die Einstufung von PAK-haltigen Abfällen […] eingeführt." Allgemein werden Abfälle durch die zuständigen Abfallbehörden als gefährlich eingestuft, "wenn ein PAK-Gehalt nach EPA von 1.000 mg/kg und/oder ein Gehalt von 50 mg/kg Benzo(a)pyren erreicht oder überschritten wird". (Entsorgung von Ausbaustoffen mit teer-/pechtypischen Bestandteilen – Schriftenreihe, Heft 7/2018 – Landesamt für Umwelt, Landwirtschaft und Geologie, Freistaat Sachsen)

Bei Vorliegen gefährlicher Abfälle sind die entsprechenden Rückbauarbeiten als "Arbeiten im kontaminierten Bereich" nach DGUV 101-004 (alt - BGR 128) einzustufen. Es sind besondere Arbeitsschutzmaßnahmen einzuleiten.

<u>Tabelle 4:</u> Bewertung der Analysenergebnisse – *Anstrich Brückenwiderlager*

Probe	PAK [mg/kg]	Benzo(a)pyren [mg/kg]	
TP 4 – Brückenwiederlager Nord	24,8	0,653	
Schwellenwert für die Einstufung als Gefahrstoff	1.000	50	

Der untersuchte Anstrich weist keine Grenzwertüberschreitungen auf. Die Schwellenwerte für die Einstufung als gefährlicher Abfall werden deutlich unterschritten. Es handelt sich um einen Bitumenanstrich. Eine separate Erfassung ist nicht erforderlich. Bei der Entsorgung des Betons sollte auf bituminöse Anhaftungen hingewiesen werden.

4. BEWERTUNG NACH RECYCLINGERLASS BZW. LAGA TR BAUSCHUTT

Mit dem Erlass des Sächsischen Staatsministeriums für Energie, Klimaschutz, Umwelt und Landwirtschaft "Vorläufige Hinweise zum Einsatz von Baustoffrecyclingmaterial im Freistaat Sachsen (Recyclingerlass)" vom 09.01.2020 wird der Einsatz von RC-Beton für technische Bauwerke in Sachsen geregelt. Die Hinweise sind bis zum 31.12.2021 gültig.

Ausgangsmaterial für Recycling-Baustoff sind folgende Abfallarten:

Beton (ASN 170101)

Ziegel (ASN 170102)

Fliesen und Keramik (Abfallschlüssel 170103)

Gemische aus Beton, Ziegeln, Fliesen und Keramik (Abfallschlüssel 170107)

Bitumengemische (ASN 170302 hier Asphalt teerfrei)

Abfälle aus Keramikerzeugnissen, Ziegeln, Fliesen und Steinzeug (ASN 101208)

Betonabfälle (ASN 101314 ohne Betonschlämme)

Der Anwendungsbereich bezieht sich aber auch auf Straßenaufbruchmaterial und natürliche Gesteinskörnungen, die in Baustoff-Recyclinganlagen aufbereitet werden.

Die Ausgangsmaterialien sind so aufzubereiten und zu lagern, dass sie den Anforderungen der Hinweise entsprechen. Generell ist eine größtmögliche Getrennthaltung der einzelnen Rohmaterialgruppen anzustreben.

RC-Material kann ausschließlich in technischen Anwendungen verwertet werden. Eine Verwertung in den Trinkwasserschutzzonen I und II ist nicht zulässig. Beim Einsatz in der Zone III, III A sollen insbesondere bei Großbaumaßnahmen keine Recyclingmaterialien eingesetzt werden, deren Schadstoffgehalte die Zuordnungswerte W 1.1 überschreiten.

Bei der Verwertung wird unterschieden zwischen dem offenen Einbau (Einbauklasse 1) und dem eingeschränkten Einbau mit definierten technischen Sicherungsmaßnahmen (Einbauklasse 2). Die Einbauklasse 1 ist unterteilt in W 1.1 und W 1.2. Unter günstigen hydrogeologischen Voraussetzungen (wirksame Abdeckung des Grundwasserleiters) kann Material bis W 1.2 eingebaut werden.

Eine Verwertung von Baustoffrecyclingmaterial ist bis zu einem Zuordnungswert W 2 zulässig. Bei Konzentrationen über W 2 gilt das Material als kontaminiert und muss einer zugelassenen Entsorgungsanlage (Deponie) zugeführt werden.

Da einige Verwertungsanlagen noch nach alter LAGA genehmigt sind, erfolgt die Bewertung zusätzlich nach LAGA TR Bauschutt von 1997. Zur Umsetzung der bodenschutzrechtlichen Vorgaben ist eine uneingeschränkte Verwertung, d.h. ein Einbau in bodenähnlichen Anwendungen, ausschließlich für humusarmes Bodenmaterial zulässig. Damit entfällt für Bauschutt die Einbauklasse 0 bzw. die Einstufung als Z 0-Material.

Bei dem untersuchten Material handelt es sich um Beton.

In der folgenden Tabelle sind die Ergebnisse der Analyse dargestellt. In den rechten Spalten sind die jeweiligen Zuordnungswerte nach Recyclingerlass bzw. LAGA TR Bauschutt angegeben.

<u>Tabelle 5:</u> Bewertung der Analysenergebnisse – Beton Brückenwiderlager Nord + Süd

Parameter	Einheit	BP 3 – Beton Brückenwiderlager Nord + Süd	W 1.1/ Z 1.1	W 1.2/ Z 1.2	W 2/ Z 2
Arsen	mg/kg	< 2,00	-/30	-/50	-/150
Blei	mg/kg	2,80	-/200	-/300	-/1000
Cadmium	mg/kg	< 0,400	-/1	-/3	-/10
Chrom	mg/kg	70,6	-/100	-/200	-/600
Kupfer	mg/kg	5,00	-/100	-/200	-/600
Nickel	mg/kg	13,3	-/100	-/200	-/600
Quecksilber	mg/kg	< 0,0500	-/1	-/3	-/10
Zink	mg/kg	48,3	-/300	-/500	-/1500
EOX	mg/kg	< 1,0	3	5	10
MKW	mg/kg	< 20,0	300	500	1000
PAK	mg/kg	0,0222	5	15	25/75
PCB	mg/kg	n.n.	0,1	0,5	1
pH-Wert		11,3	7,0-12,5		
Leitfähigkeit	μS/cm	94,0	1500	2500	3000
Arsen	μg/l	< 5,00	10	40	50
Blei	μg/l	< 10,0	25/40	100	100
Cadmium	μg/l	< 1,00	5/2	5	5
Chrom, gesamt	μg/l	125	50/30	75	100
Kupfer	μg/l	< 10,0	50	150	200
Nickel	μg/l	< 10,0	50	100	100
Quecksilber	μg/l	< 0,100	1/0,2	1	2
Zink	μg/l	< 10,0	500/100	500/300	500/400
Chlorid	mg/l	0,79	100/20	200/40	300/150
Sulfat	mg/l	3,3	240/150	300	600
Phenolindex	μg/l	< 10,0	20/10	50	100
Einstufung		> W 2 / > Z 2			
bestimmender Parameter		Chrom	n.n. nich	nt nachweisba	r

Der untersuchte Beton von den Brückenwiderlagern weist einen erhöhten Chrom-Gehalt im Eluat auf. Die Zuordnungswerte W 2 bzw. Z 2 werden überschritten. Damit ist eine Verwertung nach Recyclingerlass bzw. LAGA TR Bauschutt nicht zulässig.

5. BEWERTUNG DER ERGEBNISSE NACH DEPV

Hinsichtlich der Entsorgung auf einer Deponie wurden die Proben vom Sediment und vom Beton zusätzlich gemäß Deponieverordnung untersucht. Im Ergebnis erfolgt die Einstufung der Deponieklasse.

Die Zuordnungskriterien werden in der DepV Anlage 3 Tabelle 2 geregelt. Als notwendige Angaben sind das Probenahmeprotokoll, das Probenvorbereitungsprotokoll und der Analysenbericht bei der Deponie einzureichen.

<u>Tabelle 6:</u> Bewertung der Analysenergebnisse nach DepV – Sedimente Weiße Elster

Parameter	Einheit	BOP 5 Sedimentprobe	DK I	DK II	DK III	
AT 4	Ma %	1,50	≤ 5*			
Brennwert	J/g	4.230	≤ 6.000*			
ELS	Ma %	0,33	≤ 0,4	≤ 0.8	≤ 4	
TOC	Ma %	9,61*	≤ 1	≤ 3	≤6	
Ges. Gehalt an gelöst. Stoffen	mg/l	536	3.000	6.000	10.000	
pH-Wert	ohne	7,70	5,5-13	5,5-13	4-13	
Antimon	mg/l	< 0,00600	≤ 0,03	\leq 0,07	≤ 0,5	
Arsen	mg/l	< 0,00500	≤ 0,2	≤ 0,2	≤ 2,5	
Barium	mg/l	0,0880	≤ 5	≤ 10	≤ 30	
Blei	mg/l	< 0,0100	≤ 0,2	≤ 1	≤ 5	
Cadmium	mg/l	< 0,00100	≤ 0,05	$\leq 0,1$	≤ 0,5	
Chrom, ges.	mg/l	< 0,0100	≤ 0,3	≤ 1	≤ 7	
Kupfer	mg/l	< 0,0100	≤ 1	≤ 5	≤ 10	
Molybdän	mg/l	< 0,0100	≤ 0,3	≤ 1	≤ 3	
Nickel	mg/l	< 0,0100	≤ 0.2	≤ 1	≤ 4	
Quecksilber	mg/l	< 0,000100	\leq 0,005	≤ 0,02	≤ 0,2	
Selen	mg/l	< 0,0100	≤ 0,03	\leq 0,05	≤ 0,7	
Zink	mg/l	< 0,0100	≤ 2	≤ 5	≤ 20	
Chlorid	mg/l	28	≤ 1.500	≤ 1.500	\leq 2.500	
Fluorid	mg/l	< 0,50	≤ 5	≤ 15	≤ 50	
Sulfat	mg/l	88	\leq 2.000	\leq 2.000	≤ 5.000	
Cyanide leicht freisetzbar	mg/l	< 0,00500	≤ 0,1	≤ 0,5	≤ 1	
Phenolindex	mg/l	< 0,0100	≤ 0,2	≤ 50	≤ 100	
DOC	mg/l	17,3	≤ 50	≤ 80	≤ 100	
Einstufung nach DepV		DK I*		.1		
Bestimmender Parameter		TOC	n.n. nicht na	chweisbar		

^{*}Gemäß Deponieverordnung sind Überschreitungen bei den Parametern Glühverlust und TOC mit Zustimmung der zuständigen Behörde u.a. dann zulässig, wenn der jeweilige Zuordnungswert für DOC eingehalten wird, die biologische Abbaubarkeit des Trockenrückstandes der Originalsubstanz von 5 mgO2/g (bestimmt als AT4) eingehalten wird und der Brennwert (oberer Heizwert) unter 6000 kJ/kg liegt.

Die untersuchte Sedimentprobe weist lediglich einen erhöhten TOC auf. Die Randbedingungen für die Bessereinstufung sind erfüllt. Damit ist mit Zustimmung der zuständigen Behörde die Ablagerung auf einer Deponie der Klasse I-II möglich.

<u>Tabelle 7:</u> Bewertung der Analysenergebnisse nach DepV – Beton Brückenwiderlager

Parameter	Einheit	BP 3 – Beton Brücken- widerlager	DK I	DK II	DK III
ELS	Ma %	< 0,10	≤ 0,4	≤ 0,8	≤ 4
TOC	Ma %	0,210	<u>≤</u> 1	<u>≤</u> 3	<u>=</u> ≤6
Ges. Gehalt an gelöst. Stoffen	mg/l	826	3.000	6.000	10.000
pH-Wert	ohne	11,3	5,5-13	5,5-13	4-13
Antimon	mg/l	< 0,00600	≤ 0,03	≤ 0,07	≤ 0,5
Arsen	mg/l	< 0,00500	≤ 0,2	≤ 0,2	≤ 2,5
Barium	mg/l	0,130	≤ 5	≤ 10	≤ 30
Blei	mg/l	< 0,0100	≤ 0,2	≤ 1	≤ 5
Cadmium	mg/l	< 0,00100	≤ 0,05	≤ 0,1	≤ 0,5
Chrom, ges.	mg/l	0,125	≤ 0,3	≤ 1	≤ 7
Kupfer	mg/l	< 0,0100	≤ 1	≤ 5	≤ 10
Molybdän	mg/l	< 0,0100	≤ 0,3	≤ 1	≤ 3
Nickel	mg/l	< 0,0100	≤ 0,2	≤ 1	≤ 4
Quecksilber	mg/l	< 0,000100	\leq 0,005	≤ 0,02	≤ 0,2
Selen	mg/l	< 0,0100	≤ 0,03	≤ 0,05	≤ 0.7
Zink	mg/l	< 0,0100	≤ 2	≤ 5	≤ 20
Chlorid	mg/l	0,79	≤ 1.500	≤ 1.500	\leq 2.500
Fluorid	mg/l	< 0,50	≤ 5	≤ 15	≤ 50
Sulfat	mg/l	3,3	\leq 2.000	≤ 2.000	≤ 5.000
Cyanide leicht freisetzbar	mg/l	< 0,00500	≤ 0,1	≤ 0,5	≤ 1
Phenolindex	mg/l	< 0,0100	≤ 0,2	≤ 50	≤ 100
DOC	mg/l	4,75	≤ 50	≤ 80	≤ 100
Einstufu nach Dej		DK I			
Bestimmender Parameter		-	n.n. nicht na	chweisbar	

Für sämtliche Parameter werden die Zuordnungswerte der Deponieklasse I eingehalten. Damit ist die Ablagerung auf einer Deponie der Klasse I möglich.

6. BEWERTUNG VON ALTHOLZ

Bei dem Brückenoberbau handelt es sich gemäß Altholzverordnung um Altholz aus dem Baubereich. Sämtliches Konstruktionsholz ist der Kategorie A IV zuzuordnen. Altholz der Kategorie A IV ist als gefährlicher Abfall einzustufen und unter dem Abfallschlüssel 170204* zu entsorgen.

<u>Tabelle 8:</u> Bewertung der Analysenergebnisse – *Altholz*

Parameter	Einheit	HP 6 Brückenoberbau	Grenzwert BMKW Delitzsch
Wassergehalt	Ma %	12,5	30
Heizwert Hu	J/g	16.436	11.000 - 16.500
Aschegehalt	Ma %	2,55	2 - 15
Arsen	mg/kg	< 5,00	20
Blei	mg/kg	< 5,00	3.100
Cadmium	mg/kg	< 1,00	5
Chrom	mg/kg	< 5,00	1.000
Quecksilber	mg/kg	< 0,100	1
Chlor	Ma %	0,02	1
PCB	mg/kg	n.n.	50
Wasserstoff	mg/kg	5,94	
Pentachlorphenol	mg/kg	< 1,00	unauffällig

n.n. nicht nachweisbar

Die Grenzwerte für die energetische Verwertung werden eingehalten.

7. VORSCHLAG ZUR ENTSORGUNG

Entsorgung von Bodenmaterial

Die durch die Probe **BOP 1** repräsentierte Auffüllung im Bereich des nördlichen Widerlagers ist als Z 0-Material einzustufen. Damit kann der anfallende Bodenaushub nach LAGA TR Boden in bodenähnlichen Anwendungen verwertet werden.

Die durch die Probe **BOP 2** repräsentierte Auffüllung im Bereich des südlichen Widerlagers ist nach LAGA TR Boden als Z 1.2-Material einzustufen. In hydrogeologisch günstigen Gebieten ist eine Verwertung in Einbauklasse 1 zulässig (offener Einbau in technischen Bauwerken).

Abfallschlüsselnummer: 17 05 04

Abfallbezeichnung: Boden und Steine mit Ausnahme derjenigen, die unter 17 05 03*

fallen

Bemerkung: Abfall ist nicht gefährlich

Genehmigungen/Nachweise: kein Entsorgungsnachweis erforderlich, Abrechnung über

Wiegeschein ausreichend

Verwertungs-/

Entsorgungsempfehlung: BOP 1 - Widerlagerhinterfüllung Nord

Verwertung als Z 0-Material

(Verwertung in bodenähnlicher Anwendung)

BOP 2 - Widerlagerhinterfüllung Süd

Verwertung als Z 1.2-Material

(Einbau in technischen Bauwerken, in hydrogeologisch

günstigen Gebieten ist der offene Einbau möglich)

Entsorgung von Sedimenten

Die durch die Probe **BOP 5** repräsentierten Sedimente der Weißen Elster sind nach LAGA TR Boden nicht verwertbar. Das Bodenmaterial ist auf einer geeigneten Deponie zu entsorgen. Mit Zustimmung der zuständigen Behörde ist eine Ablagerung auf einer Deponie der Klasse I bzw. II möglich.

Abfallschlüsselnummer: 17 05 06

Abfallbezeichnung: Baggergut mit Ausnahme desjenigen, das unter 17 05 05* fällt

Bemerkung: Abfall ist nicht gefährlich

Genehmigungen/Nachweise: kein Entsorgungsnachweis erforderlich, Abrechnung über

Wiegeschein ausreichend

Verwertungs-/

Entsorgungsempfehlung: **BOP 5 - Sedimente**

Entsorgung auf geeigneter Deponie (DK I bzw. II)

Entsorgung von Bauschutt

Bei der schwarzen Abdichtung (**TP 4**) handelt es sich um einen Bitumenanstrich. Eine separate Erfassung ist nicht erforderlich. Der Entsorger des Betons sollte auf die Beschaffenheit des Materials hingewiesen werden.

Der durch **BP 3** repräsentierte Beton von den Brückenwiderlagern Nord + Süd ist aufgrund des erhöhten Chrom-Gehaltes im Eluat nach Recyclingerlass bzw. LAGA TR Bauschutt nicht verwertbar. Der Beton ist auf einer geeigneten Deponie der Klasse I bzw. II zu entsorgen.

Abfallschlüsselnummer: 17 01 01 Abfallbezeichnung: Beton

Bemerkung: Abfall ist nicht gefährlich

Genehmigungen/Nachweise: kein Entsorgungsnachweis erforderlich, Abrechnung über

Wiegeschein ausreichend

Verwertungs-/

Entsorgungsempfehlung: BP 3 – Beton Brückenwiderlager Nord + Süd

Entsorgung auf geeigneter Deponie (DK I bzw. II)

Entsorgung von Altholz

Der Anstrich kann ohne besondere Arbeitsschutzmaßnahmen aufgenommen und als Bitumengemisch entsorgt werden.

Abfallschlüsselnummer: 17 02 04*

Abfallbezeichnung: Glas, Kunststoff und Holz, die gefährliche Stoffe enthalten oder

durch gefährliche Stoffe verunreinigt sind

Bemerkung: Abfall ist gefährlich

Genehmigungen/Nachweise: elektronisches Abfallnachweisverfahren (eANV)

bis 20 t Entsorgung über Sammelentsorgungsnachweis möglich

Entsorgungsempfehlung: **HP 6 – Brückenoberbau**

energetische Verwertung (z.B. BMKW Delitzsch)

Es wird darauf hingewiesen, dass sich die Einstufung ausschließlich auf die chemische Beschaffenheit des Ausbaumaterials bezieht. Die technische Eignung ist separat zu bewerten.

Leipzig, den 13.04.2021

i.A. K. Mule

i.A. Kirsten Reiners

Multi-Tec GmbH

Umwelt- und Öllabor Leipzig

Akkreditiertes Prüflabor D-PL-18062-01-00

Prüfbericht 11695-21

1. Ausfertigung

Dieser Prüfbericht ersetzt alle vorhergehenden Prüfberichte vollständig.

Auftraggeber

Multi-Tec GmbH

Permoserstr. 15

04318 Leipzig

Projekt

BV: Ersatzneubau Brücke Schlossweg III im Schlosspark Lützschena in

Leipzig

Auftrag vom

11.03.2021

Bestellnummer

-

Probenart

Auffüllung

Probenehmer

Auftraggeber

Probenanzahl

2

Probenahmedatum

Probeneingang

11.03.2021

Prüfbeginn/-ende

11.03.2021 - 18.03.2021

Probennummer

21/13639 - 21/13640

Bemerkung

Der Prüfbericht enthält 4 Seiten und keine Seite(n) Anlage.

Archivierung

Feststoffe

3 Monate

nach Probeneingang

PCB in Öl

3 Jahre

Wasserproben

keine

Gasproben

keine

Hinweise

Die Ergebnisse beziehen sich ausschließlich auf den oben angegebenen Prüfgegenstand.

Dieser Bericht darf nicht auszugsweise ohne die Zustimmung des Labors vervielfältigt werden.

Die Entscheidungsregeln der Analysen Service GmbH sind auf www.analysen-service.de

einzusehen.

Analysen Service GmbH · Umwelt- und Öllabor Leipzig · www.Analysen-Service.de

Geschäftsführer: Dipl.-Chem. Arndt Philipp Dipl.-Ing. Dirk Philipp (FH) Amtsgericht Leipzig HRB 13939 Ust.ldNr.: DE191258018 Prüfbericht 11695-21 1. Ausfertigung

Prüfmethode	DIN	Ausgabedatum
Eluatherstellung (FS)	DIN EN 12457-4	2003-01
Probenvorbereitung	DIN 19747	2009-07
Trockenmasseanteil bei 105 °C	DIN ISO 11465	1993-12
Mikrowellenaufschluss (KÖWA)	DIN EN 13657	2003-01
pH-Wert Eluat	DIN EN ISO 10523 (C 5)	2012-04
Elektrische Leitfähigkeit EL	DIN EN 27888	1993-11
Arsen im Eluat (MS)	DIN EN ISO 17294 - 2	2017-01
Arsen i.A. (ICP)	DIN EN ISO 11885 (E 22)	2009-09
Blei im Eluat (MS)	DIN EN ISO 17294 - 2	2017-01
Blei i.A. (ICP)	DIN EN ISO 11885 (E 22)	2009-09
Cadmium i.A. (ICP)	DIN EN ISO 11885 (E 22)	2009-09
Cadmium im Eluat (MS)	DIN EN ISO 17294 - 2	2017-01
Chrom i.A. (ICP)	DIN EN ISO 11885 (E 22)	2009-09
Chrom ges. im Eluat (MS)	DIN EN ISO 17294 - 2	2017-01
Kupfer i.A. (ICP)	DIN EN ISO 11885 (E 22)	2009-09
Kupfer im Eluat (MS)	DIN EN ISO 17294 - 2	2017-01
Nickel i.A. (ICP)	DIN EN ISO 11885 (E 22)	2009-09
Nickel im Eluat (MS)	DIN EN ISO 17294 - 2	2017-01
Quecksilber i.A. (AAS)	DIN EN ISO 12846 (E 12)	2012-08
Quecksilber in Eluat (AAS)	DIN EN ISO 12846 (E 12)	2012-08
Zink i.A. (ICP)	DIN EN ISO 11885 (E 22)	2009-09
Zink im Eluat (MS)	DIN EN ISO 17294 - 2	2017-01
Chlorid (IC) im Eluat	DIN EN ISO 10304-1 (D 20)	2009-07
Sulfat im Eluat (IC)	DIN EN ISO 10304-1 (D 20)	2009-07
EOX im Feststoff	DIN 38414- S17	2017-01
MKW-GC (C10-C22)	LAGA-KW/04	2009-12
MKW-GC (C10-C40)	LAGA-KW/04	2009-12
PAK (GC-MS)	DIN ISO 18287	2006-05
TOC i.F., Elementaranalyse	DIN EN 13137	2001-12

mit * gekennzeichnete Prüfmethoden sind nicht Bestandteil des akkreditierten Bereich

Originalsubstanz

Probenbez.		0695359	BOP 1 Widerlagerhinterfüllung Nord	BOP 2 Widerlagerhinterfüllung Süd
Probe-Nr.			21/13639	21/13640
TM 105 °C	Ma %	os	93,7	95,1

Prüfbericht 11695-21 1. Ausfertigung

Trockenmasse

Probenbez.			BOP 1 Widerlagerhinterfüllung Nord	BOP 2 Widerlagerhinterfüllung Süd
Probe-Nr.			21/13639	21/13640
Arsen	mg/kg	TS	4,70	4,90
Blei	mg/kg	TS	20,4	6,10
Cadmium	mg/kg	TS	<0,400	<0,400
Chrom	mg/kg	TS	12,2	13,1
Kupfer	mg/kg	TS	10,5	8,50
Nickel	mg/kg	TS	9,60	11,7
Quecksilber	mg/kg	TS	<0,0500	<0,0500
Zink	mg/kg	TS	37,1	25,6
EOX	mg/kg	TS	<1,0	<1,0
MKW-GC (C10-C22)	mg/kg	TS	<20,0	<20,0
MKW-GC (C10-C40)	mg/kg	TS	<20,0	<20,0
PAK (GC-MS)	mg/kg	TS	0,132	n.n.
TOC i.F.	Ma %	TS	0,400	0,300

Abk.: OS Orignalsubstanz, TS Trockensubstanz, EL Eluat, PE Probenahmeeinheit, n.n. nicht nachweisbar, < kleiner Bestimmungsgrenze

Eluat

Probenbez.			BOP 1 Widerlagerhinterfüllung Nord	BOP 2 Widerlagerhinterfüllung Süd
Probe-Nr.			21/13639	21/13640
pH Wert	Ohne	EL	8,94	9,67
Elektr. Leitfähigkeit	μS/cm	EL	163	30,0
Arsen	μg/l	EL	9,00	<5,00
Blei	μg/l	EL	<10,0	<10,0
Cadmium	μg/l	EL	<1,00	<1,00
Chrom, gesamt	μg/l	EL	<10,0	12,0
Kupfer	μg/l	EL	14,0	<10,0
Nickel	μg/l	EL	<10,0	<10,0
Quecksilber	μg/l	EL	<0,100	<0,100
Zink	μg/l	EL	<10,0	11,0
Chlorid	mg/l	EL	1,4	0,81
Sulfat	mg/l	EL	20	1,2

PAK (GC-MS)

Probenbez.			BOP 1 Widerlagerhinterfüllung Nord	BOP 2 Widerlagerhinterfüllung Süd
Probe-Nr.			21/13639	21/13640
Naphthalin	mg/kg	TS	<0,0500	<0,0500
Acenaphtylen	mg/kg	TS	<0,100	<0,100
Acenaphthen	mg/kg	TS	<0,0200	<0,0200
Fluoren	mg/kg	TS	<0,0200	<0,0200
Phenanthren	mg/kg	TS	0,0277	<0,0200
Anthracen	mg/kg	TS	<0,0200	<0,0200
Fluoranthen	mg/kg	TS	0,0448	<0,0200
Pyren	mg/kg	TS	0,0379	<0,0200
Benzo(a)anthracen	mg/kg	TS	0,0216	<0,0200
Chrysen	mg/kg	TS	<0,0500	<0,0500
Benzo(b)fluoranthen	mg/kg	TS	<0,0500	<0,0500
Benzo(k)fluoranthen	mg/kg	TS	<0,0200	<0,0200
Benzo(a)pyren	mg/kg	TS	<0,0200	<0,0200
Dibenzo(a,h)anthracen	mg/kg	TS	<0,0500	<0,0500
Benzo(ghi)perlyen	mg/kg	TS	<0,0500	<0,0500
Indeno(1,2,3-cd)pyren	mg/kg	TS	<0,100	<0,100
PAK (GC-MS)	mg/kg	TS	0,132	n.n.

Abk.: OS Orignalsubstanz, TS Trockensubstanz, EL Eluat, PE Probenahmeeinheit, n.n. nicht nachweisbar, < kleiner Bestimmungsgrenze

U. Szymkowiak

Qualitätssicherung

Leipzig, 19.03.2021

By mann
Dr. S/Bergmann
Laborleiter

Umwelt- und Öllabor Leipzig

Akkreditiertes Prüflabor D-PL-18062-01-00

Prüfbericht 11696-21

* P B 5 1 A 1 1 6 9 6 - 2 1 - 1 * Seite 1 von 4

1. Ausfertigung

Dieser Prüfbericht ersetzt alle vorhergehenden Prüfberichte vollständig.

Auftraggeber

Multi-Tec GmbH

Permoserstr. 15

04318 Leipzig

Projekt

BV: Ersatzneubau Brücke Schlossweg III im Schlosspark Lützschena in

Leipzig

Auftrag vom

11.03.2021

Bestellnummer

_

Probenart

Beton

Probenehmer

Auftraggeber

Probenanzahl

1

Probenahmedatum

Probeneingang

11.03.2021

Prüfbeginn/-ende

11.03.2021 - 18.03.2021

Probennummer

21/13641

Bemerkung

Der Prüfbericht enthält 4 Seiten und keine Seite(n) Anlage.

Archivierung

Feststoffe

3 Monate

nach Probeneingang

PCB in Öl

3 Jahre

Wasserproben

keine

Gasproben

keine

Hinweise

Die Ergebnisse beziehen sich ausschließlich auf den oben angegebenen Prüfgegenstand.

Dieser Bericht darf nicht auszugsweise ohne die Zustimmung des Labors vervielfältigt werden.

Die Entscheidungsregeln der Analysen Service GmbH sind auf www.analysen-service.de

einzusehen.

Analysen Service GmbH · Umwelt- und Öllabor Leipzig · www.Analysen-Service.de

IBAN: DE51 8607 0024 0012 7597 00

BIC: DEUTDEDBLEG

Prüfbericht 11696-21 1. Ausfertigung

Prüfmethode	DIN	Ausgabedatum
Eluatherstellung (FS)	DIN EN 12457-4	2003-01
Probenvorbereitung	DIN 19747	2009-07
Trockenmasseanteil bei 105 °C	DIN ISO 11465	1993-12
Mikrowellenaufschluss (KÖWA)	DIN EN 13657	2003-01
pH-Wert Eluat	DIN EN ISO 10523 (C 5)	2012-04
Elektrische Leitfähigkeit EL	DIN EN 27888	1993-11
Arsen im Eluat (MS)	DIN EN ISO 17294 - 2	2017-01
Arsen i.A. (ICP)	DIN EN ISO 11885 (E 22)	2009-09
Blei im Eluat (MS)	DIN EN ISO 17294 - 2	2017-01
Blei i.A. (ICP)	DIN EN ISO 11885 (E 22)	2009-09
Cadmium i.A. (ICP)	DIN EN ISO 11885 (E 22)	2009-09
Cadmium im Eluat (MS)	DIN EN ISO 17294 - 2	2017-01
Chrom i.A. (ICP)	DIN EN ISO 11885 (E 22)	2009-09
Chrom ges. im Eluat (MS)	DIN EN ISO 17294 - 2	2017-01
Kupfer i.A. (ICP)	DIN EN ISO 11885 (E 22)	2009-09
Kupfer im Eluat (MS)	DIN EN ISO 17294 - 2	2017-01
Nickel i.A. (ICP)	DIN EN ISO 11885 (E 22)	2009-09
Nickel im Eluat (MS)	DIN EN ISO 17294 - 2	2017-01
Quecksilber i.A. (AAS)	DIN EN ISO 12846 (E 12)	2012-08
Quecksilber in Eluat (AAS)	DIN EN ISO 12846 (E 12)	2012-08
Zink im Eluat (MS)	DIN EN ISO 17294 - 2	2017-01
Zink i.A. (ICP)	DIN EN ISO 11885 (E 22)	2009-09
Chlorid (IC) im Eluat	DIN EN ISO 10304-1 (D 20)	2009-07
Sulfat im Eluat (IC)	DIN EN ISO 10304-1 (D 20)	2009-07
EOX im Feststoff	DIN 38414- S17	2017-01
MKW-GC (C10-C22)	LAGA-KW/04	2009-12
MKW-GC (C10-C40)	LAGA-KW/04	2009-12
Phenolindex im Eluat	DIN EN ISO 14402 (H 37)	1999-12
PAK (GC-MS)	DIN ISO 18287	2006-05
PCB Feststoff (Boden)	DIN ISO 10382	2003-05

mit * gekennzeichnete Prüfmethoden sind nicht Bestandteil des akkreditierten Bereich

Originalsubstanz

Probenbez.		1302250	BP 3 - Beton Brückenwiderlager Nord+Süd
Probe-Nr.		MES.	21/13641
TM 105 °C	Ma %	os	93,5

Prüfbericht 11696-21 1. Ausfertigung

Trockenmasse

Probenbez.			BP 3 - Beton Brückenwiderlager Nord+Süd
Probe-Nr.			21/13641
Arsen	mg/kg	TS	<2,00
Blei	mg/kg	TS	2,80
Cadmium	mg/kg	TS	<0,400
Chrom	mg/kg	TS	70,6
Kupfer	mg/kg	TS	5,00
Nickel	mg/kg	TS	13,3
Quecksilber	mg/kg	TS	<0,0500
Zink	mg/kg	TS	48,3
EOX	mg/kg	TS	<1,0
MKW-GC (C10-C22)	mg/kg	TS	<20,0
MKW-GC (C10-C40)	mg/kg	TS	<20,0
PAK (GC-MS)	mg/kg	TS	0,0222
PCB	mg/kg	TS	n.n.

Abk.: OS Orignalsubstanz, TS Trockensubstanz, EL Eluat, PE Probenahmeeinheit, n.n. nicht nachweisbar, < kleiner Bestimmungsgrenze

Eluat

Probenbez.			BP 3 - Beton Brückenwiderlager Nord+Süd
Probe-Nr.			21/13641
pH Wert	Ohne	EL	11,3
Elektr. Leitfähigkeit	μS/cm	EL	94,0
Arsen	μg/l	EL	<5,00
Blei	μg/l	EL	<10,0
Cadmium	μg/l	EL	<1,00
Chrom, gesamt	μg/l	EL	125
Kupfer	μg/l	EL	<10,0
Nickel	μg/l	EL	<10,0
Quecksilber	μg/l	EL	<0,100
Zink	μg/l	EL	<10,0
Chlorid	mg/l	EL	0,79
Sulfat	mg/l	EL	3,3
Phenolindex	mg/l	EL	<0,0100

PAK (GC-MS)

Probenbez.			BP 3 - Beton Brückenwiderlager Nord+Süd
Probe-Nr.			21/13641
Naphthalin	mg/kg	TS	<0,0500
Acenaphtylen	mg/kg	TS	<0,100
Acenaphthen	mg/kg	TS	<0,0200
Fluoren	mg/kg	TS	<0,0200
Phenanthren	mg/kg	TS	0,0222
Anthracen	mg/kg	TS	<0,0200
Fluoranthen	mg/kg	TS	<0,0200
Pyren	mg/kg	TS	<0,0200
Benzo(a)anthracen	mg/kg	TS	<0,0200
Chrysen	mg/kg	TS	<0,0500
Benzo(b)fluoranthen	mg/kg	TS	<0,0500
Benzo(k)fluoranthen	mg/kg	TS	<0,0200
Benzo(a)pyren	mg/kg	TS	<0,0200
Dibenzo(a,h)anthracen	mg/kg	TS	<0,0500
Benzo(ghi)perlyen	mg/kg	TS	<0,0500
Indeno(1,2,3-cd)pyren	mg/kg	TS	<0,100
PAK (GC-MS)	mg/kg	TS	0,0222

Abk.: OS Orignalsubstanz, TS Trockensubstanz, EL Eluat, PE Probenahmeeinheit, n.n. nicht nachweisbar, < kleiner Bestimmungsgrenze

PCB Feststoff

Probenbez.		on i	BP 3 - Beton Brückenwiderlager Nord+Süd
Probe-Nr.		4.5	21/13641
PCB 28	mg/kg	TS	<0,00500
PCB 52	mg/kg	TS	<0,00500
PCB 101	mg/kg	TS	<0,00100
PCB 118	mg/kg	TS	<0,00100
PCB 138	mg/kg	TS	<0,00100
PCB 153	mg/kg	TS	<0,00100
PCB 180	mg/kg	TS	<0,00100
PCB	mg/kg	TS	n.n.

Abk.: OS Orignalsubstanz, TS Trockensubstanz, EL Eluat, PE Probenahmeeinheit, n.n. nicht nachweisbar, < kleiner Bestimmungsgrenze

U. Szymkowiak

Qualitätssicherung

Leipzig, 19.03.2021

Buy mann
Dr. S. Bergmann

Laborleiter

Umwelt- und Öllabor Leipzig

Akkreditiertes Prüflabor D-PL-18062-01-00

Prüfbericht 11697-21

PB51A11697-21-1

1. Ausfertigung

Dieser Prüfbericht ersetzt alle vorhergehenden Prüfberichte vollständig.

Auftraggeber

Multi-Tec GmbH

Permoserstr. 15

04318 Leipzig

Projekt

BV: Ersatzneubau Brücke Schlossweg III im Schlosspark Lützschena in

Leipzig

Auftrag vom

11.03.2021

Bestellnummer

-

Probenart

Sperrschicht

Probenehmer

Auftraggeber

Probenanzahl

1

Probenahmedatum

Probeneingang

11.03.2021

Prüfbeginn/-ende

11.03.2021 - 16.03.2021

Probennummer

21/13642

Bemerkung

Der Prüfbericht enthält 2 Seiten und keine Seite(n) Anlage.

Archivierung

Feststoffe

3 Monate

nach Probeneingang

PCB in Öl

3 Jahre keine

Wasserproben Gasproben

keine

Hinweise

Die Ergebnisse beziehen sich ausschließlich auf den oben angegebenen Prüfgegenstand.

Dieser Bericht darf nicht auszugsweise ohne die Zustimmung des Labors vervielfältigt werden.

Die Entscheidungsregeln der Analysen Service GmbH sind auf www.analysen-service.de

einzusehen.

IBAN: DE51 8607 0024 0012 7597 00

BIC: DEUTDEDBLEG

Prüfmethode	DIN	Ausgabedatum
Probenvorbereitung	DIN 19747	2009-07
Trockenmasseanteil bei 105 °C	DIN ISO 11465	1993-12
PAK Feststoff	DIN ISO 13877	2000-01

mit * gekennzeichnete Prüfmethoden sind nicht Bestandteil des akkreditierten Bereich

Originalsubstanz

Probenbez.	DESCRIPTION OF THE PROPERTY OF	4600	TP 4 - Brückenwiderlager Nord
Probe-Nr.			21/13642
TM 105 °C	Ma %	os	90,0

Abk.: OS Orignalsubstanz, TS Trockensubstanz, EL Eluat, PE Probenahmeeinheit, n.n. nicht nachweisbar, < kleiner Bestimmungsgrenze

Trockenmasse

Probenbez.			TP 4 - Brückenwiderlager Nord
Probe-Nr.			21/13642
PAK (HPLC)	mg/kg	TS	24,8

Abk.: OS Orignalsubstanz, TS Trockensubstanz, EL Eluat, PE Probenahmeeinheit, n.n. nicht nachweisbar, < kleiner Bestimmungsgrenze

PAK (HPLC)

Probenbez.	10 10		TP 4 - Brückenwiderlager Nord
Probe-Nr.			21/13642
Naphthalin	mg/kg	TS	1,73
Acenaphtylen	mg/kg	TS	0,344
Acenaphthen	mg/kg	TS	1,43
Fluoren	mg/kg	TS	0,663
Phenanthren	mg/kg	TS	5,81
Anthracen	mg/kg	TS	1,18
Fluoranthen	mg/kg	TS	3,24
Pyren	mg/kg	TS	2,63
Benzo(a)anthracen	mg/kg	TS	1,22
Chrysen	mg/kg	TS	0,732
Benzo(b)fluoranthen	mg/kg	TS	2,62
Benzo(k)fluoranthen	mg/kg	TS	0,394
Benzo(a)pyren	mg/kg	TS	0,653
Dibenzo(a,h)anthracen	mg/kg	TS	0,358
Benzo(ghi)perlyen	mg/kg	TS	1,48
Indeno(1,2,3-cd)pyren	mg/kg	TS	0,336
PAK (HPLC)	mg/kg	TS	24,8

Abk.: OS Orignalsubstanz, TS Trockensubstanz, EL Eluat, PE Probenahmeeinheit, n.n. nicht nachweisbar, < kleiner Bestimmungsgrenze

Qualitätssicherung

U. Szymkowiak

Leipzig, 16.03.2021

Dr. S. Bergman

Umwelt- und Öllabor Leipzig

Akkreditiertes Prüflabor D-PL-18062-01-00

Seite 1 von 5

Prüfbericht 11698-21

1. Ausfertigung

Dieser Prüfbericht ersetzt alle vorhergehenden Prüfberichte vollständig.

Auftraggeber

Multi-Tec GmbH Permoserstr. 15

04318 Leipzig

Projekt

BV: Ersatzneubau Brücke Schlossweg III im Schlosspark Lützschena in

Leipzig

Auftrag vom

11.03.2021

Bestellnummer

Probenart

Sediment

Probenehmer

Auftraggeber

Probenanzahl

Probenahmedatum

Probeneingang

11.03.2021

Prüfbeginn/-ende

11.03.2021 - 18.03.2021

Probennummer

21/13643

Bemerkung

Der Prüfbericht enthält 5 Seiten und keine Seite(n) Anlage.

Archivierung

Feststoffe

3 Monate

nach Probeneingang

PCB in Öl

3 Jahre

Wasserproben

keine

Gasproben

keine

Hinweise

Die Ergebnisse beziehen sich ausschließlich auf den oben angegebenen Prüfgegenstand.

Dieser Bericht darf nicht auszugsweise ohne die Zustimmung des Labors vervielfältigt werden.

Die Entscheidungsregeln der Analysen Service GmbH sind auf www.analysen-service.de

einzusehen.

Analysen Service GmbH · Umwelt- und Öllabor Leipzig · www.Analysen-Service.de

BIC: DEUTDEDBLEG

IBAN: DE51 8607 0024 0012 7597 00

Prüfmethode	DIN	Ausgabedatum
Eluatherstellung (FS)	DIN EN 12457-4	2003-01
Probenvorbereitung	DIN 19747	2009-07
Trockenmasseanteil bei 105 °C	DIN ISO 11465	1993-12
Mikrowellenaufschluss (KÖWA)	DIN EN 13657	2003-01
pH-Wert Eluat	DIN EN ISO 10523 (C 5)	2012-04
Elektrische Leitfähigkeit EL	DIN EN 27888	1993-11
Arsen im Eluat (MS)	DIN EN ISO 17294 - 2	2017-01
Arsen i.A. (ICP)	DIN EN ISO 11885 (E 22)	2009-09
Blei i.A. (ICP)	DIN EN ISO 11885 (E 22)	2009-09
Blei im Eluat (MS)	DIN EN ISO 17294 - 2	2017-01
Cadmium i.A. (ICP)	DIN EN ISO 11885 (E 22)	2009-09
Cadmium im Eluat (MS)	DIN EN ISO 17294 - 2	2017-01
Chrom i.A. (ICP)	DIN EN ISO 11885 (E 22)	2009-09
Chrom ges. im Eluat (MS)	DIN EN ISO 17294 - 2	2017-01
Kupfer im Eluat (MS)	DIN EN ISO 17294 - 2	2017-01
Kupfer i.A. (ICP)	DIN EN ISO 11885 (E 22)	2009-09
Nickel im Eluat (MS)	DIN EN ISO 17294 - 2	2017-01
Nickel i.A. (ICP)	DIN EN ISO 11885 (E 22)	2009-09
Quecksilber i.A. (AAS)	DIN EN ISO 12846 (E 12)	2012-08
Quecksilber in Eluat (AAS)	DIN EN ISO 12846 (E 12)	2012-08
Thallium i.A. (ICP)	DIN EN ISO 11885 (E 22)	2009-09
Zink i.A. (ICP)	DIN EN ISO 11885 (E 22)	2009-09
Zink im Eluat (MS)	DIN EN ISO 17294 - 2	2017-01
Chlorid (IC) im Eluat	DIN EN ISO 10304-1 (D 20)	2009-07
Sulfat im Eluat (IC)	DIN EN ISO 10304-1 (D 20)	2009-07
Cyanid gesamt im Eluat	DIN EN ISO 14403-1 (D 2)	2012-10
Cyanid i.F. ges.	DIN EN ISO 14403-1 (D 2)	2012-10
EOX im Feststoff	DIN 38414- S17	2017-01
MKW-GC (C10-C22)	LAGA-KW/04	2009-12
MKW-GC (C10-C40)	LAGA-KW/04	2009-12
Phenolindex im Eluat	DIN EN ISO 14402 (H 37)	1999-12
PAK (GC-MS)	DIN ISO 18287	2006-05
PCB Feststoff (Boden)	DIN ISO 10382	2003-05
LHKW i.F. (LAGA) TS	DIN EN ISO 22155	2016-07
BTEX Feststoff LAGA	DIN EN ISO 22155	2016-07
TOC i.F., Elementaranalyse	DIN EN 13137	2001-12

mit * gekennzeichnete Prüfmethoden sind nicht Bestandteil des akkreditierten Bereich

Originalsubstanz

Probenbez.			BOP 5 - Sedimentprobe Weiße Elster westl. Brücke		
Probe-Nr.	361.2		21/13643		
TM 105 °C	Ma %	os	43,2		

Trockenmasse

Probenbez.			BOP 5 - Sedimentprobe Weiße Elster westl. Brücke
Probe-Nr.		198	21/13643
Arsen	mg/kg	TS	26,3
Blei	mg/kg	TS	103
Cadmium	mg/kg	TS	4,10
Chrom	mg/kg	TS	151
Kupfer	mg/kg	TS	145
Nickel	mg/kg	TS	104
Quecksilber	mg/kg	TS	1,10
Thallium	mg/kg	TS	0,470
Zink	mg/kg	TS	1.310
Cyanid ges.	mg/kg	TS	0,130
EOX	mg/kg	TS	<1,0
MKW-GC (C10-C22)	mg/kg	TS	115
MKW-GC (C10-C40)	mg/kg	TS	727
PAK (GC-MS)	mg/kg	TS	6,70
PCB	mg/kg	TS	0,0147
LHKW	mg/kg	TS	n.n.
BTEX	mg/kg	TS	n.n.
TOC i.F.	Ma %	TS	9,61

Abk.: OS Orignalsubstanz, TS Trockensubstanz, EL Eluat, PE Probenahmeeinheit, n.n. nicht nachweisbar, < kleiner Bestimmungsgrenze

Eluat

Probenbez.			BOP 5 - Sedimentprobe Weiße Elster westl. Brücke
Probe-Nr.			21/13643
pH Wert	Ohne	EL	7,70
Elektr. Leitfähigkeit	μS/cm	EL	760
Arsen	μg/l	EL	<5,00
Blei	μg/l	EL	<10,0
Cadmium	μg/l	EL	<1,00
Chrom, gesamt	μg/l	EL	<10,0
Kupfer	μg/l	EL	<10,0
Nickel	μg/l	EL	<10,0
Quecksilber	μg/l	EL	<0,100
Zink	μg/l	EL	<10,0
Chlorid	mg/l	EL	28
Sulfat	mg/l	EL	88
Cyanid ges.	mg/l	EL	<0,00500
Phenolindex	mg/l	EL	<0,0100

Prüfbericht 11698-21 1. Ausfertigung

PAK (GC-MS)

Probenbez.			BOP 5 - Sedimentprobe Weiße Elster westl. Brücke
Probe-Nr.			21/13643
Naphthalin	mg/kg	TS	0,670
Acenaphtylen	mg/kg	TS	<0,100
Acenaphthen	mg/kg	TS	0,159
Fluoren	mg/kg	TS	0,271
Phenanthren	mg/kg	TS	0,984
Anthracen	mg/kg	TS	0,267
Fluoranthen	mg/kg	TS	1,31
Pyren	mg/kg	TS	1,02
Benzo(a)anthracen	mg/kg	TS	0,326
Chrysen	mg/kg	TS	0,392
Benzo(b)fluoranthen	mg/kg	TS	0,489
Benzo(k)fluoranthen	mg/kg	TS	0,182
Benzo(a)pyren	mg/kg	TS	0,309
Dibenzo(a,h)anthracen	mg/kg	TS	<0,0500
Benzo(ghi)perlyen	mg/kg	TS	0,186
Indeno(1,2,3-cd)pyren	mg/kg	TS	0,133
PAK (GC-MS)	mg/kg	TS	6,70

Abk.: OS Orignalsubstanz, TS Trockensubstanz, EL Eluat, PE Probenahmeeinheit, n.n. nicht nachweisbar, < kleiner Bestimmungsgrenze

PCB Feststoff

Probenbez.			BOP 5 - Sedimentprobe Weiße Elster westl. Brücke
Probe-Nr.			21/13643
PCB 28	mg/kg	TS	<0,00500
PCB 52	mg/kg	TS	<0,00500
PCB 101	mg/kg	TS	0,00203
PCB 118	mg/kg	TS	0,00118
PCB 138	mg/kg	TS	0,00663
PCB 153	mg/kg	TS	0,00337
PCB 180	mg/kg	TS	0,00146
PCB	mg/kg	TS	0,0147

BTEX Feststoff

Probenbez.			BOP 5 - Sedimentprobe Weiße Elster westl. Brücke
Probe-Nr.			21/13643
Benzen	mg/kg	TS	<0,00100
Toluen	mg/kg	TS	<0,00200
Ethylbenzen	mg/kg	TS	<0,00500
m-,p-Xylen	mg/kg	TS	<0,00500
o-Xylen	mg/kg	TS	<0,00500
Styrol	mg/kg	TS	<0,00500
Cumol	mg/kg	TS	<0,00500
1,3,5-Trimethylbenzen	mg/kg	TS	<0,00500
1,2,4-Trimethylbenzen	mg/kg	TS	<0,00500
1,2,3-Trimethylbenzen	mg/kg	TS	<0,00500
BTEX	mg/kg	TS	n.n.

Abk.: OS Orignalsubstanz, TS Trockensubstanz, EL Eluat, PE Probenahmeeinheit, n.n. nicht nachweisbar, < kleiner Bestimmungsgrenze

LHKW Feststoff

Probenbez.			BOP 5 - Sedimentprobe Weiße Elster westl. Brücke
Probe-Nr.			21/13643
1,1-Dichlorethen	mg/kg	TS	<0,00100
Dichlormethan	mg/kg	TS	<0,00200
t-1,2-Dichlorethen	mg/kg	TS	<0,00100
1,1-Dichlorethan	mg/kg	TS	<0,00500
c-1,2-Dichlorethen	mg/kg	TS	<0,00100
Trichlormethan	mg/kg	TS	<0,00100
1,2-Dichlorethan	mg/kg	TS	<0,00500
1,1,1-Trichlorethan	mg/kg	TS	<0,00100
Tetrachlormethan	mg/kg	TS	<0,00100
Trichlorethen	mg/kg	TS	<0,00100
Tetrachlorethen	mg/kg	TS	<0,00100
1,1,2,2-Tetrachlorethan	mg/kg	TS	<0,00200
LHKW	mg/kg	TS	n.n.

Abk.: OS Orignalsubstanz, TS Trockensubstanz, EL Eluat, PE Probenahmeeinheit, n.n. nicht nachweisbar, < kleiner Bestimmungsgrenze

U. Szymkowiak

Qualitätssicherung

Leipzig, 19.03.2021

By man
Dr. S. Bergmann

Laborleiter

Umwelt- und Öllabor Leipzig

Akkreditiertes Prüflabor D-PL-18062-01-00

Prüfbericht 11699-21

1. Ausfertigung

Dieser Prüfbericht ersetzt alle vorhergehenden Prüfberichte vollständig.

Auftraggeber

Multi-Tec GmbH

Permoserstr. 15

04318 Leipzig

Projekt

BV: Ersatzneubau Brücke Schlossweg III im Schlosspark Lützschena in

Leipzig

Auftrag vom

11.03.2021

Bestellnummer

Probenart

Holz

Probenehmer

Auftraggeber

Probenanzahl

Probenahmedatum

Probeneingang

11.03.2021

Prüfbeginn/-ende

11.03.2021 - 22.03.2021

Probennummer

21/13644

Bemerkung

Der Prüfbericht enthält 3 Seiten und 1 Seite(n) Anlage.

Archivierung

Feststoffe

3 Monate

nach Probeneingang

PCB in Öl Wasserproben 3 Jahre keine

Gasproben

keine

Hinweise

Die Ergebnisse beziehen sich ausschließlich auf den oben angegebenen Prüfgegenstand.

Dieser Bericht darf nicht auszugsweise ohne die Zustimmung des Labors vervielfältigt werden.

Die Entscheidungsregeln der Analysen Service GmbH sind auf www.analysen-service.de

einzusehen.

BIC: DEUTDEDBLEG

Dipl.-Chem. Arndt Philipp Privat- und Geschäftskunden AG Dipl.-Ing. Dirk Philipp (FH) IBAN: DE51 8607 0024 0012 7597 00

Geschäftsführer: Amtsgericht Leipzig HRB 13939 Ust.IdNr.: DE191258018 Prüfbericht 11699-21 1. Ausfertigung

Prüfmethode	DIN	Ausgabedatum
Aschegehalt Brennstoffe (815 °C)	DIN 51719	1997-07
Wassergehalt Holz	DIN 52183	1977-11
Proben homogenisieren Altholz	ALTHOLZV ANH. 4 NR. 1.3	2002-08
Mikrowellenaufschluss (KÖWA)	DIN EN 13657	2003-01
Oxidativer Bombenaufschluss	DIN 51727	2011-11
Arsen i.A. (ICP)	DIN EN ISO 11885 (E 22)	2009-09
Blei i.A. (ICP)	DIN EN ISO 11885 (E 22)	2009-09
Cadmium i.A. (ICP)	DIN EN ISO 11885 (E 22)	2009-09
Chrom i.A. (ICP)	DIN EN ISO 11885 (E 22)	2009-09
Quecksilber i.A. (AAS)	DIN EN ISO 12846 (E 12)	2012-08
Chlor ges. n. Bombenaufschluss	DIN 51727	2011-11
PCB Althoiz	ALTHOLZV ANH. 4, DIN 38414-20	2002-08
Wasserstoff Elementaranalyse	DIN 51732	2014-07
Heizwert roh	DIN 51900-2	2003-05
Pentachlorphenol i.H. (PCP)	ALTHOLZV ANH. 4 NR. 1.4.4	2002-08

mit * gekennzeichnete Prüfmethoden sind nicht Bestandteil des akkreditierten Bereich

Originalsubstanz

Probenbez.			HP 6 - Holzprobe Brückenoberbaud. Bestandsbrücke
Probe-Nr.			21/13644
Wassergehalt (AltholzV)	Ma %	os	12,5
Heizwert Hu, roh	J/g	os	16.436

Abk.: OS Orignalsubstanz, TS Trockensubstanz, EL Eluat, PE Probenahmeeinheit, n.n. nicht nachweisbar, < kleiner Bestimmungsgrenze

Trockenmasse

Probenbez.			HP 6 - Holzprobe Brückenoberbaud. Bestandsbrücke
Probe-Nr.		No. of	21/13644
Aschegehalt 815 °C	Ma %	TS	2,55
Arsen	mg/kg	TS	<5,00
Blei	mg/kg	TS	<5,00
Cadmium	mg/kg	TS	<1,00
Chrom	mg/kg	TS	<5,00
Quecksilber	mg/kg	TS	<0,100
Chlor	Ma %	TS	0,02
PCB	mg/kg	TS	n.n.
Wasserstoff	Ma %	TS	5,94
Pentachlorphenol	mg/kg	TS	<1,00

Abk.: OS Orignalsubstanz, TS Trockensubstanz, EL Eluat, PE Probenahmeeinheit, n.n. nicht nachweisbar, < kleiner Bestimmungsgrenze

PCB Altholz

Probenbez.			HP 6 - Holzprobe Brückenoberbaud. Bestandsbrücke
Probe-Nr.		140	21/13644
PCB 28	mg/kg	TS	<0,500
PCB 52	mg/kg	TS	<0,500
PCB 101	mg/kg	TS	<0,100
PCB 138	mg/kg	TS	<0,100
PCB 153	mg/kg	TS	<0,100
PCB 180	mg/kg	TS	<0,100
PCB	mg/kg	TS	n.n.
PCB gesamt	mg/kg	TS	n.n.

Abk.: OS Orignalsubstanz, TS Trockensubstanz, EL Eluat, PE Probenahmeeinheit, n.n. nicht nachweisbar, < kleiner Bestimmungsgrenze

U. Szymkowiak

Qualitätssicherung

Leipzig, 22.03.2021

Dr. S. Bergmann

Laborleiter

Prüfprotokoll

Heizwertprüfung

Firma Multi-Tec GmbH

11699-21 Aktennummer

Probenummer 21 / 13644

Probenbezeichnung HP 6 - Holzprobe Brückenoberbaud. Be

Datum der Probenahme

Probenehmer Auftraggeber

Messwerte:

Komponente Messwert

Wassergehalt (roh) n.b. :

Analysenfeuchte des Brennstoff 12,50 :

Gesamtwasser 12,5 %

Wasserstoff 5,94 %

Brennwert Ho, analysenfeucht 18001 [J/g]

Heizwert Hu, analysenfeucht 16436 [J/g]

Brennwert Ho, wasserfrei 20572 [J/g] (TS) :

Heizwert Hu, wasserfrei 19133 [J/g] (TS) :

Brennwert Ho, roh 18001 [J/g] (OS) :

Heizwert Hu, roh 16436 [J/g] (OS)

analysenfeucht = lufttrockene Probe

= nicht bestimmt

Bemerkungen:

Leipzig, 22.03.2021

Umwelt- und Öllabor Leipzig

Akkreditiertes Prüflabor D-PL-18062-01-00

Prüfbericht 12159-21

* P R S 1 A 1 2 1 5 9 - 2 1 - 1 *

1. Ausfertigung

Dieser Prüfbericht ersetzt alle vorhergehenden Prüfberichte vollständig.

Auftraggeber

Multi-Tec GmbH

Permoserstr. 15

04318 Leipzig

Projekt

BV: Ersatzneubau Brücke Schlossweg III im Schlosspark Lützschena in

Leipzig

Ergänzung zum PB: 11698-21

Auftrag vom

24.03.2021

Bestellnummer

-

Probenart

Sediment

Probenehmer

Auftraggeber

Probenanzahl

1

Probenahmedatum

Probeneingang

11.03.2021

Prüfbeginn/-ende

11.03.2021 - 30.03.2021

Probennummer

21/14493

Bemerkung

Der Prüfbericht enthält 3 Seiten und 1 Seite(n) Anlage.

Archivierung

Feststoffe

3 Monate

nach Probeneingang

PCB in Öl

3 Jahre

Wasserproben

keine

Gasproben

keine

Hinweise

Die Ergebnisse beziehen sich ausschließlich auf den oben angegebenen Prüfgegenstand.

Die Entscheidungsregeln der Analysen Service GmbH sind auf www.analysen-service.de

Dieser Bericht darf nicht auszugsweise ohne die Zustimmung des Labors vervielfältigt werden.

einzusehen.

Analysen Service GmbH · Umwelt- und Öllabor Leipzig · www.Analysen-Service.de

Prüfbericht 12159-21 1. Ausfertigung

Prüfmethode	DIN	Ausgabedatum
AT4	DEPV ANH. 4 ABS. 3.3.1	2009-04
Brennwert (DepV)	DIN EN 15170	2009-05
Ges. Gehalt gelöst. Stoffen (DepV)	DIN EN 15216	2008-01
Eluatherstellung (DepV)	DIN EN 12457-4	2003-01
Probenvorbereitung (DepV)	DIN 19747	2009-07
Trockenmasseanteil 105 °C (DepV)	DIN EN 14346	2007-03
pH-Wert Eluat DepV	DIN EN ISO 10523 (C 5)	2012-04
Antimon im Eluat (DepV,ICP-MS)	DIN EN ISO 17294 - 2	2017-01
Arsen im Eluat (DepV,MS)	DIN EN ISO 17294 - 2	2017-01
Barium im Eluat (DepV,MS)	DIN EN ISO 17294 - 2	2017-01
Blei im Eluat (DepV,MS)	DIN EN ISO 17294 - 2	2017-01
Cadmium im Eluat (DepV,MS)	DIN EN ISO 17294 - 2	2017-01
Chrom ges. im Eluat (DepV,MS)	DIN EN ISO 17294 - 2	2017-01
Kupfer im Eluat (DepV,MS)	DIN EN ISO 17294 - 2	2017-01
Molybdän im Eluat (DepV,MS)	DIN EN ISO 17294 - 2	2017-01
Nickel im Eluat (DepV,MS)	DIN EN ISO 17294 - 2	2017-01
Quecksilber in Eluat (AAS, DepV)	DIN EN ISO 12846 (E 12)	2012-08
Selen im Eluat (DepV,MS)	DIN EN ISO 17294 - 2	2017-01
Zink im Eluat (DepV,MS)	DIN EN ISO 17294 - 2	2017-01
Chlorid (IC) Eluat (DepV)	DIN EN ISO 10304-1 (D 20)	2009-07
Fluorid (IC) (EL) (DepV)	DIN EN ISO 10304-1 (D 20)	2009-07
Sulfat Eluat (IC) (DepV)	DIN EN ISO 10304-1 (D 20)	2009-07
Cyanid im Eluat I.f. (DepV)	DIN EN ISO 14403-1 (D 2)	2012-10
Phenolindex im Eluat (DepV)	DIN EN ISO 14402 (H 37)	1999-12
Extrahierb. lipoph. Stoffe (DepV)	LAGA-KW/04 ABS. 6.8	2019-09
DOC im Eluat (DepV)	DIN EN 1484 (H 3)	2019-04
TOC i.F., Elementaranalyse (DepV)	DIN EN 15936	2012-11

mit * gekennzeichnete Prüfmethoden sind nicht Bestandteil des akkreditierten Bereich

DepV Orignalsubstanz

Probenbez.		99/A581	BOP 5 - Sed. W. Elster westl. Brücke alt 21/13643
Probe-Nr.			21/14493
TM 105 °C	Ma %	os	43,2

DepV Trockenmasse

Probenbez.			BOP 5 - Sed. W. Elster westl. Brücke alt 21/13643
Probe-Nr.		3,0	21/14493
AT4	mg O2/ g	TS	1,50
Brennwert (Abfall)	J/g	TS	4.230
extr. lipophile Stoffe	Ma %	TS	0,33
TOC i.F.	Ma %	TS	9,61

Abk.: OS Orignalsubstanz, TS Trockensubstanz, EL Eluat, PE Probenahmeeinheit, n.n. nicht nachweisbar, < kleiner Bestimmungsgrenze

DepV Eluat

	34.95		BOP 5 - Sed.
Probenbez.			W. Elster westl. Brücke
	The first		alt 21/13643
Probe-Nr.			21/14493
Ges. Gehalt an gelöst.Stoffen	mg/l	EL	536
pH Wert	Ohne	EL	7,70
Antimon	mg/l	EL	<0,00600
Arsen	mg/l	EL	<0,00500
Barium	mg/l	EL	0,0880
Blei	mg/l	EL	<0,0100
Cadmium	mg/l	EL	<0,00100
Chrom, gesamt	mg/l	EL	<0,0100
Kupfer	mg/l	EL	<0,0100
Molybdän	mg/l	EL	<0,0100
Nickel	mg/l	EL	<0,0100
Quecksilber	mg/l	EL	<0,000100
Selen	mg/l	EL	<0,0100
Zink	mg/l	EL	<0,0100
Chlorid	mg/l	EL	28
Fluorid	mg/l	EL	<0,50
Sulfat	mg/l	EL	88
Cyanid leicht freisetzbar	mg/l	EL	<0,00500
Phenolindex	mg/l	EL	<0,0100
DOC	mg/l	EL	17,3

Abk.: OS Orignalsubstanz, TS Trockensubstanz, EL Eluat, PE Probenahmeeinheit, n.n. nicht nachweisbar, < kleiner Bestimmungsgrenze

U. Szymkowiak

Qualitätssicherung

Leipzig, 30.03.2021

Desproudent Dr. S. Bergmann

Probenbegleitprotokoll

Umwelt- und Öllabor Leipzig

nach DIN19747: 2009-07

Kunden-Auftrag-Nr.:

Projekt:

BV: Ersatzneubau Brücke Schlossweg III im Schlosspark Lützschena in Leipzig

Ergänzung zum PB: 11698-21

Probenbezeichnung: BOP 5 - Sed.

W. Elster westl. Brücke

alt 21/13643

Probenvorbereitung

Labor-Auftrag-Nr.:

12159-21

Probenahmedatum:

Probe-Nr.:

21/14493

Probenahmeprotokollnr.: keine

Probeneingang:

11.03.2021

Ordnungsgemäße Probenanlieferung:

ja

separierte Stoffgruppen:

Sortierung:

nein

Teilvolumen [l] / Teilmassen [kg]:

Zerkleinerung:

ja

Art: -

Trocknung:

nein

Siebung:

ja

[g]

Siebgröße:

10 [mm]

Analyse von:

Siebdurchgang:

1300 [g]

Siebrückstand:

nein

Siebrückstand:

0

Siebdurchgang:

ia

ja

Gesamt

Homgenisierung:

Teilung:

Kegeln / Vierteln

Anzahl der Laborproben:

Rückstellprobe:

Probenmenge

1000 g

Probenaufarbeitung

untersuchungsspezifische Trocknung:

Trocknung (105 °C):

ia

Gefriertrocknung:

nein

Lufttrocknung:

ia

untersuchungsspezifische Feinzerkleinerung:

Feinzerkleinerung durch Schneiden:

nein

Feinzerkleinerung durch Mahlen / Brechen:

ja

Endfeinheit:

2

[mm]

Kontrollsiebung Feinzerkleinerung:

Bearbeiter:

Umwelt- und Öllabor Leipzig

Akkreditiertes Prüflabor D-PL-18062-01-00

Prüfbericht 12160-21

1. Ausfertigung

Dieser Prüfbericht ersetzt alle vorhergehenden Prüfberichte vollständig.

Auftraggeber

Multi-Tec GmbH

Permoserstr. 15

04318 Leipzig

Projekt

BV: Ersatzneubau Brücke Schlossweg III im Schlosspark Lützschena in

Leipzig

Ergänzung zum PB: 11696-21

Auftrag vom

24.03.2021

Bestellnummer

- 1

Probenart

Beton

Probenehmer

Auftraggeber

Probenanzahl

1

Probenahmedatum

Probeneingang

11.03.2021

Prüfbeginn/-ende

11.03.2021 - 26.03.2021

Probennummer

21/14494

Bemerkung

Der Prüfbericht enthält 3 Seiten und 1 Seite(n) Anlage.

Archivierung

Feststoffe

3 Monate

nach Probeneingang

PCB in Öl

3 Jahre

Wasserproben

keine

Gasproben

keine

Hinweise

Die Ergebnisse beziehen sich ausschließlich auf den oben angegebenen Prüfgegenstand.

Dieser Bericht darf nicht auszugsweise ohne die Zustimmung des Labors vervielfältigt werden.

Die Entscheidungsregeln der Analysen Service GmbH sind auf www.analysen-service.de

einzusehen.

Analysen Service GmbH · Umwelt- und Öllabor Leipzig · www.Analysen-Service.de

Geschäftsführer: Dipl.-Chem. Arndt Philipp Dipl.-Ing. Dirk Philipp (FH)

Prüfmethode	DIN	Ausgabedatum
Ges. Gehalt gelöst. Stoffen (DepV)	DIN EN 15216	2008-01
Eluatherstellung (DepV)	DIN EN 12457-4	2003-01
Probenvorbereitung (DepV)	DIN 19747	2009-07
Trockenmasseanteil 105 °C (DepV)	DIN EN 14346	2007-03
pH-Wert Eluat DepV	DIN EN ISO 10523 (C 5)	2012-04
Antimon im Eluat (DepV,ICP-MS)	DIN EN ISO 17294 - 2	2017-01
Arsen im Eluat (DepV,MS)	DIN EN ISO 17294 - 2	2017-01
Barium im Eluat (DepV,MS)	DIN EN ISO 17294 - 2	2017-01
Blei im Eluat (DepV,MS)	DIN EN ISO 17294 - 2	2017-01
Cadmium im Eluat (DepV,MS)	DIN EN ISO 17294 - 2	2017-01
Chrom ges. im Eluat (DepV,MS)	DIN EN ISO 17294 - 2	2017-01
Kupfer im Eluat (DepV,MS)	DIN EN ISO 17294 - 2	2017-01
Molybdän im Eluat (DepV,MS)	DIN EN ISO 17294 - 2	2017-01
Nickel im Eluat (DepV,MS)	DIN EN ISO 17294 - 2	2017-01
Quecksilber in Eluat (AAS, DepV)	DIN EN ISO 12846 (E 12)	2012-08
Selen im Eluat (DepV,MS)	DIN EN ISO 17294 - 2	2017-01
Zink im Eluat (DepV,MS)	DIN EN ISO 17294 - 2	2017-01
Chlorid (IC) Eluat (DepV)	DIN EN ISO 10304-1 (D 20)	2009-07
Fluorid (IC) (EL) (DepV)	DIN EN ISO 10304-1 (D 20)	2009-07
Sulfat Eluat (IC) (DepV)	DIN EN ISO 10304-1 (D 20)	2009-07
Cyanid im Eluat I.f. (DepV)	DIN EN ISO 14403-1 (D 2)	2012-10
Phenolindex im Eluat (DepV)	DIN EN ISO 14402 (H 37)	1999-12
Extrahierb. lipoph. Stoffe (DepV)	LAGA-KW/04 ABS. 6.8	2019-09
DOC im Eluat (DepV)	DIN EN 1484 (H 3)	2019-04
TOC i.F., Elementaranalyse (DepV)	DIN EN 15936	2012-11

mit * gekennzeichnete Prüfmethoden sind nicht Bestandteil des akkreditierten Bereich

DepV Orignalsubstanz

Probenbez.		ALMAN MARK	BP 3 Beton Brückenwiderlager N+S alt 21/13641				
Probe-Nr.			21/14494				
TM 105 °C	Ma %	os	93,5				

Abk.: OS Orignalsubstanz, TS Trockensubstanz, EL Eluat, PE Probenahmeeinheit, n.n. nicht nachweisbar, < kleiner Bestimmungsgrenze

DepV Trockenmasse

Probenbez.			BP 3 Beton Brückenwiderlager N+S alt 21/13641
Probe-Nr.			21/14494
extr. lipophile Stoffe	Ma %	TS	<0,10
TOC i.F.	Ma %	TS	0,210

Prüfbericht 12160-21 1. Ausfertigung

DepV Eluat

	E COL		BP 3 Beton
Probenbez.			Brückenwiderlager N+S
		E. I.	alt 21/13641
Probe-Nr.	Later Address		21/14494
Ges. Gehalt an gelöst.Stoffen	mg/l	EL	826
pH Wert	Ohne	EL	11,3
Antimon	mg/l	EL	<0,00600
Arsen	mg/l	EL	<0,00500
Barium	mg/l	EL	0,130
Blei	mg/l	EL	<0,0100
Cadmium	mg/l	EL	<0,00100
Chrom, gesamt	mg/l	EL	0,125
Kupfer	mg/l	EL	<0,0100
Molybdän	mg/l	EL	<0,0100
Nickel	mg/l	EL	<0,0100
Quecksilber	mg/l	EL	<0,000100
Selen	mg/l	EL	<0,0100
Zink	mg/l	EL	<0,0100
Chlorid	mg/l	EL	0,79
Fluorid	mg/l	EL	<0,50
Sulfat	mg/l	EL	3,3
Cyanid leicht freisetzbar	mg/l	EL	<0,00500
Phenolindex	mg/l	EL	<0,0100
DOC	mg/l	EL	4,75

Abk.: OS Orignalsubstanz, TS Trockensubstanz, EL Eluat, PE Probenahmeeinheit, n.n. nicht nachweisbar, < kleiner Bestimmungsgrenze

U. Szymkowiak

Qualitätssicherung

Leipzig, 29.03.2021

Dr. S. Bergmann

Laborleiter

Probenbegleitprotokoll

Umwelt- und Öllabor Leipzig nach DIN19747: 2009-07

Kunden-Auftrag-Nr.:

Projekt:

BV: Ersatzneubau Brücke Schlossweg III im Schlosspark Lützschena in Leipzig

Ergänzung zum PB: 11696-21

Probenbezeichnung: BP 3 Beton

Brückenwiderlager N+S

alt 21/13641

Probenvorbereitung

Labor-Auftrag-Nr.:

12160-21

Probenahmedatum:

Probe-Nr.:

21/14494

Probenahmeprotokollnr.: keine

Probeneingang:

11.03.2021

Ordnungsgemäße Probenanlieferung:

ja

separierte Stoffgruppen:

Sortierung:

nein

Teilvolumen [I] / Teilmassen [kg]:

Zerkleinerung:

ia nein

Art: -

Trocknung: Siebung:

ja

Siebgröße:

10 1000

[mm] [g]

Analyse von:

Gesamt

Siebdurchgang:

Siebrückstand:

nein

Siebrückstand:

0

[g]

Siebdurchgang:

ja ja

Homgenisierung:

Teilung:

Kegeln / Vierteln

Anzahl der Laborproben:

Rückstellprobe:

1

Probenmenge

800 g

Probenaufarbeitung

untersuchungsspezifische Trocknung:

Trocknung (105 °C):

ja

Gefriertrocknung:

nein

Lufttrocknung:

nein

untersuchungsspezifische Feinzerkleinerung:

Feinzerkleinerung durch Schneiden:

nein

Feinzerkleinerung durch Mahlen / Brechen:

ja

Endfeinheit:

2

Kontrollsiebung Feinzerkleinerung:

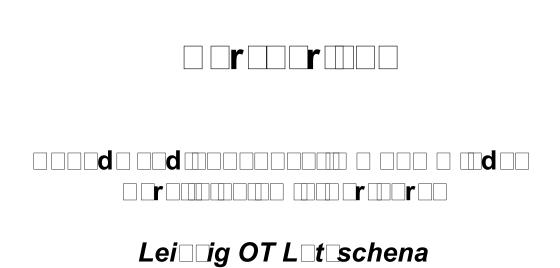
ja

Bearbeiter:

[mm]

ANLAGE 7

zum Bodengutachten


Ersatzneubau Brücke Schlossweg III über die Weiße Elster im Schlosspark Lützschena in Leipzig, OT Lützschena

(BG 1425/21 vom 12. April 2021)

Kurzbericht Spundwandlängenbestimmung von der GGL GmbH Anlage: 7

GGL Geoph⊡sik und Geotechnik Leipzig GmbH Bautzner Straße 67, 04347 Leipzig Tel.: 0341-234163 11, Fa □ 0341-234163 66

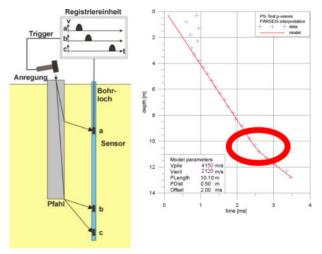
Br cke Sch ossweg III

Objekt:	Spundwandl ngenbestimmung mit dem Parallelseismik-Verfahren Leipzig OT Lützschena Brücke Schlossweg III Ersatzneubau BW II/61
Auftraggeber:	Stadt Leipzig, VTA Abt. Brückenbau und -unterhaltung Sachgebiet Entwurf und Ausführung Prager Straße 118-136 04092 Leipzig
Auftrags-Nr.: ⊡ntern□	GGL 21-010
Bearbeiter:	DiplGeogr. F. K□lner DiplGeoph⊡s. Th. Hohlfeld
Ort und Datum:	Leipzig, 26.03.2021
Inhalt:	9 Seiten Te⊡

GGL Geoph⊡sik und Geotechnik Leipzig GmbH

1.	Aufgabenstellung	. 4
2.	Verfahrensbeschreibung	. 4
3.	Durchführung der Messung	. 🗆
4.	Ergebnisse	. 7
□.	Zusammenfassung	. 9

Als Vorzugsl sung für das neue Bauwerk der Brücke Schlossweg III in Leipzig-Lützschena ist ein neuer Überbau auf der □orhandenen Gründung anzusehen. Dazu ist die tats □chliche Gründungstiefe und Tragf □higkeit der bestehenden Spundwandpfahlgründung zu ermitteln. Entsprechend den Ausführungspl nen und dem LV der bestehenden Holzbrücke wurden an beiden Widerlagern 2 □ 2 □ 10, □ m lange und miteinander □erschweißte Spundbohlen eingebracht und mit Beton □ergossen.


Das einzige erfolg ersprechende Verfahren für die L sung dieser Aufgabenstellung, d.h. die Ermittlung der Gründungstiefe der Spundwand, unter schwierigen Randbedingungen Überbau über Spundwand, Energieeintrag nur über darüberliegendes Betonfundament, enge Platzbeh trisse für Hammerschlag ist das Parallel-Seismik-Verfahren. Der orliegende Ergebnisbericht fasst die Ergebnisse der Messungen in der 10. Kalenderwoche 2021 zusammen.

Das Parallelseismik-Verfahren dient ⊡or allem der nachtr ☐glichen L ☐ngenmessung ⊡on Fundamentpf ☐hlen oder ☐hnlichen Objekten zur Gründung ⊡on Bauwerken. Das Messprinzip des Verfahrens¹, das in Abbildung 1 dargestellt ist, kann wie folgt beschrieben werden:

Auf einen Pfahlkopf, das obere Ende der Spundwandbohle oder einen wie auch immer gearteten Überbau oberhalb der Spundwand wird durch Hammerschlag eine Stoßwelle erzeugt, die durch den Pfahl bzw. die Spundwandbohle nach unten luft. Dabei wird auch Energie in den umgebenden Untergrund abgegeben. Die abgestrahlten Wellen werden on Sensoren Hudro- oder Geophone in einem parallel zum Pfahl bzw. zur Spundwandbohle hergestellten Bohrloch registriert. Aus den gemessenen Laufzeiten lassen sich die materialspezifischen Wellengeschwindigkeiten in Pfahl bzw. Spundwandbohle und Boden sowie die Pfahl- bzw. Spundwandbohlenlunge ermitteln.

In der Auswertung werden die Schwingungs erl ufe in unterschiedlichen Tiefen des Bohrlochs in einem Seismogramm dargestellt und die Ersteins tze in ein Laufzeitdiagramm übertragen. Da sich die Geschwindigkeit elastischer Wellen in Beton/Stahl und B den meist stark unterscheiden, knicken die Ersteins tze im Bereich des Pfahl- bzw. Spundwandfußes mehr oder weniger deutlich ab. Die Tiefenlage des Knickpunktes ist ein Maß für die L ge des Pfahles bzw. der Spundwand.

GGL 21-010, Kurzbericht Spundwandl ngenbestimmung Schlossbrücke Lützschena

¹ Niederleithinger, E. □2012□ Impro ement and E□tension of the Parallel Seismic Method for Foundation Depth Measurement. Soils □ Foundation □2: 1093–1101. doi:10.1016/j.sandf.2012.11.023.

Doronder Monaco

Die Bestimmung der Spundwandl ☐nge mit dem Parallelseismik-Verfahren erfolgte in der 10. Kalenderwoche 2021. Die Messungen wurden im Bereich beider Brückenwiderlager mit folgenden Messparametern durchgeführt:

Tab. 1: Messparameter.

Messparameter	
Messapparatur	Geometrics Geode
Abtastrate	0,02 ms
Registrierdauer	200 ms
Sonde	H⊡drophonkette
Messinter⊡all	0,2□ m
Messtiefe	16-17 m
Datenformat	SG2
Energie□uelle	Hammerschlag

Die untersuchten Spundwandbohlen befinden sich laut Bestandsunterlagen unterhalb der Betonelemente, die den Brückenoberbau tragen. Es handelt sich um jeweils zwei miteinander erschweißte Spundwandbohlen mit einer angenommenen Lenge on ca. 9 m. Im Verbund mit dem Betonelement, das sich oberhalb der Spundwand befindet, betregt die Gesamtgründungstiefe ca. 10 m unter Gelendeoberkante. Die Anregung erfolgte beidseitig jeweils auf dem Betonelement ca. auf Nieau der Gelendeoberkante sowie im Auflagebereich des Holzaufliegers auf dem Betonelement ca. 0,71 m unter Gelende-Oberkante siehe Abbildung en Die Hedrophonkette wurde bis zum Erreichen des Bohrlochendes in das Bohrloch ersenkt. Im Anschluss erfolgte die Messung in diesem und drei weiteren Messinterellen, bei dem die Hedrophonkette um jeweils 0,2 m Richtung Rohroberkante ROK ersetzt wurde. Damit ergibt sich ein Tiefeninterell on 0,2 m. Die Lage des bohrlochtiefsten Messinterells ist in den Tabellen 2 und 3 aufgeführt, genau wie alle anderen releenten Geometriedaten und Messparameter für die Messung an diesem Standort.

Abb. 2: Anregungspunkte für die Parallelseismik-Messung. Für beide Brückenwiderlager wurden die Anregungspunkte 1 GOK und 4 GOK-0,71 erwendet.

GGL Geoph sik und Geotechnik Leipzig GmbH

Tabelle 2 zeigt die Geometrie-Parameter der durchgeführten Messungen im Bereich des Widerlagers auf der Nordseite der Schlossbrücke:

Tab. 2: Geometrie-Parameter Messung Brückenwiderlage Nordseite.

Spundwandl ngenbestimmung BW II/61		
Fundamentt□p	Spundwand aus Stahl mit Betonoberbau	
Spundwand-	1,68 □ 0,2 □	
Oberkante unter		
ROK Im□		
ROK über GOK ™□	0,2□	
SP unter ROK m □	SP1 0,2□// SP4 0,71	
Bohrlochtiefstes un-	16,04 ☐,10 Vorlauf der H ☐drophonkette ☐	
ter. ROK m□		
BL Ende	sauber	
Ringraumfüllung	bis 4 m unter GOK Ton, im Anschluss Bohrgut	
GW unter. ROK m□	2,7□	
D m □Abstand	□ 1 m	
Spundwand – ROK		
m		
	1,□ kg Hammer	
	□,0 kg Hammer	

Tabelle 3 zeigt die Geometrie-Parameter der durchgeführten Messungen im Bereich des Widerlagers auf der Südseite der Schlossbrücke:

Tab. 3: Geometrie-Parameter Messung Brückenwiderlager Südseite.

Spundwandl⊡ngenbestimmung BW II/61		
Fundamentt□p	Spundwand aus Stahl mit Betonoberbau	
Spundwand-	1,68 □ 0,86	
Oberkante unter		
ROK Im□		
ROK über GOK ™□	0,86	
SP unter ROK Im □	SP1 0,86 // SP4 1,□7	
Bohrlochtiefstes un-	17,03 ☑,10 Vorlauf der H⊡drophonkette□	
ter. ROK m □		
BL Ende	sauber	
Ringraumfüllung	bis 4 m unter GOK Ton, im Anschluss Bohrgut	
GW unter. ROK m□	3,□2	
D m⊡Abstand	□ 1 m	
Spundwand – ROK		
_m □		
	1,□ kg Hammer	
	□,0 kg Hammer	

Tabelle 4 gibt einen Überblick über die ermittelte Spundwandl⊡nge für die Messung auf der Nordseite und die für die Ermittlung der Spundwandl⊡nge rele⊡anten Parameter.

Tab. 4: Ermittelte seismische Geschwindigkeiten und Spundwandl ☐nge BW II/61 Nordseite.

Spundwand BW II/61 Nordseite SP4		
C _{Spundwand} m/s□	3846	
C _{Boden} Im/s□	2128	
D m□	1,4	
L _K Im □	12,□	
K⊡m□	2,61	
Fehler m□	□/- 0,2□	
Legende	C _{Pfahi} : P-Wellenausbreitungsgeschwindigkeit in der Spundwand C _{Boden} : P-Wellenausbreitungsgeschwindigkeit im Boden L _K : L□nge nach Knickpunktmethode hier unter GOK □ Grundlage der Berechnung der eigentlichen Spundwandl□nge□ K: Korrekturwert nach Liao	
	L _{Liao} : Finale Spundwandl⊡nge hier unter GOK	

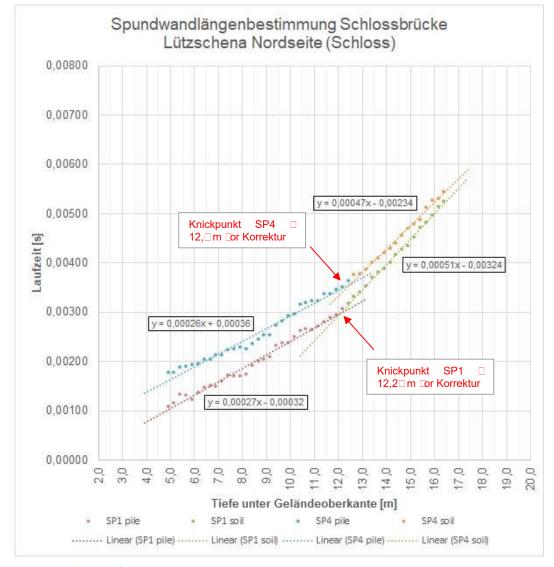


Abb. 3: Ergebnis Spundwandl ☐ngenbestimmung Nordseite Bauwerk BW II/61.

Tabelle □ gibt einen Überblick über die ermittelte Spundwandl □nge für die Messung auf der Südseite und die für die Ermittlung der Spundwandl □nge rele □anten Parameter.

Tab. ☐ Ermittelte seismische Geschwindigkeiten und Spundwandl ☐nge BW II/61 Südseite.

Spundwand BW II/61 Südseite SP4	
C _{Spundwand} m/s□	3 □ 71
C _{Boden} m/s□	18□2
D m□	0,7□
L _K Im□	12,□
K m□	2,13
Fehler m□	□/- 0,2□
Legende	C _{Pfahl} : P-Wellenausbreitungsgeschwindigkeit in der Spundwand
	C _{Boden} : P-Wellenausbreitungsgeschwindigkeit im Boden
	L _K : L⊡nge nach Knickpunktmethode hier unter GOK ⊞ Grundlage der Berech-
	nung der eigentlichen Spundwandl⊡nge□
	K: Korrekturwert nach Liao
	L _{Liao} : Finale Spundwandl⊡nge hier unter GOK

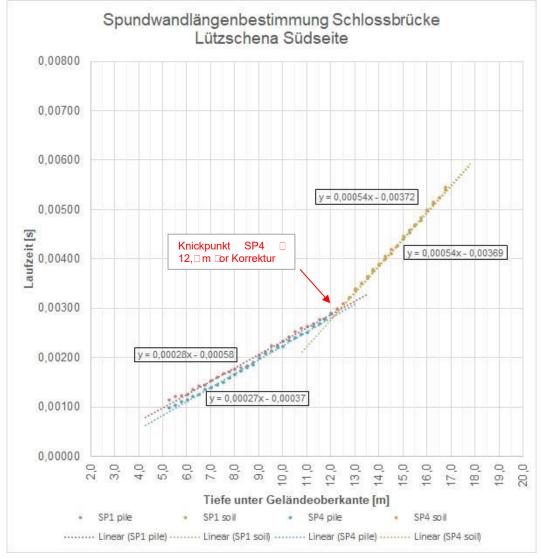


Abb. 4: Ergebnis Spundwandl ingenbestimmung Südseite Bauwerk BW II/61.

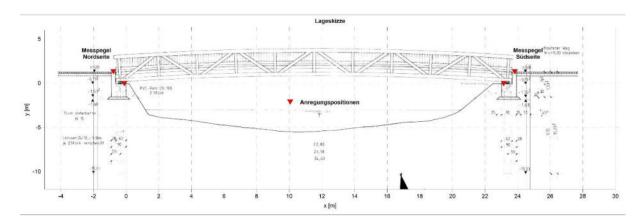


Abb.

Lageskizze Anregungspositionen.

Die ermittelte Spundwandl ☐nge nach der Knickpunktmethode - als Grundlage zur Bestimmung der geometrisch korrigierten Spundwandl ☐nge - liegt bei auf beiden Uferseiten bei 12, ☐ m.

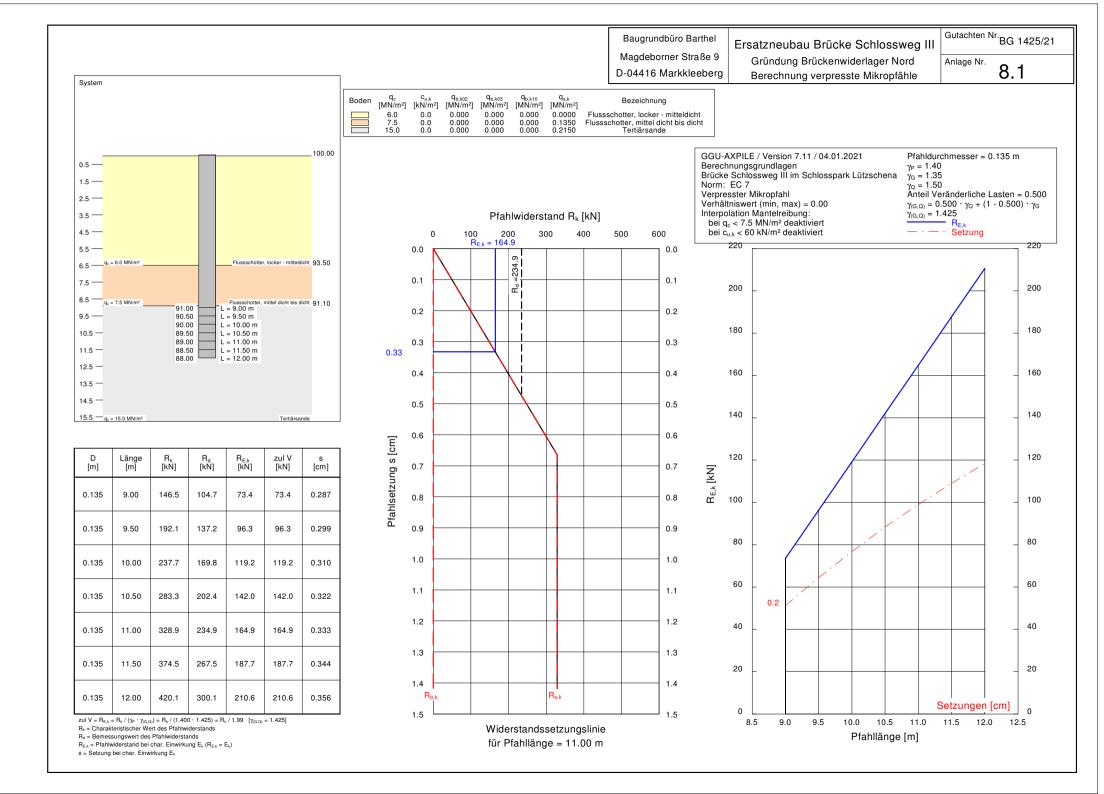
Nach Anbringung der notwendigen geometrischen Korrekturen [Korrekturwert nach Liao], die unter anderem den Abstand zwischen Bohrloch und Spundwand sowie die seismischen Geschwindigkeiten der Spundwand und des Bodens berücksichtigen, ergibt sich eine Gesamtgründungslinge aus aufgesetztem Betonelement und Spundwand on [1] 225 [1] unter Gelinde auf der Nordseite und [1] 124 [1] 14 [1] unter Gelinde auf der Südseite der Brücke. Die ermittelten seismischen Geschwindigkeiten für den Bereich der Gründung liegen mit 3 00-3900 m/s im Bereich reiner Beton-Geschwindigkeiten. Die erschweißte Spundwandbohle kann anhand der seismischen Geschwindigkeiten nicht separat aufgel st werden.

Aufgrund der sehr guten Daten ualit it mit eindeutig definierbaren Ersteins zen, I st sich die Genauigkeit der L ngenbestimmung mit -0,2 mangeben. Auf der Nordseite der Brücke ist die Messgeometrie aufgrund der eingeschr kten Zug nglichkeit des unteren Schlagpunktes im Bereich der Bohrung und der damit notwendigen Verlegung des Schlagpunktes auf die gegenüberliegende Brückenseite flussabw ts als etwas komple er einzustufen. Daher kann die L ngendifferenz im Vergleich der beiden Standorte mit sehr hoher Wahrscheinlichkeit auf den Korrekturfaktor des Abstands zwischen Bohrung und Gründung zurückgeführt werden.

Für die Spundw⊡nde im Bereich der Widerlager der Schlossbrücke Lützschena ßW II/61⊡in Leipzig, OT Lützschena ist eine L⊡ngenbestimmung mit dem Parallel-Seismik-Verfahren im Auftrag der Stadt Leipzig durchgeführt worden.

Die ermittelten Gesamtgründungstiefen betragen, nach Anbringung der geometrischen Korrekturen, 9,89 m ☐92,2☐ m NHN☐ unter Gel☐ndeoberkante auf der Nord- sowie 10,37 m ☐91,84 m NHN☐ unter Gel☐ndeoberkante auf der Südseite. Die Gesamtgründungstiefen entsprechen damit den erwarteten Werten.

Leipzig, den 26.03.2021


Th. Hohlfeld F. K□lner

ANLAGE 8 zum Bodengutachten

Ersatzneubau Brücke Schlossweg III über die Weiße Elster im Schlosspark Lützschena in Leipzig, OT Lützschena

(BG 1425/21 vom 12. April 2021)

→ PC - Ausdrucke der geotechnischen Berechnungen

ANLAGE 9 zum Bodengutachten

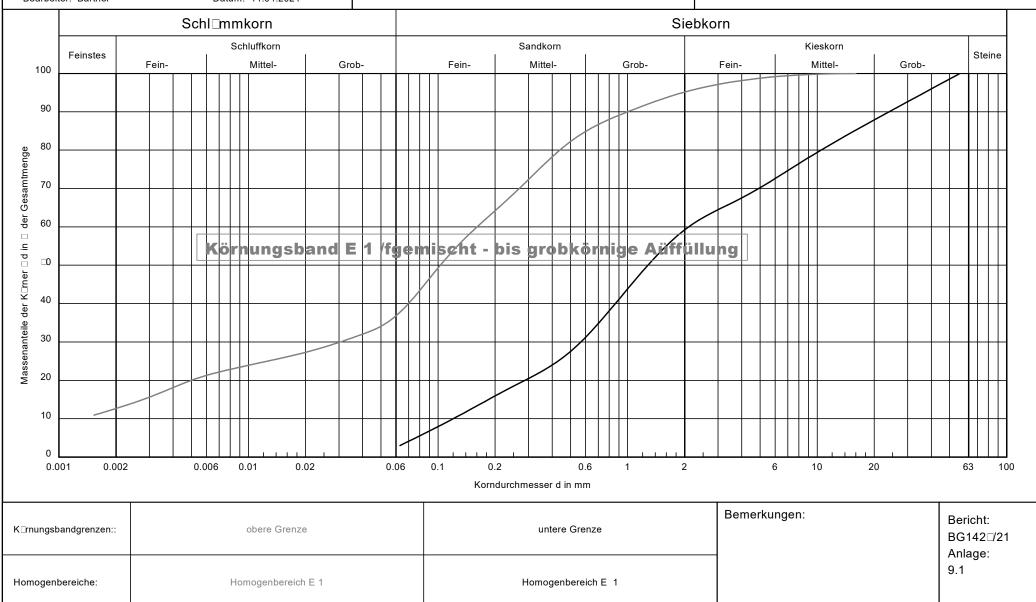
Ersatzneubau Brücke Schlossweg III über die Weiße Elster im Schlosspark Lützschena in Leipzig, OT Lützschena

(BG 1425/21 vom 12. April 2021)

→ Körnungsbänder der Homogenbereiche

Erdbaulabor Leipzig GmbH

Magdeborner Str. 9 04416 Markkleeberg


Bearbeiter: Barthel Datum: 14.04.2021

Korngr□ßen □erteilung

DIN 18 123

Objekt: Ersatzneubau BrückeSchlossweg III

Entnahmeort: Baubereich
Prüfungsnr.: P142□-21-E1
Probe: Homogenbereich E 1

Erdbaulabor Leipzig GmbH Magdeborner Str. 9 04416 Markkleeberg

Korngr
☐Sen ☐erteilung

DIN 18 123

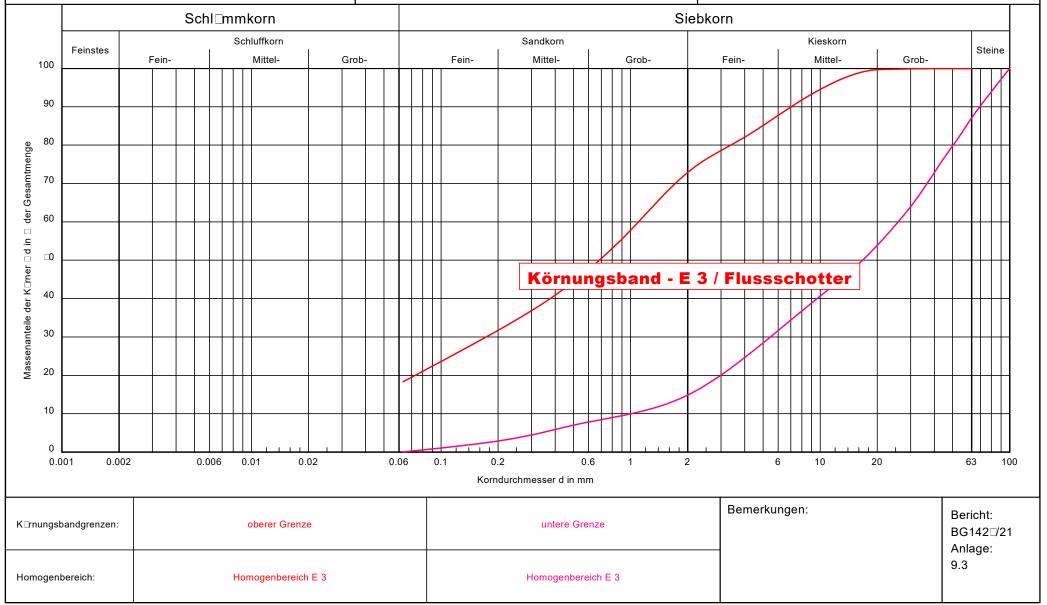
Objekt: Ersatzneubau BrückeSchlossweg III

Entnahmeort: Baubereich
Prüfungsnr.: P142□-21□E2
Probe: Homogenbereich E 2

Bearbeiter: Barthel Datum: 14.04.2021

Schl⊡mmkorn Siebkorn Schluffkorn Sandkorn Kieskorn Feinstes Steine Mittel-Mittel-Mittel-Grob-Fein-Grob-Fein-Grob-Fein-100 90 der Gesamtmenge 70 Körnungsband E 2 / Auelehm Massenanteile der K⊡mer □d in □ □0 20 10 0.2 20 63 0.001 0.002 0.006 0.01 0.02 0.06 0.1 Korndurchmesser d in mm Bemerkungen: Bericht: obere Grenze untere Grenze K⊡rnungsbandgrenzen: BG142 21 Anlage: 9.2 Homogenbereich: Homogenbereich E 2 Homogenbereich E 2

Erdbaulabor Leipzig GmbH Magdeborner Str. 9


04416 Markkleeberg

Bearbeiter: Barthel Datum: 14.04.2021

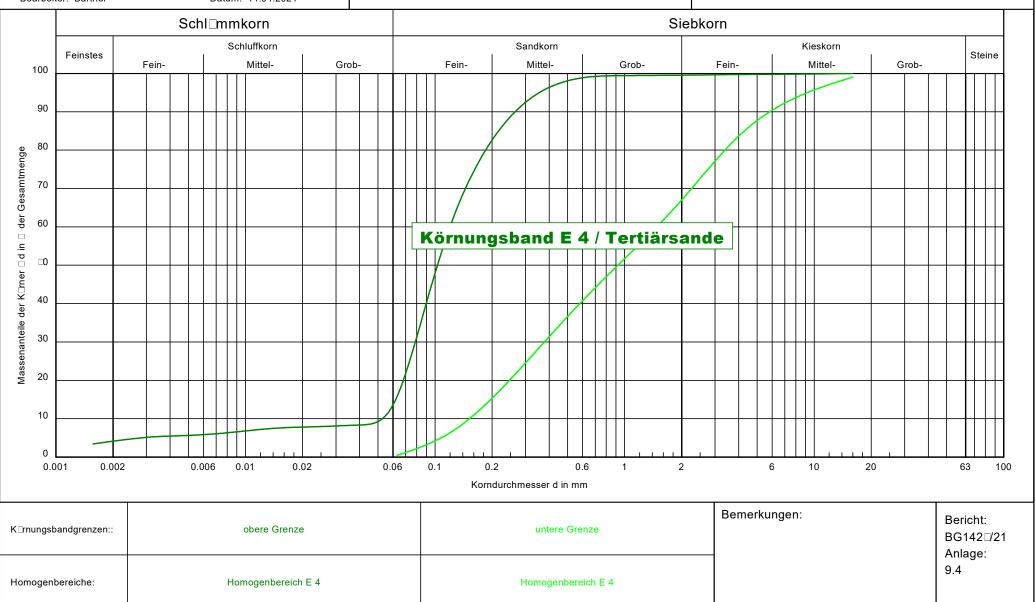
Korngr ☐Sen ☐erteilung DIN EN 933-1

Objekt: Ersatzneubau BrückeSchlossweg III

Entnahmeort: Baubereich
Prüfungsnr.: P142 - 21 - E-3
Probe: Homogenbereich E 3

Erdbaulabor Leipzig GmbH Magdeborner Str. 9

Magdeborner Str. 9 04416 Markkleeberg


Bearbeiter: Barthel Datum: 14.04.2021

Korngr ☐ ßen ☐ erteilung

DIN 18 123

Objekt: Ersatzneubau BrückeSchlossweg III

Entnahmeort: Baubereich
Prüfungsnr.: P142 - 21 - E-4
Probe: Homogenbereich E 4

