

Bestands- und Baugrunduntersuchung Brücke im Zuge des Weges "Am Mühlgraben" über die Pulsnitz in Friedersdorf (PUF 002)

01896 Pulsnitz / OT Friedersdorf Landkreis Bautzen

IFG-Projekt-Nr.: I-051-04-24

Bauherr: Stadtverwaltung Pulsnitz

Am Markt 1 01896 Pulsnitz

Telefon:

035955 / 861-0

Fax:

035955 / 861-109

E-Mail:

post@pulsnitz.de

Planungsbüro: Konstruktionsgruppe Bauen

Westendstraße 3 01187 Dresden

Telefon:

0351 / 47960661

Fax:

0351 / 47960666

E-Mail:

info@kb-dr.de

Verfasser: IFG Ingenieurbüro für Geotechnik GmbH

Purschwitzer Straße 13

02625 Bautzen

Telefon:

03591 / 6771-30

Fax:

03591 / 6771-40

E-Mail:

mail@ifg-direkt.de

Bautzen, 30.07.2024

Dipl.-Ing. Arnd Böhmer Bearbeiter / Geschäftsführer

IFG Ingenieurbüro für Geotechnik GmbH

Sitz: Bautzen 02625 Bautzen Purschwitzer Str. 13 Tel.: 03591 / 677130 Fax: 03591 / 677140

Büro Stolpen
01833 Stolpen
Bischofswerdaer Str. 14a
Tel.: 035973 / 29621
Fax: 035973 / 29626

Büro Freiberg 09627 Hilbersdorf Bahnhofstr. 2 Tel.: 03731 / 68542

Fax: 03731 / 68544

Handelsregister Dresden HRB 10480 Geschäftsführer: Dipl.-Ing. Arnd Böhmer Dipl.-Ing. Stefan Thiem

E-Mail: mail@ifg-direkt.de Internet: http://www.ifg-direkt.de

Inhaltsver	zeichnis	Seite
1. Zielste	ellung und Untersuchungsumfang	3
2. Baugr	undbeschreibung	4
2.1 All	gemeine geologische und hydrogeologische Verhältnisse	4
2.2 Er	kundeter Baugrundaufbau	4
3. Baugr	undklassifikation	6
3.1 Bo	odenmechanische Kennwerte	6
3.2 Ho	omogenbereiche	7
4. Besta	ndserkundung	9
4.1 Ba	auwerksgeometrie	9
4.2 Dr	uckfestigkeit Widerlagermauerwerk	10
5. Schad	stoffuntersuchung Bodenaushub	10
6. Bewer	tung der vorhandenen Gründungssituation	11
7. Hinwe	ise zum Erd- und Tiefbau	12
8. Bauwe	erkshinterfüllung	12
9. Straße	enbau	13
10. Sonsti	ge Hinweise	13
Tahellenv	erzeichnis	Seite
Tabelle 1.	Maßgebendes Baugrundprofil	
Tabelle 1.	Bodenmechanisches Kennwertprofil	
Tabelle 3.	Kennwerte für die Homogenbereiche im Lockergestein	
Tabelle 4.	Kennwertspannen für den Homogenbereich Festgestein (HB 2)	
Tabelle 5.	Substanzbohrungen	
•	erzeichnis 	Blattanzahl
Anlage 1	Übersichtskarte (M 1:10.000)	
Anlage 2	Lageplan mit Aufschlusspunkten (M 1:1.000)	
Anlage 3	Standortfotos Bohrpunkte	2
Anlage 4	Schichtenverzeichnisse und Bohr-/Sondierprofile	6
Anlage 5	Baugrund-Profilschnitt A-A	1
Anlage 6	Dokumentation Bestandserkundung	6
Anlage 7	Laborprotokolle Bestandsbaustoffe	1
Anlage 8	Laborprotokolle Lockergestein	1
Anlage 9	Laborate kalla Caba dataffuntara yakuna	12
•	Laborprotokolle Schadstoffuntersuchung	13

3

IFG Ingenieurbüro für Geotechnik GmbH

1. Zielstellung und Untersuchungsumfang

Das Ingenieurbüro für Geotechnik Bautzen (IFG) erhielt von der Stadtverwaltung Pulsnitz den Auftrag zur Durchführung einer Baugrunduntersuchung im Vorfeld der geplanten Erneuerung der

Brücke über die Pulsnitz PUF 002 in 01896 Pulsnitz, OT Friedersdorf.

Die Instandsetzung des Bauwerks soll sich auf einer Erneuerung des Überbaus beschränken, falls

der Zustand der vorhandenen Unterbauten dies zulässt.

Zur Klärung dieser Frage sind Kernbohrungen zur Erkundung der Widerlagergeometrie

durchzuführen und Materialkennwerte für die vorhandenen Unterbauten zu bestimmen.

Die Baugrunduntersuchung soll die Untergrundverhältnisse am Bauwerksstandort erkunden,

beschreiben und klassifizieren. Auf Grundlage dieser Daten ist die Tragfähigkeit der bestehenden

Gründung zu ermitteln und gründungstechnische Hinweise für eine ggf. erforderliche

Gründungsertüchtigung bzw. einen eventuellen Ersatzneubau zu erarbeiten.

Folgende Unterlagen standen bei der Bearbeitung zur Verfügung:

Bauwerksbuch PUF 002 Brücke über die Pulsnitz "Bergkeller", Stadt Pulsnitz, 30.03.2022.

Bestandspläne der Medienträger.

Die Aufschlussarbeiten für die Bestands- und Baugrunduntersuchung erfolgten in der Zeit vom

02.05. bis 13.05.2024.

Zur Bestandserkundung kam je Widerlager eine horizontale und eine schräge Diamantkern-

bohrung (SB) zum Einsatz. Zur Erkundung der Baugrundverhältnisse wurde an jeder

Bauwerksseite ein Aufschlusspunkt mit je einer Rammkernsondierung (RKS) und einer schweren

Rammsondierung (DPH) angelegt.

Aus dem während der Aufschlussarbeiten gewonnenen Bohrgut wurden Kernproben aus dem

Bauwerk und gestörte Bodenproben (Lockergestein) aus dem Baugrund entnommen.

Lage und Höhe der abgeteuften Aufschlüsse wurden durch IFG unter Verwendung der

topographischen Karten des Landesvermessungsamts Sachsen eingemessen, da zum Zeitpunkt

der Bestands- und Baugrunduntersuchung noch keine projektspezifischen Vermessungs-

unterlagen zur Verfügung standen.

IFG Ingenieurbüro für Geotechnik GmbH

2. Baugrundbeschreibung

2.1 Allgemeine geologische und hydrogeologische Verhältnisse

Der Bauwerksstandort befindet sich am Westrand der Ortslage Friedersdorf im Pulsnitztal. In Friedersdorf bildet der Lausitzer Granodiorit die Quartärbasis. Die östlich des Bauwerksstandorts angrenzende Ortslage liegt auf einer Granodioritkuppe und wird durch ausgesprochen felsigen Baugrund charakterisiert.

Diese Kuppe fällt nach Westen zum Pulsnitztal recht steil ab. Das Festgestein weist im Talbereich eine typische, grusige Verwitterungszone auf, deren Mächtigkeit lokal stark wechselt.

Innerhalb der Aue der Pulsnitz ist über dem Grundgebirge mit quartären und holozänen Aueablagerungen zu rechnen, wobei gemäß geologischer Karte folgender Schichtaufbau (von oben nach unten) bekannt ist:

- 1 m Auelehm (Holozän)
- 3 m Schmelzwassersande und -kies (Nachschüttbildung Elster2-Kaltzeit)
- 4 m Geschiebelehm / -mergel (Elster2-Kaltzeit)

Der Grundwasserspiegel am Bauwerksstandort wird mit dem Wasserspiegel des vorhandenen Gewässers korrespondieren, wobei Kiese und Sande, körnig verwitterter Granodiorit sowie Festgesteinsklüfte als kommunizierende Grundwasserleiter wirken können. Es ist von geringen Grundwasserflurabständen auszugehen, welche sich im Gewässerniveau befinden und dessen Schwankungen (Hochwasser) nachvollziehen.

2.2 Erkundeter Baugrundaufbau

Die vorhandene Straßenbefestigung (**Schicht 0**) besteht aus einer insgesamt 50...60 cm dicken Schicht von Pflaster in Kiessandbettung über Schotter.

Darunter wurde die Hinterfüllung (**Schicht 1**) des Bestandsbauwerks aufgeschlossen, welche aus schluffigem Sand [SU]-[SU*] besteht. Die Hinterfüllung ist locker gelagert und enthält kiesige und steinige Beimengungen sowie Ziegelreste. In BP 01 reicht die Hinterfüllung bis 0,95 m unter OK Straße, unterhalb davon beginnt der natürlich gewachsene Baugrund. In BP 02 wurde offensichtlich die Grabenverfüllung des hier im Bauwerksbereich verlaufenden AW-Kanals aufgeschlossen. Aufgrund dessen Tiefenlage reicht die Schicht 1 hier bis -2,70 m unter OK Straße. In den weiteren Betrachtungen wird BP 01 als maßgebend gewertet, da dieser die natürliche Baugrundsituation widerspiegelt.

5

IFG Ingenieurbüro für Geotechnik GmbH

Der natürlich gewachsene Baugrund beginnt in BP 01 in einer Tiefe von 95 cm unter OK Straße mit fluviatilem Sand (**Schicht 2**). Schicht 2 ist gemäß DIN 18196 als schluffiger Sand (SU) zu werten. Diese Schicht steht in ausgesprochen lockerer Lagerung sowie in wassergesättigtem Zustand an.

Schicht 2 reicht bis 1,95 m unter OK Straße. Darunter wurde schluffiger Kiessand (GU, **Schicht 3**) festgestellt, welcher ebenfalls als fluviatiles Sediment gewertet wird. Die Mächtigkeit von Schicht 3 beträgt ca. 1,25 m, so dass dieser Horizont bis 3,20 m unter OK Weg reicht.

In den Rammsondierungen bildet sich der Wechsel von Schicht 2 zu Schicht 3 sehr deutlich ab. Während in Schicht 2 mit Schlagzahlen $N_{10,DPH} = 1...2$ eine ausgesprochen lockere Lagerung vorliegt, gilt Schicht 3 mit $N_{10,DPH} = 16...34$ als dicht gelagert.

Im Liegenden des Kiessandes beginnt bei ca. 3,2 m unter OK Straße der Verwitterungshorizont des Granodiorits, was sich auch im sukzessiven Anstieg der Schlagzahlen auf $N_{10,DPH} > 50$ widerspiegelt. Das Gestein ist in einer 10...30 cm mächtigen Schicht zu schluffig-tonigem Granodioritgrus (Zv, **Schicht 4**) verwittert. Der Zersatzhorizont weist keine Festgesteinseigenschaften auf und gilt als sehr dicht gelagert.

Die Grenze der Rammbarkeit wurde bei 3,2...3,5 m unter OK Straße erreicht. Unterhalb davon beginnt erfahrungsgemäß das liegende Festgestein. Im Baugrundmodell wird die Schicht 4 bis ¥ angesetzt (sichere Seite).

Grundwasser wurde in beiden Aufschlüssen bei 1,50 bzw. 1,64 m unter OK Straße festgestellt. Dies entspricht dem Wasserspiegel in der Pulsnitz. Es ist somit von einem freien Grundwasserspiegel auszugehen.

Die beschriebenen Aufschlussergebnisse sind im Baugrundprofilschnitt (Anlage 5) graphisch dokumentiert. Die detaillierten Bohrergebnisse sind Anlage 4 (Schichtenverzeichnisse, Bohrprofile, Sondierdiagramme) zu entnehmen.

Zusammenfassend lässt sich der Baugrund des untersuchten Standortes mit dem folgenden Baugrundprofil beschreiben, welches den zur Bemessung maßgebenden Schichtverlauf darstellt.

Tabelle 1. Maßgebendes Baugrundprofil

Nr.	Tiefe [m] unter GOK	Niveau [m NHN]	Bodenart	Kurz- zeichen	Zustandsform	Bemerkungen
1	0,01,6	249,6248,0	Auffüllungen	[SU], [SU*]	locker gelagert	-
2	1,62,0	248,0247,6	Fein- und Mittelsand, schluffig	elsand, schluffig SU locker gelagert		Grundwasser ab 1,6 m
3	2,03,2	247,6246,4	Kiessand, schluffig	GU	dicht gelagert	-
4	> 3,2	< 246,4	Granodiorit, verwittert bis zersetzt	Zv	stückig, fest	nicht mehr rammbar

3. Baugrundklassifikation

3.1 **Bodenmechanische Kennwerte**

Zur Durchführung von erdstatischen Berechnungen wird folgendes bodenmechanisches Kennwertprofil angegeben, welches in Auswertung der ingenieurgeologischen Feldansprache sowie mit Hilfe tabellierter und regionaler Erfahrungswerte nach EAU und DIN 1055 festgelegt wurde. Der Schichtaufbau entspricht dem maßgebenden Baugrundprofil (Tabelle 2).

Tabelle 2. Bodenmechanisches Kennwertprofil

Tiefe [m NHN]	Nr.	Bodenart	Kurz- zeichen	cal. g	cal. g	cal. f	cal. c'	cal. Es	cal. k _f
249,6248,0	1	Auffüllungen	[SU], [SU*]	19	10	30	2	20	1x10 ⁻⁶
248,0247,6	2	Fein- und Mittelsand, schluffig	SU	20	11	32	2	10	5x10 ⁻⁶
247,6246,4	3	Kiessand, schluffig	GU	21	12	35	0	45	4x10 ⁻⁵
< 246,4	4	Granodiorit, verwittert bis zersetzt	Zv	23	13	38	10	75	-
Legende: ca	al.g	cal. Bodendichte, erdfeu	cht [kN/m³]		•				

cal. Bodendichte unter Auftrieb [kN/m³] cal.g

cal. f cal. Reibungswinkel [°] cal. c' cal. Kohäsion [kN/m²] cal. Es cal. Steifemodul [MN/m²]

cal. kf cal. Durchlässigkeitskoeffizient [m/s]

Anmerkung: In der Grundbruch- und Setzungsberechnung (Anlage 10) wurde das Geländeniveau bei 247,50 m NHN (Gewässersohle) angesetzt, da dieses Niveau den für die Grundbruch- und Setzungsberechnung maßgebenden Fall darstellt.

3.2 Homogenbereiche

Gemäß den geltenden VOB/C-Normen DIN 18300 (Erdarbeiten) sowie DIN 18301 (Bohrarbeiten) sind zur Ausschreibung von Tiefbauleistungen dem Baugrund am Untersuchungsstandort folgende Homogenbereiche zuzuordnen. Die geotechnische Kategorie 2 ist dabei maßgebend. Für die im Rahmen der Baumaßnahme zu erwartenden Arbeiten (Erdarbeiten und Bohrarbeiten) erfolgt die Einteilung des anstehenden Baugrunds in der folgenden Tabelle 3.

Tabelle 3. Kennwerte für die Homogenbereiche im Lockergestein

Parameter		Homogenbereich E1 / B1 - Lockergestein (Schicht 1 bis 3)
Bodengruppe DIN	N 18196	SU, GU, SU*
ortsübliche Bezei	chnung	Auffüllungen, Sand und Kies
Charakter		Lockergestein, überwiegend nichtbindig
Massenanteil Tor	n [%]	05
Massenanteil Sch	nluff [%]	520
Massenanteil Sar	nd [%]	2095
Massenanteil Kie	s [%]	070
Massenanteil Ste	ine [%]	020
Massenanteil Blö	cke [%]	010
Massenanteil gro	ße Blöcke [%]	05
Dichte [g/cm³]		1,82,2
undrainierte Sche	erfestigkeit [kN/m²]	515
Kohäsion [kN/m²]		15
Wassergehalt [%]]	512
Konsistenz		-
Konsistenzzahl Id		-
Plastizitätszahl I _P		-
Lagerung		locker bis dicht gelagert
bezogene Lageru	ıngsdichte I _D	0,20 0,75
organischer Ante	il [%]	≤ 2,0
	LAK [g/t]	100250
Abrasivität	CAI [0,1 mm]	0,5 1,0
	Bewertung	schwach abrasiv

Tabelle 4. Kennwertspannen für den Homogenbereich Festgestein (HB 2)

Parameter		Homogenbereich E2 / B2 - Festgestein (Schicht 4 bis 6)
Benennung, ortsübliche Bezeichnung		Granodiorit
Bodengrupp	е	Zv-Z
Charakter		Fels, meist zerklüftet, kleinstückig
Dichte		2,2 – 2,5
Verwitterung, Veränderungen, Veränderlichkeit		schwach verwittert bis zersetzt stark klüftig nicht veränderlich
Druckfestigk	eit [N/mm²]	Gestein: 0,560 (Härtlinge bis 100)
Trennflächer	nrichtung	ungeordnet
Trennflächer	nabstand	125 cm
Gesteinskör	perform	n.b.
	LAK [g/t]	250 - 750
Abrasivität	CAI	1,03,0
	Bewertung	mäßig bis stark abrasiv

Die in Tabelle 3 und Tabelle 4 enthaltenen Beschreibungen von Boden und Fels beruhen auf dem gesichteten Bohrgut, den durchgeführten Laborversuchen sowie regionalgeologischen Erfahrungen mit vergleichbaren Böden bzw. Fels. Abweichungen von den angegebenen Wertebereichen können vorkommen, begründen jedoch nicht automatisch Mehr- oder Minderaufwendungen beim Lösen bzw. Bohren von Boden und Fels. In solchen Fällen ist die Hinzuziehung des Baugrundgutachters empfehlenswert.

Die Schichten 1 bis 3 bilden als meist rollige Lockergesteinsböden den Homogenbereich E 1, welcher die in Tabelle 3 enthaltenen Kennwertspannen aufweist. Die Schicht 4 ist für den Erdbau nicht relevant.

Für einen ggf. notwendigen Baugrubenverbau könnten Bohrarbeiten erforderlich werden, welche auch in Schicht 4/5 eingreifen. Hierfür sind die entsprechenden Baugrundparameter in Tabelle 4 angegeben. Diese Angaben beruhen auf regionalen Erfahrungswerten, da kein direkter Festgesteinsaufschluss erfolgte.

Andere Tiefbaugewerke sind nach derzeitigem Planungsstand nicht erforderlich.

4. Bestandserkundung

4.1 Bauwerksgeometrie

Zur Erkundung des Bestands wurden folgende Substanzbohrungen (SB) angelegt:

Tabelle 5. Substanzbohrungen

ВР	Bauteil	Richtung	Durchmesser	Bohrlänge
SB 1H	Widerlager West	horizontal	100 mm	117 cm
SB 1S	Widerlager West	erlager West schräg nach unten (18°) 70 mm		95 cm
SB 2H	Widerlager Ost	horizontal	100 mm	140 cm
SB 2S	Widerlager Ost	schräg nach unten (26°)	70 mm	100 cm

Legende:

BP ... Bohrpunkt

SB ... Sustanzbohrung als Diamantkernbohrung

Das aus den Bohrungen gewonnene Bohrgut besteht aus Granitmauerwerk. Das Mauerwerk der Widerlager ist weitestgehend intakt, so dass ein durchgehender Kerngewinn von Gestein, Mörtel bzw. Verbundkörper möglich war.

Am Widerlager Ost ist das intakte Granitmauerwerk 85 cm dick. Dahinter wurden 55 cm Mischmauerwerk mit ausgesprochen mürbem, teilweise bereits zersetztem Fugenmörtel festgestellt. Es wird davon ausgegangen, dass das Widerlager hier vor eine ältere Bestandsmauer (alte Stützmauer oder alte Grundmauer) gebaut worden ist. Das offensichtlich ältere, wenig intakte Mauerwerk wird nicht als Bestandteil des Widerlagers gewertet (sichere Seite).

Die detaillierten Bohrergebnisse sind in Anlage 6.1 dokumentiert. Anlage 6.2 enthält eine graphische Darstellung der festgestellten Bauwerksgeometrie.

Zusammenfassend wurde die Bauwerksgeometrie wie folgt ermittelt:

Widerlager West: Breite des WL: 117 cm (Granit-MW, intakt)

Gründungstiefe: 90 cm (Gründungssohle bei ca. 246,95 m NHN)

Widerlager Ost: Breite des WL: 85 cm (Granit-MW, intakt)

Gründungstiefe: 90 cm (Gründungssohle bei ca. 246,95 m NHN)

4.2 Druckfestigkeit Widerlagermauerwerk

Zur Ermittlung der vorhandenen Druckfestigkeit erfolgten an ausgewählten Bohrkernen aus der Bestandserkundung Bohrkernprüfungen gemäß DIN EN 12504-1. Die zugehörigen Laborprotokolle sind in Anlage 7 dokumentiert.

Es wurden folgende Gesteinsdruckfestigkeiten registriert:

Mörtel 15,1 N/mm²

Verbundkörper Granit/Mörtel 38,2 N/mm²

· Granitgestein >100 N/mm²

Bei der Ermittlung der Grundwerte der zulässigen Spannungen für Natursteinmauerwerk mit Normalmörtel gemäß DIN 1053-1 kann somit eine charakteristische Steindruckfestigkeit von >100 N/mm² angesetzt werden.

Angesichts der festgestellten Mörtelfestigkeit von 15 N/mm² sowie dessen intakten Zustands ist mit hinreichender Sicherheit von MG III auszugehen.

5. Schadstoffuntersuchung Bodenaushub

Zur Untersuchung der als Aushub anfallenden Böden auf eventuelle Schadstoffe wurden o.g. Proben im chemischen Labor EUROFINS Umwelt Ost GmbH NL Freiberg entsprechend Ersatzbaustoffverordnung (EBV) analysiert. Die Analysen erfolgten für Boden/Baggergut mit 10...50 % Fremdbestandteilen.

Es wurde eine repräsentative Mischprobe der anfallenden Aushubböden ("MP EBV Aushub") aus den folgenden Einzelproben hergestellt:

• BP 1 – P 1 (
$$t = 0,3...0,9 \text{ m}$$
)

• BP 1 – P 2
$$(1,0...1,8 \text{ m})$$

BP 2 - P 1 (
$$t = 0.5...1.0 \text{ m}$$
)

Die MP "EBV Aushub" wurde im chemischen Labor analysiert und die Analysenergebnisse den Grenzwerten der Materialklassen gemäß EBV gegenübergestellt. Für die vorgenommene Auswertung sind aufgrund der Bodenansprache (Bauschuttanteil < 10 %) die Materialklassengrenzwerte für Bodenmaterial/Baggergut (BM/BG) maßgebend.

11

IFG Ingenieurbüro für Geotechnik GmbH

Es wird darauf hingewiesen, dass die vorliegende Schadstoffuntersuchung eine orientierende Voruntersuchung und damit keine Deklarationsuntersuchung nach EBV darstellt.

In Auswertung der Untersuchungsergebnisse entspricht der anfallende Bodenaushub der Materialklasse BM-F2/BG-F2 und könnte damit als Ersatzbaustoff verwertet werden. Maßgebend hierfür ist der festgestellte Zink-Gehalt.

Bei einer ggf. erforderlichen Entsorgung wäre der Bodenaushub auf einer Deponie der Deponieklasse 1 zu entsorgen.

Der Untersuchungsbericht zur Analyse ist in Anlage 9 dokumentiert.

6. Bewertung der vorhandenen Gründungssituation

Die Gründungssohle der bestehenden Widerlager wurde bei -90 cm unter GOK (OK Deckwerk) nachgewiesen. Dies gilt als hinreichend frost- und kolksichere Gründungstiefe.

Das als Sohlbefestigung unterhalb des Bauwerks eingebaute Deckwerk ist durch Hochwasserereignisse stark beschädigt bzw. teilweise nicht mehr vorhanden. Unter Beachtung des erosionsempfindlichen Baugrunds am Bauwerksstandort gefährdet dieser Zustand die Dauerhaftigkeit der Bauwerksgründung. Im Rahmen einer Sanierung des Bauwerks ist die Sohlbefestigung zwecks Verbessrung des Kolkschutzes wiederherzustellen.

Die Gründungssohle befindet sich beidseitig auf Schicht 3 (GU). Dieser Horizont steht in dichter Lagerung an und ist für Gründungszwecke gut geeignet.

In Anlage 10 wurden zur Ermittlung des zulässigen Sohldrucks sowie der zu erwartenden Setzungen Grundbruch- und Setzungsberechnungen gemäß DIN 1054 durchgeführt. Die Gründung wurde entsprechend der Ergebnisse der Bestandserkundung dazu als Streifenfundament mit Breiten von 117 cm (WL West) bzw. 85 cm (WL Ost) idealisiert.

Der unter der Bestandsgründung zulässige Sohldruck beträgt 500 kN/m². Die äußere Tragfähigkeit der vorhandenen Gründung gilt damit bei hinreichenden Reserven als gegeben.

Die zu erwartenden Setzungen betragen generell <2,0 cm und gelten als unproblematisch.

Aus geotechnischer Sicht bestehen keine Bedenken gegen eine Weiternutzung der vorhandenen Bauwerksgründung. Es wird davon ausgegangen, dass sich die Sanierung des Bauwerks auf eine Erneuerung des Überbaus beschränken kann.

IFG Ingenieurbüro für Geotechnik GmbH

7. Hinweise zum Erd- und Tiefbau

Es wird davon ausgegangen, dass sich die Aushubarbeiten auf den Bereich oberhalb des Grundwassers beschränken können (Freilegen Bauwerk für Erneuerung Abdichtung).

Der beim Baugrubenaushub zu lösende Erdstoff besteht aus Lockergestein und ist mittels Bagger lösbar. Festgestein spielt keine Rolle.

Maßnahmen zur Wasserhaltung sind nur zur Fassung und Ableitung von Oberflächen- und/oder Sickerwasser nötig (offene Wasserhaltung vorhalten).

Bauzeitliche Böschungen sind mit einer Neigung von 1:1 oder flacher anzulegen.

Der anfallende Bodenaushub ist entsprechend Materialklasse BM-F2 als Ersatzbaustoff zu verwerten oder auf einer Deponie der DK I zu entsorgen.

8. Bauwerkshinterfüllung

Das beim Baugrubenaushub anfallende Material (Gemisch der einzelnen Schichten) ist als "mäßig verdichtungsfähig" zu bewerten und kann deshalb nur für untergeordnete Verfüllungen eingesetzt werden. Für die Bauwerkshinterfüllung gilt der anfallende Aushub als weniger geeignet, hierfür ist Liefermaterial (z.B. Kiessand 0/32) vorzusehen.

Die Hinterfüllung ist lagenweise £ 30 cm einzubringen und auf einen Verdichtungsgrad D_{Pr}^3 100 % zu verdichten. Die erreichte Verdichtung ist entsprechend der ZVTE-STB 2009 nachzuweisen.

Für die Bemessung der Widerlager auf Erddruck gelten folgende Kenngrößen:

• Wichte $g = 21 \text{ kN/m}^3$

Wichte unter Auftrieb g = 12 kN/m³

• Reibungswinkel f' = 35°

• Kohäsion $c' = 0 \text{ kN/m}^2$

Die Anordnung einer Rückentwässerung mit Dichtschicht (Was 7) ist nicht erforderlich, da eine Versickerung in den anstehenden, hinreichend durchlässigen Baugrund erfolgen kann. Die Hinterfüllung erfolgt somit vollständig mit Kiessand 0/32, welcher auf 100 % D_{pr} zu verdichten ist.

13

IFG Ingenieurbüro für Geotechnik GmbH

9. Straßenbau

Für die Ermittlung des frostsicheren Oberbaues im Anschlussbereich des Bauwerks gelten nach

RStO 12:

Frosteinwirkungszone III

Frostempfindlichkeitsklasse F 2

ungünstige Grundwasserverhältnisse.

Im Bereich der Widerlagerhinterfüllung sind bei einer fachgerechten Ausführung ausreichende

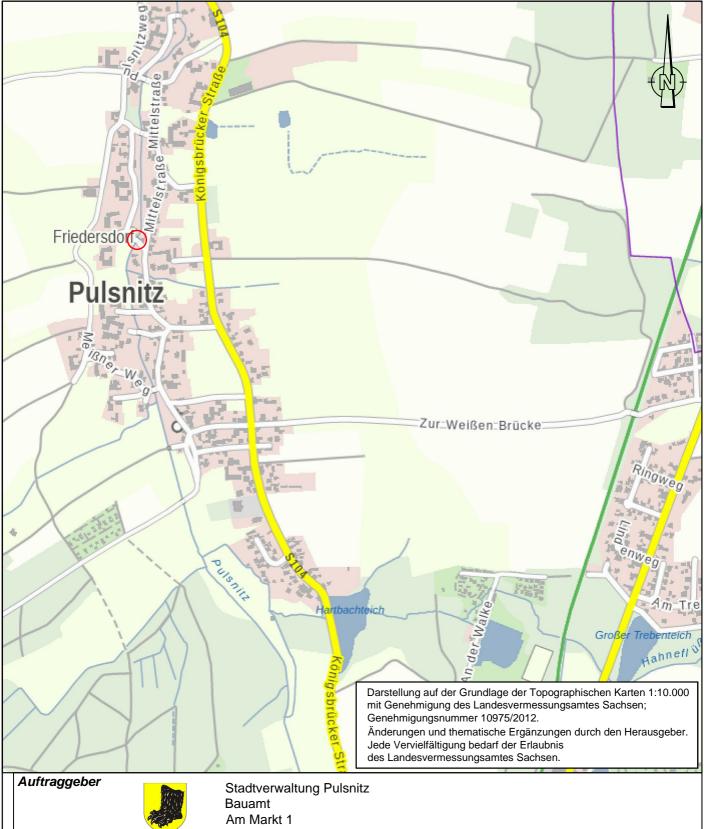
Planumstragfähigkeiten von E_{v2} ³ 45 MN/m² vorhanden.

10. Sonstige Hinweise

Ein Altlastenverdacht besteht nach organoleptischer Ansprache des Bohrgutes für den

Bauwerksstandort nicht.

Die durchgeführten Grundbruch- und Setzungsberechnungen verstehen sich als Vorbemessungen


für den Bauwerksentwurf und sind im Zuge der Ausführungsplanung entsprechend zu präzisieren.

Ergeben sich während der Planung bzw. Bauausführung Abweichungen, welche die Grundlagen

für diese Baugrundaussage beeinflussen oder ändern, so ist das unterzeichnende Ingenieurbüro

darüber zu informieren. In Auswertung dieser Informationen können die Aussagen dieses

Gutachtens präzisiert und der neuen Situation angeglichen werden.

01896 Pulsnitz

Auftragnehmer

Phase:

Baugrunduntersuchung

IFG Ingenieurbüro für Geotechnik GmbH

Sitz: Bautzen Purschwitzer Straße 13 02625 Bautzen Tel: (03591) 6771-30 Fax: (03591) 6771-40

Ers. f.:

Büro Freiberg Bahnhofstraße 2 09627 Hilbersdorf Tel: (03731) 68542 Fax: (03731) 68544 **Büro Stolpen** Bischofswerdaer Straße 14a 01833 Stolpen Tel: (035973) 29621 Fax: (035973) 29626

1:10.000

mail@ifg-direkt.de http://www.ifg-direkt.de

1 *BI*.

	Datum	Name	Unterschrift	Brücke im Zuge des Weges "Am Mühlgraben"					
Gezei	30.07.24	Steglich		über die Pulsnitz in Friedersdorf (PUF 002) in					
Bearb.	30.07.24	Böhmer		01896 Pulsnitz / OT Friedersdorf					
Gepr.	30.07.24	Böhmer							
				Übersichtskarte					
Auft	ragsnr.: -	051-04-24		Plan-Nr.: Anlage 1	<i>Maßstab</i> (m, cm)	Blatt			

Stadtverwaltung Pulsnitz Bauamt Am Markt 1 01896 Pulsnitz

Auftragnehmer

IFG Ingenieurbüro für Geotechnik GmbH

Sitz: BautzenPurschwitzer Straße 13
02625 Bautzen
Tel: (03591) 6771-30
Fax: (03591) 6771-40

Büro FreibergBahnhofstraße 2
09627 Hilbersdorf
Tel: (03731) 68542
Fax: (03731) 68544

Büro Stolpen Bischofswerdaer Straße 14a 01833 Stolpen Tel: (035973) 29621 Fax: (035973) 29626

mail@ifg-direkt.de http://www.ifg-direkt.de

	Datum	Name	Unterschrift
Gezei	30.07.24	Steglich	
Bearb.	30.07.24	Böhmer	
Gepr.	30.07.24	Böhmer	

Brücke im Zuge des Weges "Am Mühlgraben" über die Pulsnitz in Friedersdorf (PUF 002) in 01896 Pulsnitz / OT Friedersdorf

Lageplan mit Aufschlusspunkten

Foto 1: Bestandsbauwerk Blickrichtung von Ost

Foto 2: Bestandsbauwerk Blickrichtung von Süd

Foto 3: Lage Bohrpunkt BP01

Foto 4: Lage Bohrpunkt BP02

IFG Ingenieurbüro für Geotechnik Purschwitzer Str. 13, 02625 Bautzen

Schichtenverzeichnis nach ISO 14688-1 und ISO 14689-1

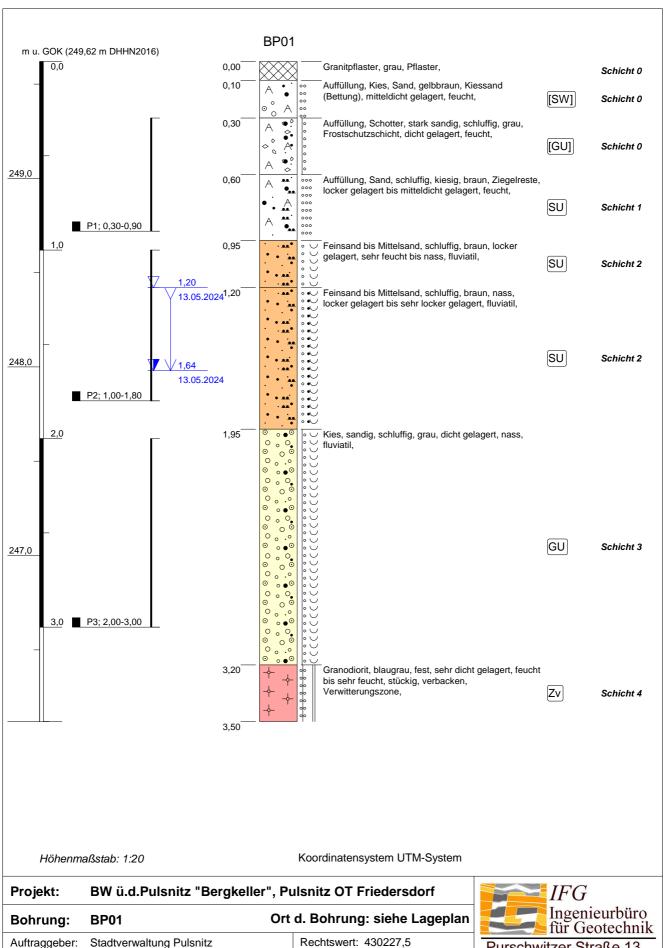
Anlage:

4.1 Seite: 1

IFG Bautzen GmbH Bohrfirma: Auftraggeber: Stadtverwaltung Pulsnitz

Bohrverfahren: Kleinrammbohrung

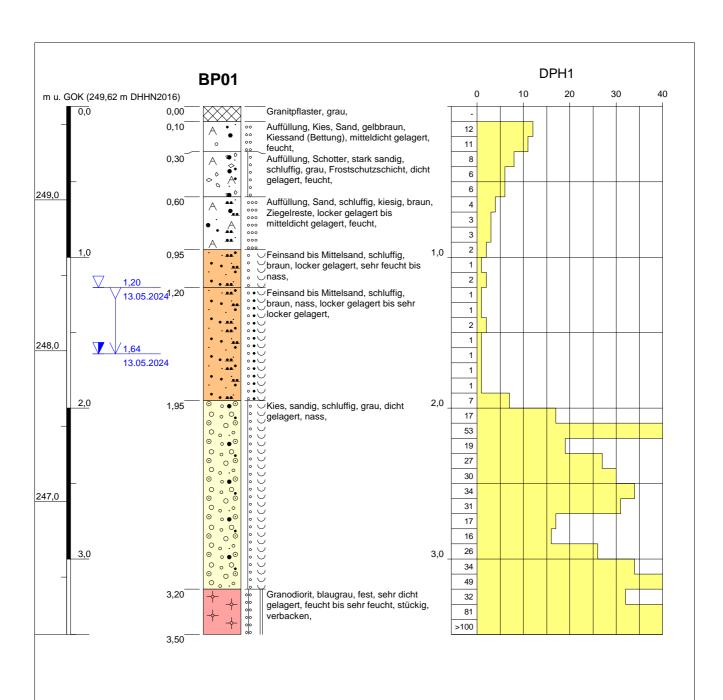
Aufschluss-Nr.: **BP01** Datum: 13.05.2024


BW ü.d.Pulsnitz "Bergkeller", Pulsnitz OT Friedersdorf Projekt:

Projekt-Nr.: I-051-04-24

Rechtswert: 430227,5

Höhe: 249,62 DHHN2016 Bearbeiter: Böhmer


Durchmesser: 80 mm		Hochwert: 5673090,1 Neigung:			Techniker:		Seifert
1 2		3 4		5	6	7	
Tiefe bis m	Bezeichnung der Boden- bzw. Felsart Ergänzende Bemerkungen	Farbe Kalk- gehalt	Beschreibur leicht feucht			es Proben Versuche - Typ - Nr. - Tiefe	Bemerkungen - Wasserführung - Bohrwerkzeuge/ Verrohrung - Kernverlust - Kernlänge
0,10	Granitpflaster - Pflaster	grau					Schicht 0
0,30	Auffüllung, Kies, Sand Kiessand (Bettung)	gelbbraun	mitteldicht g feucht	elagert,	mäßig schwer zu bohren [SW]		Schicht 0
0,60	Auffüllung, Schotter, stark sandig, schluffig Frostschutzschicht	grau	bohr zu b		mäßig schwer zu bohren bis schwe zu bohren [GU]	er	Schicht 0
0,95	Auffüllung, Sand, schluffig, kiesig Ziegelreste	braun	locker gelagert bis mitteldicht gelagert, feucht		leicht zu bohren SU (Sand, schluffig)	P1 (0,30-0,90)	Schicht 1
1,20	Feinsand bis Mittelsand, schluffig - fluviatil - Holozän	braun	locker gelag feucht bis na		leicht zu bohren SU (Sand, schluffig)		Schicht 2
1,95	Feinsand bis Mittelsand, schluffig - fluviatil - Holozän	braun	nass, locker gelagert bis sehr locker gelagert		leicht zu bohren GWA bei 1,20m GWR bei 1,64m SU (Sand, schluffig)	P2 (1,00-1,80)	Schicht 2
3,20	Kies, sandig, schluffig - fluviatil - Holozän	grau	G		schwer zu bohre GU (Kies, schluffig)	P3 (2,00-3,00)	Schicht 3
3,50	Granodiorit - Verwitterungszone	blaugrau	fest, sehr dicht gelagert, feucht bis sehr feucht, stückig, verbacken		sehr schwer zu bohren ab 3,50m nicht mehr rammbar Fels, verwittert		Schicht 4

Projekt:	BW ü.d.Pulsnitz "Bergkeller", Pulsnitz OT Friedersdorf				
Bohrung:	BP01 Or	t d. Bohrung: siehe Lageplan			
Auftraggeber:	Stadtverwaltung Pulsnitz	Rechtswert: 430227,5			
Bohrfirma:	IFG Bautzen GmbH	Hochwert: 5673090,1			
Bearbeiter:	Böhmer	Ansatzhöhe: 249,62 m DHHN2016			
Datum:	13.05.2024	Endtiefe: 3,50m			

Purschwitzer Straße 13 02625 Bautzen Tel: 03591/6771-30 Fax: 03591/6771-40

Höhenmaßstab: 1:25

Projekt:	BW ü.d.Pulsnitz "Bergkeller", Pulsnitz OT Friedersdorf					
Bohrung:	BP01 O	rt d. Bohrung: siehe Lageplan				
Auftraggeber:	Stadtverwaltung Pulsnitz	Rechtswert: 430227,5				
Bohrfirma:	IFG Bautzen GmbH	Hochwert: 5673090,1				
Bearbeiter:	Böhmer	Ansatzhöhe: 249,62 m DHHN2016				
Bohrzeit:	13.05.2024 - 13.05.2024	Endtiefe: 3,50 m				

Purschwitzer Straße 13 02625 Bautzen Tel: 03591/6771-30 Fax: 03591/6771-40

Schichtenverzeichnis nach ISO 14688-1 und ISO 14689-1

Anlage:

Seite:

Datum:

4.2

BP02

13.05.2024

1

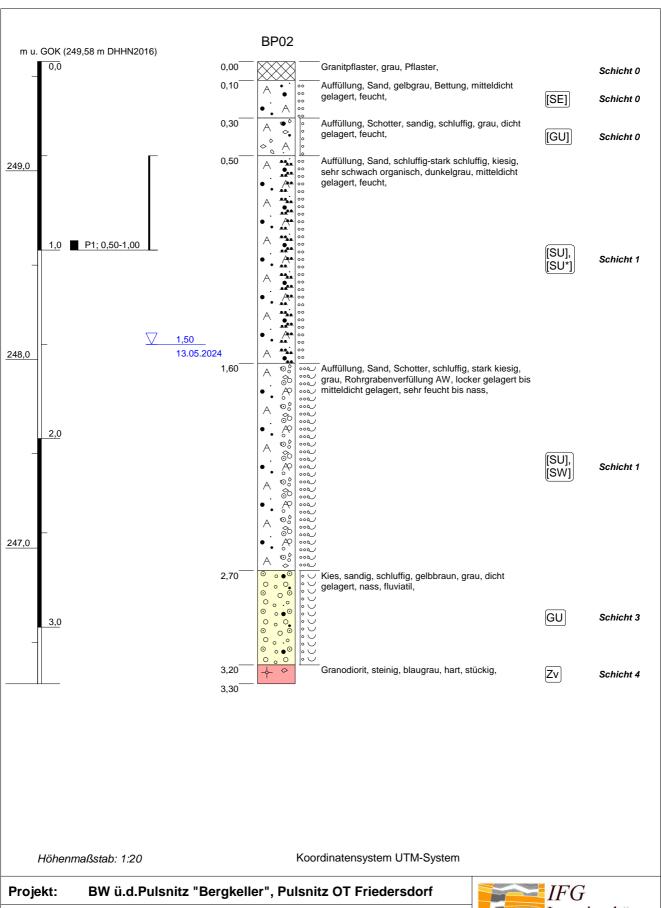
Bohrfirma: IFG Bautzen GmbH **Auftraggeber:** Stadtverwaltung Pulsnitz

Bohrverfahren: Kleinrammbohrung

Aufschluss-Nr.:

BW ü.d.Pulsnitz "Bergkeller", Pulsnitz OT Friedersdorf

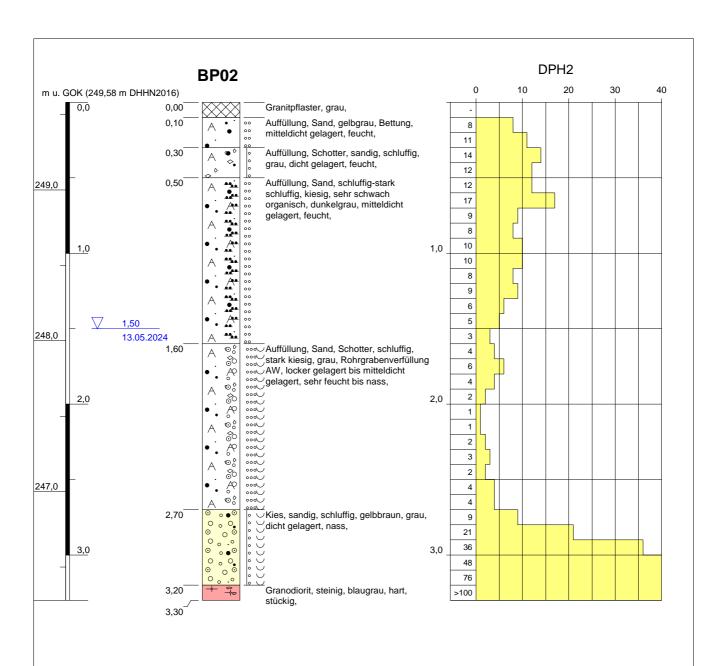
Projekt-Nr.: I-051-04-24


Durchmesser: 80 mm

Projekt:

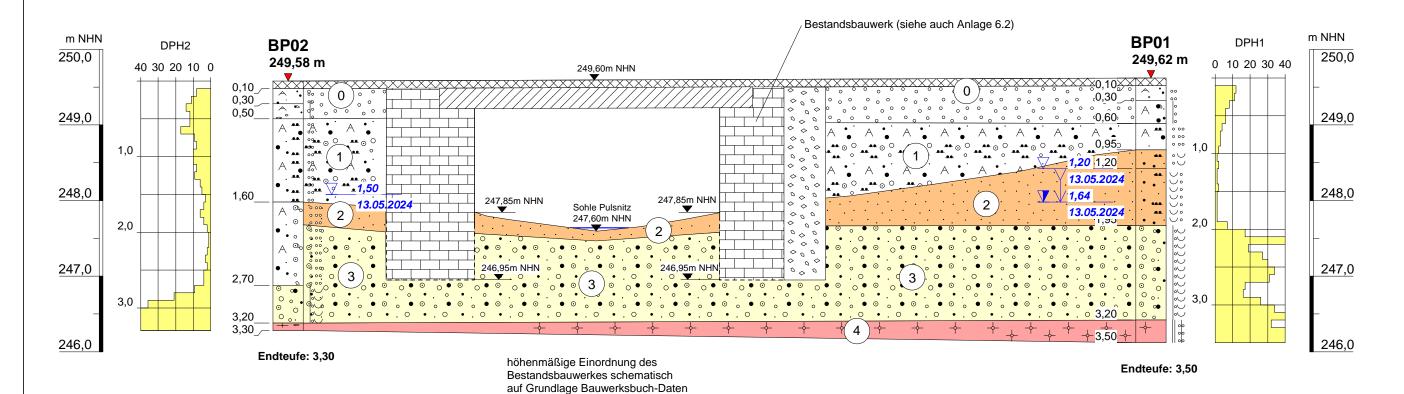
Rechtswert: 430219,4 Hochwert: 5673098.2 Höhe: 249,58 DHHN2016

Bearbeiter: Böhmer Techniker: Seifert


Durchmesser: 80 mm		Hochwert: 5673098,2 Neigung:			Te	Seifert	
1	2	3	4		5	6	7
Tiefe bis m	Bezeichnung der Boden- bzw. Felsart Ergänzende Bemerkungen	Farbe Kalk- gehalt	Beschreibu leicht feucht	ng d. Probe	Beschreibung des Bohrfortschritts - Bohrbarkeit/Kernform - Meißeleinsatz - Beobachtungen usw Bodengruppe	Proben Versuche - Typ - Nr. - Tiefe	Bemerkungen - Wasserführung - Bohrwerkzeuge/ Verrohrung - Kernverlust - Kernlänge
0,10	Granitpflaster - Pflaster	grau					Schicht 0
0,30	Auffüllung, Sand Bettung	gelbgrau	mitteldicht g feucht	elagert,	mäßig schwer zu bohren [SE]		Schicht 0
0,50	Auffüllung, Schotter, sandig, schluffig	grau	dicht gelage	ert, feucht	schwer zu bohren [GU]		Schicht 0
1,60	Auffüllung, Sand, schluffig-stark schluffig, kiesig, sehr schwach organisch	dunkelgrau	mitteldicht g feucht	elagert,	mäßig schwer zu bohren GWA bei 1,50m / [SU], [SU*]	P1 (0,50-1,00)	Schicht 1
2,70	Auffüllung, Sand, Schotter, schluffig, stark kiesig Rohrgrabenverfüllung AW	grau	locker gelag mitteldicht g sehr feucht	jelagert,	mäßig schwer zu bohren [SU], [SW]		Schicht 1
3,20	Kies, sandig, schluffig - fluviatil - Holozän	gelbbraun, grau	dicht gelage	ert, nass	schwer zu bohren bis sehr schwer zu bohren GU (Kies, schluffig)		Schicht 3
3,30	Granodiorit, steinig	blaugrau	hart, stückiç	J	sehr schwer zu bohren ab 3,30m nicht mehr rammbar / GWR nicht messbar Fels, verwittert		Schicht 4

Projekt:	BW ü.d.Pulsnitz "Bergkeller", Pulsnitz OT Friedersdorf				
Bohrung:	BP02 Ort d. Bohrung: siehe La				
Auftraggeber:	Stadtverwaltung Pulsnitz	Rechtswert: 430219,4			
Bohrfirma:	IFG Bautzen GmbH	Hochwert: 5673098,2			
Bearbeiter:	Böhmer	Ansatzhöhe: 249,58 m DHHN2016			
Datum:	13.05.2024	Endtiefe: 3,30m			
Datum:	13.05.2024	Enduere: 3,30m			

02625 Bautzen Tel: 03591/6771-30 Fax: 03591/6771-40


Höhenmaßstab: 1:25

Projekt:	BW ü.d.Pulsnitz "Bergkeller", Pulsnitz OT Friedersdorf				
Bohrung:	BP02 Ort d. Bohrung: siehe Lagepla				
Auftraggeber:	Stadtverwaltung Pulsnitz	Rechtswert: 430219,4			
Bohrfirma:	IFG Bautzen GmbH	Hochwert: 5673098,2			
Bearbeiter:	Böhmer	Ansatzhöhe: 249,58 m DHHN2016			
Bohrzeit:	13.05.2024 - 13.05.2024 Endtiefe: 3,30 m				

Purschwitzer Straße 13 02625 Bautzen Tel: 03591/6771-30 Fax: 03591/6771-40

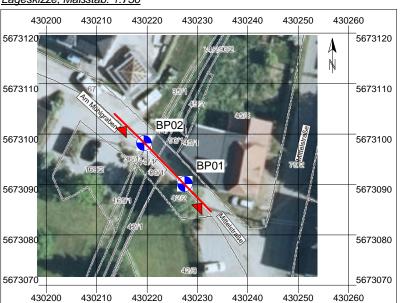
Baugrundschnitt

Legende:

Straßenbefestigung Pflaster, Kiessandbettung, Schotter

Auffüllung/Hinterfüllung Sand, schluffig, schwach kiesig locker gelagert Bodengruppe: [SU], [SU*]

Fein- und Mittelsand schluffig locker gelagert Bodengruppe: (SU)



Kies, sandig, schluffig dicht gelagert Bodengruppe: (GU)

Granodiorit verwittert bis zersetzt stückig, fest, nicht mehr rammbar Bodengruppe: (GU)

Hinweis:

BP02 liegt in Grabenverfüllung BP01 gilt als maßgebend.

Auftraggeber

Stadtverwaltung Pulsnitz Am Markt 1 01896 Pulsnitz

Verfasser

IFG Ingenieurbüro für Geotechnik GmbH

Sitz: BautzenPurschwitzer Straße 13
02625 Bautzen
Tel.: 03591/6771-30
Fax: 03591/6771-40

Büro Freiberg Bahnhofstraße 2 09627 Hilbersdorf Tel: (03731) 68542 Büro Stolpen Bischofswerdaer Straße 14a 01833 Stolpen Tel: (035973) 29621

www.ifg-direkt.de mail@ifg-direkt.de

	Datum	Zeichen
bearbeitet:	30.07.2024	Böhmer
gezeichnet:	30.07.2024	Steglich
geprüft:	30.07.2024	Böhmer

Brücke im Zuge des Weges "Am Mühlgraben" über die Pulsnitz in Friedersdorf (PUF 002) 01896 Pulsnitz / OT Friedersdorf, Landkreis Bautzen Baugrunduntersuchung

Baugrundschnitt

Projekt-Nr.: I-051-04-24 Anlage: 5 Blatt: 1 von 1 Maßstab: H.: 1:50 / V.: 1:50

Objekt: Brücke ü.d.Pulsnitz "Bergkeller" in SB 1H Pulsnitz OT Friedersdorf

Datum: 02.05.2024 Projekt-Nr.: I-051-04-24 Ausführung: 02.05.2024 Bearbeiter: A. Böhmer Lage Bohrpunkt: Widerlager West Bohrdurchmesser: 100 mm

Lage der Substanzbohrungen am Widerlager West

Bohrergebnisse: Kernbohrung SB 1H Material Bohrtiefe [cm] 0...117 Granitmauerwerk mit intakten Fugen

Bemerkung/Auswertung:

- Zeichnung in Anlage 6.2
- Horizontalbohrung
- Materialentnahme und Geometrieerkundung
- nachgewiesene Dicke des Widerlagers 117 cm

Anlage 6.1 Blatt 1

Objekt: Brücke ü.d.Pulsnitz "Bergkeller" in Pulsnitz OT Friedersdorf

Projekt-Nr.: I-051-04-24 Datum: 02.05.2024
Ausführung: 02.05.2024 Bearbeiter: A. Böhmer
Lage Bohrpunkt: Widerlager West Bohrdurchmesser: 70 mm

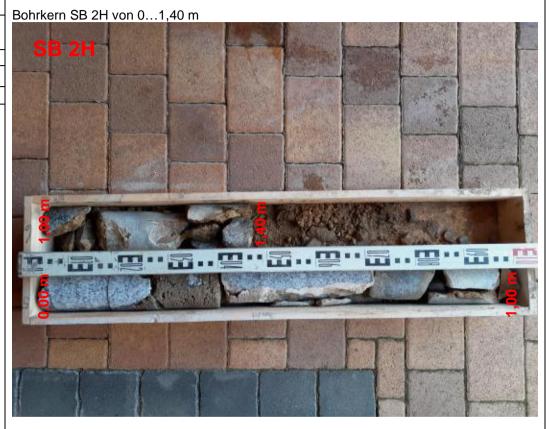
Bohrergebnisse: Kernbohrung SB 1S Bohrtiefe [cm] Material 0...95 Granitmauerwerk >95 Kiessand

Bemerkung/Auswertung:

- Zeichnung in Anlage 6.2
- Schrägbohrung mit 18° Neigung zur Horizontalen
- Geometrieerkundung
- nachgewiesene Einbindetiefe des Widerlagers 90 cm

Anlage 6.1 Blatt 2

Objekt: Brücke ü.d.Pulsnitz "Bergkeller" in Pulsnitz OT Friedersdorf


SB 2H

Projekt-Nr.: I-051-04-24 Datum: 02.05.2024

Ausführung: 02.05.2024 Bearbeiter: A. Böhmer

Lage Bohrpunkt: Widerlager Ost Bohrdurchmesser: 100 mm

Bohrergebnisse: Kernbohrung SB 2H Bohrtiefe [cm] Material 0...85 Granitmauerwerk mit intakten Fugen 85...140 Gemischtes Natursteinmauerwerk mit sehr mürbem bzw. zersetztem Fugenmörtel >140 Kiessand, schluffig

Bemerkung/Auswertung:

- Zeichnung in Anlage 6.2
- Horizontalbohrung
- Materialentnahme und Geometrieerkundung
- nachgewiesene Dicke des Widerlagers 85 cm
- MW von 85...140 cm wird nicht als Widerlager gewertet (alte Ufermauer??)

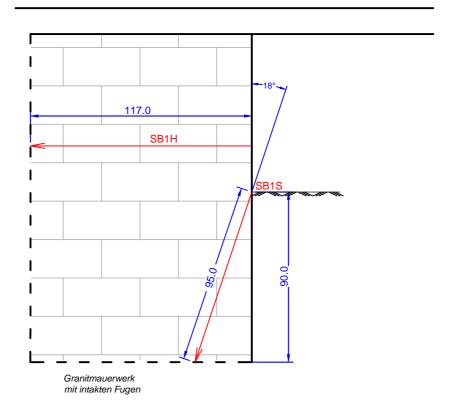
g	Anlage 6.1	Blatt 3
---	------------	---------

Objekt: Brücke ü.d.Pulsnitz "Bergkeller" in **SB 2S** Pulsnitz OT Friedersdorf

Datum: 02.05.2024 Projekt-Nr.: I-051-04-24 Ausführung: 02.05.2024 Bearbeiter: A. Böhmer Lage Bohrpunkt: Widerlager Ost Bohrdurchmesser: 100 mm

Bohrergebnisse:

Kernbohrung SB 2S				
Bohrtiefe [cm]	Material			
0100	Granitmauerwerk			


Bemerkung/Auswertung:

- Zeichnung in Anlage 6.2
- Horizontalbohrung mit 26° Neigung zur Horizontalen
- Geometrieerkundung
- nachgewiesene Einbindetiefe des Widerlagers 90 cm

Anlage 6.1

Blatt 4

SB1 (WL West)

Angaben in cm

Auftraggeber

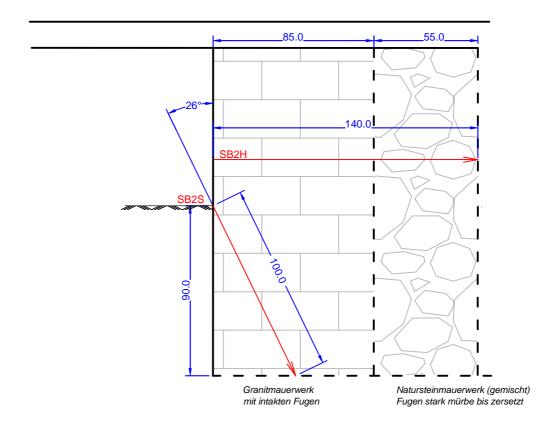
Stadtverwaltung Pulsnitz Bauamt Am Markt 1 01896 Pulsnitz

Auftragnehmer

IFG Ingenieurbüro für Geotechnik GmbH

Sitz: BautzenPurschwitzer Straße 13
02625 Bautzen
Tel: (03591) 6771-30
Fax: (03591) 6771-40

Büro Freiberg Bahnhofstraße 2 09627 Hilbersdorf Tel: (03731) 68542 Fax: (03731) 68544 Büro Stolpen Bischofswerdaer Straße 14a 01833 Stolpen Tel: (035973) 29621


Fax: (035973) 29626

mail@ifg-direkt.de http://www.ifg-direkt.de

	Datum	Name	Unterschrift	Brücke im Zuge des Weges "	Am Mühlgrabe	en"
Gezei	30.07.24	Steglich		über die Pulsnitz in Friedersd	lorf (PUF 002)	in
Bearb.	30.07.24	Böhmer		01896 Pulsnitz / OT Frieders	dorf	
Gepr.	30.07.24	Böhmer				
				Widerlager West		
		0=1 01 01				

Auftragsnr.:I-051-04-24Plan-Nr.:Anlage 6.2Maßstab(m, cm)Blatt 1Phase:BaugrunduntersuchungErs. f.:1:2.0002 Bl.

SB2 (WL Ost)

Angaben in cm

Auftraggeber

Stadtverwaltung Pulsnitz Bauamt Am Markt 1 01896 Pulsnitz

Auftragnehmer

IFG Ingenieurbüro für Geotechnik GmbH

Sitz: BautzenPurschwitzer Straße 13
02625 Bautzen
Tel: (03591) 6771-30
Fax: (03591) 6771-40

Büro Freiberg Bahnhofstraße 2 09627 Hilbersdorf Tel: (03731) 68542 Fax: (03731) 68544 Büro Stolpen Bischofswerdaer Straße 14a 01833 Stolpen Tel: (035973) 29621

Fax: (035973) 29626

mail@ifg-direkt.de http://www.ifg-direkt.de

	Datum	Name	Unterschrift	Brücke im Zuge des Weges "	Am Mühlgrabe,	∍n"
Gezei	30.07.24	Steglich		über die Pulsnitz in Friedersd	lorf (PUF 002)	in
Bearb.	30.07.24	Böhmer		01896 Pulsnitz / OT Frieders	dorf	
Gepr.	30.07.24	Böhmer				
				Widerlager Ost		
A C.		054 04 04			14 0 4 1 /	

Auftragsnr.: I-051-04-24Plan-Nr.: Anlage 6.2Maßstab(m, cm)Blatt 2Phase:BaugrunduntersuchungErs. f.:1:2.0002 Bl.

Baustoffprüflabor in Bautzen

Planung - Überwachung - Beratung Prüfstelle E + W

Inhaber: Marco Wessely

Preuschwitzer Str. 92, 02625 Bautzen **Telefon:** 03591 / 279549 ; Fax: 03591/ 374634

WEB: www.baustofflabor-bautzen.de E-Mail: info@baustofflabor-bautzen.de

Firma

IFG

Ingenieurbüro für Geotechnik GmbH Purschwitzer Straße 13, Niederkaina

02625 Bautzen

Abteilung:

Baustoffprüflabor

Bearbeiter: Bautzen, Herr Walther 08.05.2024

Prüfbericht Nr. BK 04 / 2024

zur Bestimmung der Gesteinsdruckfestigkeit; laut Auftrag vom 07.05.2024

Entnahmestelle:

Brücke über die Pulsnitz in Friedersdorf "Bergkeller"

IFG Projekt Nr.:

I-051-04-24

Art der Probe:

Bohrkerne v. 02.05.2023

Probe:

1- Betonprobe

2- Verbundprobe3- Gesteinsprobe 1

4- Gesteinsprobe 2

Prüfung:

08.05.24

Nr.	Durchm	Höhe	Fläche	Volumen	Gew.	ρ	Bruchlast	Druckfestigk.
INI.	mm	mm	mm²	cm ³	g	g/cm ³	N	N/mm ²
1	94,00	97,20	6936	674,2	1365	2,02	104976	15,13
2	94.00	100,90	6936	699,9	1573	2,25	265231	38,24
3	94,00	100,90	6936	699,9	1808	2,58	877912	126,57
4	63.00	67,80	3116	211,2	565	2,67	346780	111,30

Bemerkung: Die Kernhöhe ergibt sich nach schneiden und schleifen der Prüfkörper

mit freundlichen Grüßen

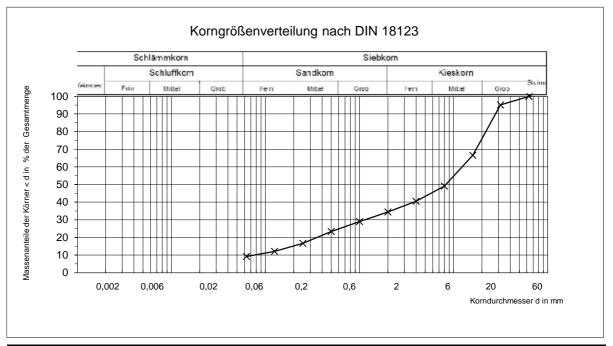
Walther/ Prüfstellenleiter

Bautzen - Freiberg - Stolpen Tel: 03591 / 6771-30 mail@ifg.gmbh

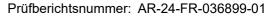
Korngrößenverteilung

Bestimmung der Korngrößenverteilung (DIN 18123-5)

Projekt:Brücke über Pulsnitz in FriedersdorfProjektnummer:I-051-04-24Probenehmer:BöhmerEntnahmedatum:13.05.2024Laborant:GenzelBearbeitungsdatum:03.07.2024


Labornummer:345Arbeitsweise: NaßsiebungProbenbezeichnung:BP 01 / P 3Einwaage: 1203,4 gEntnahmetiefe:2,0 - 3,0 mBodengruppe (DIN 18 196): GU

Bodenart, ortsübl. Bezeichnung, Schicht-Nr.: Schicht 3


Korngröße	Rückstand	Gewichts-	Summe
[mm]	[g]	anteil [%]	[%]
63			100,0
63			100,0
31,5	58,8	4,9	95,1
16	344,0	28,6	66,5
8	209,4	17,4	49,1
4	102,8	8,5	40,5
2	73,2	6,1	34,4
1	65,2	5,4	29,0
0,5	68,5	5,7	23,3
0,25	81,1	6,7	16,6
0,125	54,2	4,5	12,1
0,063	34,6	2,9	9,2
<0,063	110,6	9,2	

Summe der		
Siebrückstände:		1202,4
Siebverlust:	1 g =	0,1%

d ₁₀ =	0,080	$C_{\rm C} = 1.3$
$d_{20} =$	0,377	$C_U = 162,4$
$d_{30} =$	1,19	Durchlässigkeitsbeiwert
$d_{50} =$	8,41	nach BEYER
d ₆₀ =	13,01	3,85E-05

Kornfraktionen	Ton:	%	Schluff:	9,2 %	nat. Wassergehalt:
	Sand:	25,2 %	Kies:	65,6 %	wn = 7 %

Seite 1 von 12

Eurofins Umwelt Ost GmbH - Lindenstraße 11 - Gewerbegebiet Freiberg Ost - D-09627 Bobritzsch-Hilbersdorf

IFG Ingenieurbüro für Geotechnik GmbH Purschwitzer Straße 13 02625 Niederkaina / Stadt Bautzen

Titel: Prüfbericht zu Auftrag 12428725

EOL Auftragsnummer: **006-10544-65914**Prüfberichtsnummer: **AR-24-FR-036899-01**

Auftragsbezeichnung: 051-04-24

Anzahl Proben:

Probenart: Boden
Probenahmedatum: 04.07.2024

Probenehmer: keine Angabe, Probe(n) wurde(n) an das Labor ausgehändigt

Probeneingangsdatum: 05.07.2024

Prüfzeitraum: **05.07.2024 - 11.07.2024**

Die Prüfergebnisse beziehen sich ausschließlich auf die untersuchten Prüfgegenstände. Sofern die Probenahme nicht durch unser Labor oder in unserem Auftrag erfolgte, wird hierfür keine Gewähr übernommen. Dieser Prüfbericht enthält eine qualifizierte elektronische Signatur und darf nur vollständig und unverändert weiterverbreitet werden. Auszüge oder Änderungen bedürfen in jedem Einzelfall der Genehmigung der EUROFINS UMWELT.

Es gelten die Allgemeinen Verkaufsbedingungen (AVB), sofern nicht andere Regelungen vereinbart sind. Die aktuellen AVB können Sie unter http://www.eurofins.de/umwelt/avb.aspx einsehen.

Das beauftragte Prüflaboratorium ist durch die DAkkS nach DIN EN ISO/IEC 17025:2018 DAkkS akkreditiert. Die Akkreditierung gilt nur für den in der Urkundenanlage (D-PL-14081-01-00) aufgeführten Umfang.

Anhänge:

XML_Export_AR-24-FR-036899-01.xml

Tim Bauer Digital signiert, 11.07.2024

Analytical Service Manager Tim Bauer

Tel. +4935188844686 Analytical Service Manager

Eurofins Umwelt Ost GmbH Löbstedter Strasse 78 D-07749 Jena Tel. +49 3641 4649 0
Fax +493641464919
info_jena@eurofins.de
www.eurofins.de/umwelt

GF: Marc Hitzke, Axel Ulbricht Amtsgericht Jena HRB 202596 USt.-ID.Nr. DE 151 28 1997 Anlage 9, Seite 1 von 13

												Probenbeze		MP EBV
													edatum/ -zeit	04.07.2024
												EOL Probei	nnummer	005-10544- 257047
							Vergleid	chswerte				Probennum	nmer	124103319
Parameter		Akkr.	Methode	BM-0 BG-0 Sand	BM-0 BG-0 Schluff, Lehm	BM-0 BG-0 Ton	BM-0* BG-0*	BM-F0* BG-F0*	BM-F1 BG-F1	BM-F2 BG-F2	BM-F3 BG-F3	BG	Einheit	
Probenvorbereitung Feststo	offe													
Fraktion < 2 mm	FR	F5	DIN 19747: 2009-07									0,1	%	78,3
Fraktion > 2 mm	FR	F5	DIN 19747: 2009-07									0,1	%	21,7
Probenvorbereitung aus de	r Origi	nalsuk	ostanz (Fraktion < 2	mm)									•	
Königswasseraufschluss (angewandte Methode)	FR	F5	L8:DIN EN 13657:2003-01;F5:DIN EN ISO 54321:2021-4											mittels thermoregu- lierbarem Graphitblock
Physikalisch-chemische Ke	nngrö	ßen au	ıs der Originalsubst	anz			•	•		•			-	
Trockenmasse	FR	F5	L8:DIN EN 14346:2007-03A; F5:DIN EN 15934:2012-11A									0,1	Ma%	88,2
Elemente aus dem Königsw	assera	aufsch	luss (Fraktion <2mr	n)										
Arsen (As)	FR	F5	DIN EN 16171:2017-01	10	20	20	20	40	40	40	150	0,8	mg/kg TS	8,0
Blei (Pb)	FR	F5	DIN EN 16171:2017-01	40	70	100	140	140	140	140	700	2	mg/kg TS	14
Cadmium (Cd)	FR	F5	DIN EN 16171:2017-01	0,4	1	1,5	1 ⁴⁾	2	2	2	10	0,2	mg/kg TS	< 0,2
Chrom (Cr)	FR	F5	DIN EN 16171:2017-01	30	60	100	120	120	120	120	600	1	mg/kg TS	26
Kupfer (Cu)	FR	F5	DIN EN 16171:2017-01	20	40	60	80	80	80	80	320	1	mg/kg TS	15
Nickel (Ni)	FR	F5	DIN EN 16171:2017-01	15	50	70	100	100	100	100	350	1	mg/kg TS	16
Quecksilber (Hg)	FR	F5	DIN EN 16171:2017-01	0,2	0,3	0,3	0,6	0,6	0,6	0,6	5	0,07	mg/kg TS	0,10
Thallium (TI)	FR	F5	DIN EN 16171:2017-01	0,5	1	1	1	2	2	2	7	0,2	mg/kg TS	< 0,2
Zink (Zn)	FR	F5	DIN EN 16171:2017-01	60	150	200	300	300	300	300	1200	1	mg/kg TS	39

												Probenbezei	chnung	MP EBV
												Probenahme	datum/ -zeit	04.07.2024
												EOL Proben	nummer	005-10544- 257047
							Vergleic	hswerte				Probennum	ner	124103319
Parameter	Lab.	Akkr.	Methode	BM-0 BG-0 Sand	BM-0 BG-0 Schluff, Lehm	BM-0 BG-0 Ton	BM-0* BG-0*	BM-F0* BG-F0*	BM-F1 BG-F1	BM-F2 BG-F2	BM-F3 BG-F3	BG	Einheit	
Organische Summenparame	eter au	is der	Originalsubstanz (F	raktion <	2 mm)			,		•			•	
TOC	FR	F5	DIN EN 15936: 2012-11	1 ⁵⁾	1 ⁵⁾	1 ⁵⁾	1 ⁵⁾	5	5	5	5	0,1	Ma% TS	0,4
EOX	FR	F5	DIN 38414-17 (S17): 2017-01	1 ⁶⁾	1 ⁶⁾	1 ⁶⁾	1 ⁶⁾	3 7)	3 7)	3 7)	10 ⁷⁾	1,0	mg/kg TS	< 1,0
Kohlenwasserstoffe C10-C22	FR	F5	DIN EN 14039: 2005-01				300	300	300	300	1000	40	mg/kg TS	< 40
Kohlenwasserstoffe C10-C40	FR	F5	DIN EN 14039: 2005-01				600	600	600	600	2000	40	mg/kg TS	< 40

												Probenbeze	eichnung	MP EBV
												Probenahm	edatum/ -zeit	04.07.2024
												EOL Prober	nummer	005-10544- 257047
							Vergleid	hswerte				Probennum	mer	124103319
Parameter	Lab.	Akkr.	Methode	BM-0 BG-0 Sand	BM-0 BG-0 Schluff, Lehm	BM-0 BG-0 Ton	BM-0* BG-0*	BM-F0* BG-F0*	BM-F1 BG-F1	BM-F2 BG-F2	BM-F3 BG-F3	BG	Einheit	
PAK aus der Originalsubsta	ınz (Fr	aktion	< 2 mm)											
Naphthalin	FR	F5	DIN ISO 18287: 2006-05									0,05	mg/kg TS	n.n. ²⁾
Acenaphthylen	FR	F5	DIN ISO 18287: 2006-05									0,05	mg/kg TS	n.n. ²⁾
Acenaphthen	FR	F5	DIN ISO 18287: 2006-05									0,05	mg/kg TS	n.n. ²⁾
Fluoren	FR	F5	DIN ISO 18287: 2006-05									0,05	mg/kg TS	n.n. ²⁾
Phenanthren	FR	F5	DIN ISO 18287: 2006-05									0,05	mg/kg TS	n.n. ²⁾
Anthracen	FR	F5	DIN ISO 18287: 2006-05									0,05	mg/kg TS	n.n. ²⁾
Fluoranthen	FR	F5	DIN ISO 18287: 2006-05									0,05	mg/kg TS	n.n. ²⁾
Pyren	FR	F5	DIN ISO 18287: 2006-05									0,05	mg/kg TS	n.n. ²⁾
Benzo[a]anthracen	FR	F5	DIN ISO 18287: 2006-05									0,05	mg/kg TS	n.n. ²⁾
Chrysen	FR	F5	DIN ISO 18287: 2006-05									0,05	mg/kg TS	n.n. ²⁾
Benzo[b]fluoranthen	FR	F5	DIN ISO 18287: 2006-05									0,05	mg/kg TS	n.n. ²⁾
Benzo[k]fluoranthen	FR	F5	DIN ISO 18287: 2006-05									0,05	mg/kg TS	n.n. ²⁾
Benzo[a]pyren	FR	F5	DIN ISO 18287: 2006-05	0,3	0,3	0,3						0,05	mg/kg TS	n.n. ²⁾
Indeno[1,2,3-cd]pyren	FR	F5	DIN ISO 18287: 2006-05									0,05	mg/kg TS	n.n. ²⁾
Dibenzo[a,h]anthracen	FR	F5	DIN ISO 18287: 2006-05									0,05	mg/kg TS	n.n. ²⁾
Benzo[ghi]perylen	FR	F5	DIN ISO 18287: 2006-05									0,05	mg/kg TS	n.n. ²⁾
Summe 16 PAK nach EBV: 2021	FR		berechnet	3	3	3	6	6	6	9	30		mg/kg TS	(n. b.) ³⁾
Summe 15 PAK ohne Naphthalin nach EBV: 2021	FR		berechnet										mg/kg TS	(n. b.) ³⁾

												Probenbeze	MP EBV	
												Probenahme	edatum/ -zeit	04.07.2024
												EOL Proben	nummer	005-10544-
														257047
							Vergleid	hswerte				Probennum	mer	124103319
Parameter	Lab.	Akkr.	Methode	BM-0 BG-0 Sand	BM-0 BG-0 Schluff, Lehm	BM-0 BG-0 Ton	BM-0* BG-0*	BM-F0* BG-F0*	BM-F1 BG-F1	BM-F2 BG-F2	BM-F3 BG-F3	BG	Einheit	
PCB aus der Originalsubsta	ınz (Fr	aktion	< 2 mm)											
PCB 28	FR	F5	DIN EN 17322: 2021-03									0,01	mg/kg TS	n.n. ²⁾
PCB 52	FR	F5	DIN EN 17322: 2021-03									0,01	mg/kg TS	n.n. ²⁾
PCB 101	FR	F5	DIN EN 17322: 2021-03									0,01	mg/kg TS	< 0,01
PCB 153	FR	F5	DIN EN 17322: 2021-03									0,01	mg/kg TS	n.n. ²⁾
PCB 138	FR	F5	DIN EN 17322: 2021-03									0,01	mg/kg TS	n.n. ²⁾
PCB 180	FR	F5	DIN EN 17322: 2021-03									0,01	mg/kg TS	n.n. ²⁾
Summe 6 PCB nach EBV: 2021	FR		berechnet										mg/kg TS	0,005
PCB 118	FR	F5	DIN EN 17322: 2021-03									0,01	mg/kg TS	< 0,01
Summe 7 PCB nach EBV: 2021	FR		berechnet	0,05	0,05	0,05	0,1	0,15	0,15	0,15	0,5		mg/kg TS	0,010
Kenngr. d. Eluatherst. f. org	., nich	t-flüch	t. Par. nach DIN 19	529: 2015	-12									
Trübung im Eluat nach DIN EN ISO 7027: 2000-04	FR	F5										10	FNU	25
Physikalisch-chem. Kenngr	ößen a	us de	m 2:1-Schütteleluat	nach DIN	19529: 2	015-12								
pH-Wert	FR	F5	DIN EN ISO 10523 (C5): 2012-04					8)	8)	8)	8)			7,1
Temperatur pH-Wert	FR	F5	DIN 38404-4 (C4): 1976-12										°C	14,6
Leitfähigkeit bei 25°C	FR	F5	DIN EN 27888 (C8): 1993-11				9)	9)	9)	9)	9)	5	μS/cm	328
Anionen aus dem 2:1-Schüt	telelua	at nach	n DIN 19529: 2015-1	2										
Sulfat (SO4)	FR	F5	DIN EN ISO 10304-1 (D20): 2009-07	250 ¹⁰⁾	250 ¹⁰⁾	250 ¹⁰⁾	250 ¹⁰⁾	250 ¹⁰⁾	450	450	1000	1,0	mg/l	31

												Probenbeze	ichnung	MP EBV
												Probenahm	edatum/ -zeit	04.07.2024
												EOL Prober	nummer	005-10544- 257047
							Vergleid	hswerte				Probennum	mer	124103319
Parameter	Lab.	Akkr.	Methode	BM-0 BG-0 Sand	BM-0 BG-0 Schluff, Lehm	BM-0 BG-0 Ton	BM-0* BG-0*	BM-F0* BG-F0*	BM-F1 BG-F1	BM-F2 BG-F2	BM-F3 BG-F3	BG	Einheit	
Elemente aus dem 2:1-Schi	ittelelu	at nac	h DIN 19529: 2015-	12										
Arsen (As)	FR	F5	DIN EN ISO 17294-2 (E29): 2017-01				8 11)	12	20	85	100	1	μg/l	9
Blei (Pb)	FR	F5	DIN EN ISO 17294-2 (E29): 2017-01				23 11)	35	90	250	470	1	μg/l	51
Cadmium (Cd)	FR	F5	DIN EN ISO 17294-2 (E29): 2017-01				2 11)	3	3	10	15	0,3	μg/l	0,3
Chrom (Cr)	FR	F5	DIN EN ISO 17294-2 (E29): 2017-01				10 ¹¹⁾	15	150	290	530	1	μg/l	8
Kupfer (Cu)	FR	F5	DIN EN ISO 17294-2 (E29): 2017-01				20 11)	30	110	170	320	1	μg/l	20
Nickel (Ni)	FR	F5	DIN EN ISO 17294-2 (E29): 2017-01				20 11)	30	30	150	280	1	μg/l	5
Quecksilber (Hg)	FR	F5	DIN EN ISO 12846 (E12): 2012-08				0,1 11)					0,1	μg/l	< 0,1
Thallium (TI)	FR	F5	DIN EN ISO 17294-2 (E29): 2017-01				0,2 11)					0,2	μg/l	< 0,2
Zink (Zn)	FR	F5	DIN EN ISO 17294-2 (E29): 2017-01				100 11)	150	160	840	1600	10	μg/l	202
PAK aus dem 2:1-Schüttele	luat na	ch Di	N 19529: 2015-12								•			
Naphthalin	FR	F5	DIN 38407-39 (F39): 2011-09									0,05	μg/l	n.n. ²⁾
Acenaphthylen	FR	F5	DIN 38407-39 (F39): 2011-09									0,03	μg/l	n.n. ²⁾
Acenaphthen	FR	F5	DIN 38407-39 (F39): 2011-09									0,02	μg/l	n.n. ²⁾
Fluoren	FR	F5	DIN 38407-39 (F39): 2011-09									0,01	μg/l	n.n. ²⁾
Phenanthren	FR	F5	DIN 38407-39 (F39): 2011-09									0,02	μg/l	n.n. ²⁾
Anthracen	FR	F5	DIN 38407-39 (F39): 2011-09									0,008	μg/l	n.n. ²⁾
Fluoranthen	FR	F5	DIN 38407-39 (F39): 2011-09									0,02	μg/l	n.n. ²⁾

MP EBV

Probenbezeichnung

												Probenahm	edatum/ -zeit	04.07.2024
												EOL Proben	nummer	005-10544- 257047
							Vergleid	chswerte				Probennum	mer	124103319
Parameter	Lab.	Akkr.	Methode	BM-0 BG-0 Sand	BM-0 BG-0 Schluff, Lehm	BM-0 BG-0 Ton	BM-0* BG-0*	BM-F0* BG-F0*	BM-F1 BG-F1	BM-F2 BG-F2	BM-F3 BG-F3	BG	Einheit	
Pyren	FR	F5	DIN 38407-39 (F39): 2011-09									0,01	μg/l	n.n. ²⁾
Benzo[a]anthracen	FR	F5	DIN 38407-39 (F39): 2011-09									0,01	μg/l	< 0,01
Chrysen	FR	F5	DIN 38407-39 (F39): 2011-09									0,01	μg/l	n.n. ²⁾
Benzo[b]fluoranthen	FR	F5	DIN 38407-39 (F39): 2011-09									0,01	μg/l	n.n. ²⁾
Benzo[k]fluoranthen	FR	F5	DIN 38407-39 (F39): 2011-09									0,01	μg/l	n.n. ²⁾
Benzo[a]pyren	FR	F5	DIN 38407-39 (F39): 2011-09									0,008	μg/l	n.n. ²⁾
Indeno[1,2,3-cd]pyren	FR	F5	DIN 38407-39 (F39): 2011-09									0,01	μg/l	n.n. ²⁾
Dibenzo[a,h]anthracen	FR	F5	DIN 38407-39 (F39): 2011-09									0,008	μg/l	n.n. ²⁾
Benzo[ghi]perylen	FR	F5	DIN 38407-39 (F39): 2011-09									0,01	μg/l	n.n. ²⁾
Summe 16 PAK nach EBV: 2021	FR		berechnet										μg/l	0,005
Summe 15 PAK ohne Naphthalin nach EBV: 2021	FR		berechnet				0,2 12)	0,3	1,5	3,8	20		μg/l	0,005
1-Methylnaphthalin	FR	F5	DIN 38407-39 (F39): 2011-09									0,01	μg/l	n.n. ²⁾
2-Methylnaphthalin	FR	F5	DIN 38407-39 (F39): 2011-09									0,01	μg/l	n.n. ²⁾
Summe Methylnaphthaline nach EBV: 2021	FR		berechnet										μg/l	(n. b.) ³⁾
Summe Naphthalin + Methylnaphthaline nach EBV: 2021	FR		berechnet				2 ¹²⁾						μg/l	(n. b.) ³⁾

												Probenbezei Probenahme EOL Proben	datum/ -zeit	MP EBV 04.07.2024 005-10544- 257047
Parameter	Lab.	Akkr.	Methode	BM-0 BG-0 Sand	BM-0 BG-0 Schluff, Lehm	BM-0 BG-0 Ton	BM-0* BG-0*	BM-F0* BG-F0*	BM-F1 BG-F1	BM-F2 BG-F2	BM-F3 BG-F3	Probennumr BG	ner Einheit	124103319
PCB aus dem 2:1-Schüttele	uat na	ch DII	N 19529: 2015-12									•		
PCB 28	FR	F5	DIN 38407-37: 2013-11									0,001	μg/l	n.n. ²⁾
PCB 52	FR	F5	DIN 38407-37: 2013-11									0,001	μg/l	n.n. ²⁾
PCB 101	FR	F5	DIN 38407-37: 2013-11									0,001	μg/l	n.n. ²⁾
PCB 153	FR	F5	DIN 38407-37: 2013-11									0,001	μg/l	n.n. ²⁾
PCB 138	FR	F5	DIN 38407-37: 2013-11									0,001	μg/l	n.n. ²⁾
PCB 180	FR	F5	DIN 38407-37: 2013-11									0,001	μg/l	n.n. ²⁾
Summe 6 PCB nach EBV: 2021	FR		berechnet										μg/l	(n. b.) ³⁾
PCB 118	FR	F5	DIN 38407-37: 2013-11									0,001	μg/l	n.n. ²⁾
Summe 7 PCB nach EBV: 2021	FR		berechnet				0,01 12)	0,02 13)	0,02 13)	0,02 13)	0,04 13)		μg/l	(n. b.) ³⁾

Prüfberichtsnummer: AR-24-FR-036899-01

Seite 9 von 12

Erläuterungen

BG - Bestimmungsgrenze

Lab. - Kürzel des durchführenden Labors

Akkr. - Akkreditierungskürzel des Prüflabors

Kommentare zu Ergebnissen

- ¹⁾ Die Gleichwertigkeit zu DIN EN 13657: 2003-01 ist nachgewiesen. DIN EN ISO 54321:2021-04 wird als Referenzverfahren in der Methodensammlung FBU/LAGA Version 2.0 Stand 15.06.2021 ausdrücklich empfohlen. Zur Gleichwertigkeit von Aufschlussverfahren siehe für EBV: FAQ des LfU Bayern; für BBodSchV: §24.11.
- 2) nicht nachweisbar
- 3) nicht berechenbar

Die mit FR gekennzeichneten Parameter wurden von der Eurofins Umwelt Ost GmbH (Lindenstraße 11, Gewerbegebiet Freiberg Ost, Bobritzsch-Hilbersdorf) analysiert. Die Bestimmung der mit F5 gekennzeichneten Parameter ist nach DIN EN ISO/IEC 17025:2018 DAkkS D-PL-14081-01-00 akkreditiert.

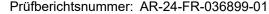
Prüfberichtsnummer: AR-24-FR-036899-01

Seite 10 von 12

Erläuterungen zu Vergleichswerten

Untersuchung nach EBV: Boden & Baggergut (09.07.2021).

EBV: Boden & Baggergut (09.07.2021) - Tabelle 3: Materialwerte für Bodenmaterial und Baggergut & Tabelle 4: Zusätzliche Materialwerte für spezifische Belastungsparameter von Bodenmaterial und Baggergut, Zusätzliche Materialwerte für nicht aufbereiteten Bauschutt


Bodenarten-Hauptgruppen gemäß Bodenkundlicher Kartieranleitung, 5. Auflage, Hannover 2009 (KA 5); stark schluffige Sande, lehmig-schluffige Sande und stark lehmige Sande sowie Materialien, die nicht bodenartspezifisch zugeordnet werden können, sind entsprechend der Bodenart Lehm, Schluff zu bewerten.

Die Materialwerte gelten für Bodenmaterial und Baggergut mit bis zu 10 Volumenprozent (BM und BG) oder bis zu 50 Volumenprozent (BM-F und BG-F) mineralischer Fremdbestandteile im Sinne von § 2 Nummer 8 der Bundes-Bodenschutz- und Altlastenverordnung mit nur vernachlässigbaren Anteilen an

Störstoffen im Sinne von § 2 Nummer 9 der Bundes-Bodenschutz- und Altlastenverordnung. Bodenmaterial der Klasse BM-0 und Baggergut der Klasse BG-0 erfüllen die wertebezogenen Anforderungen an das Auf- oder Einbringen gemäß § 7 Absatz 3 der BundesBodenschutz- und Altlastenverordnung.

Bodenmaterial der Klasse BM-0 und Baggergut der Klasse BG-0 Sand erfüllen die wertebezogenen Anforderungen an das Auf- oder Einbringen gemäß § 8 Absatz 2 der Bundes-Bodenschutz- und Altlastenverordnung; Bodenmaterial der Klasse BM-0* und Baggergut der Klasse BG-0* erfüllen die wertebezogenen Anforderungen an das Auf- oder Einbringen gemäß § 8 Absatz 3 Nummer 1 der Bundes-Bodenschutz- und Altlastenverordnung.

- 4) Der Wert 1 mg/kg gilt für Bodenmaterial der Bodenarten Sand und Lehm, Schluff. Für Bodenmaterial der Bodenart Ton gilt der Wert 1,5 mg/kg.
- Bodenmaterialspezifischer Orientierungswert. Bei heterogenen Bodenverhältnissen mineralischer Böden kann der TOC-Gehalt der Masse des anfallenden Materials als maßgeblich bei der Verwertung im Umfeld des anfallenden Materials und Verwendung unter gleichen Bedingungen herangezogen werden. Beim Einbau sind Volumenbeständigkeit und Setzungsprozesse zu berücksichtigen sowie die Vorgaben des § 6
 Absatz 11 Satz 2 und 3 der Bundes-Bodenschutz- und Altlastenverordnung zu berücksichtigen. Beim Einbau sind Volumenbeständigkeit und Setzungsprozesse zu berücksichtigen.
- ⁶⁾ Bei Überschreitung der Werte sind die Materialien auf fallspezifische Belastungen zu untersuchen.
- 7) Der Grenzwert gilt nur für Untersuchungen zusätzlicher Stoffwerte für bestimmte Belastungsparameter von Bodenmaterial und Baggergut bzw. für unbearbeiteten Bauschutt gemäß Anlage 1 Tabelle 4 der Ersatzbaustoffverordnung (09.07.2021).
- Stoffspezifischer Orientierungswert; bei Abweichungen von mehr als 0,5 Einheiten ist die Ursache zu prüfen. Orientierungswert für BM-F0*/BG-F0* bis BM-F2/BG-F2 ist 6,5 9,5. Für BM-F3/BG-F3 ist der Orientierungswert 5,5-12,0.
- 9) Stoffspezifischer Orientierungswert; bei Abweichungen von mehr als 10% ist die Ursache zu prüfen. Orientierungswert für BM-0*/BG-0* und BM-F0*/BG-F0* ist 350 μS/cm, bei BM-F1/BG-F1 BM-F2/BG-F2 500 μS/cm und BM-F3/BG-F3 2000 μS/cm.
- ¹⁰⁾ Bei Überschreitung des Wertes ist die Ursache zu prüfen. Handelt es sich um naturbedingt erhöhte Sulfatkonzentrationen, ist eine Verwertung innerhalb der betroffenen Ge biete möglich. Außerhalb dieser Gebiete ist über die Verwertungseignung im Einzelfall in Abstimmung mit der zuständigen Behörde zu entscheiden.

Seite 11 von 12

Umwelt

11) Die Eluatwerte in Spalte 8 sind mit Ausnahme des Eluatwertes für Sulfat nur maßgeblich, wenn für den betreffenden Stoff der jeweilige Feststoffwert nach Spalte 5 bis 7 überschritten wird.

Bei Quecksilber und Thallium ist für die Klassifizierung in die Materialklassen BM-F0*/BG-F0*, BM-F1/BG-F-1, BM-F2/BG-F-2, BM-F-3/BG-F3 der angegebene Gesamtgehalt maßgeblich. Der Eluatwert der Materialklasse BM-0*/BG-0* ist einzuhalten.

Bei einem TOC-Gehalt von ≥ 0,5% gelten abweichend folgende Werte:

Arsen: 13 μg/l Blei: 43 μg/l Cadmium: 4 μg/l

Chrom, gesamt: 19 µg/l

Kupfer: 41 µg/l Nickel: 31 µg/l Thallium: 0,3 µg/l Zink: 210 µg/l

Die Eluatwerte in Spalte 8 sind mit Ausnahme des Eluatwertes für Sulfat nur maßgeblich, wenn für den betreffenden Stoff der jeweilige Feststoffwert nach Spalte 5 bis 7 überschritten wird. Der Eluatwert für PAK15 (PAK16 ohne Naphthalin und Methylnaphthaline) und Napthalin und Methylnaphtaline, gesamt, ist maßgeblich, wenn der Feststoffwert für PAK16 nach Spalte 5 bis 7 überschritten wird.

Der Grenzwert ist nur gültig für Untersuchungen auf zusätzliche Materialwerte für spezifische Belastungsparameter von Bodenmaterial und Baggergut bzw. für nicht aufbereiteten Bauschutt nach Anlage 1 Tabelle 4 der Ersatzbaustoffverordnung (09.07.2021).

Bei der Darstellung von Vergleichswerten im Prüfbericht handelt es sich um eine Serviceleistung der EUROFINS UMWELT. Die zitierten Vergleichswerte (Grenz-, Richt- oder sonstige Zuordnungswerte) sind teilweise vereinfacht dargestellt und berücksichtigen nicht alle Kommentare, Nebenbestimmungen und/oder Ausnahmeregelungen des entsprechenden Regelwerkes.

Prüfberichtsnummer: AR-24-FR-036899-01

Seite 12 von 12

Abgleich mit Vergleichswerten

Der Abgleich bezieht sich ausschließlich auf die in AR-24-FR-036899-01 aufgeführten Ergebnisse und erfolgt auf Basis eines rein numerischen Vergleichs des erhaltenen Messwertes mit den entsprechenden Vergleichswerten. Die Messunsicherheit des entsprechenden Verfahrens wird hierbei nicht berücksichtigt.

Nachfolgend aufgeführte Proben weisen im Vergleich zur EBV: Boden & Baggergut (09.07.2021) die dargestellten Überschreitungen bzw. Verletzungen der zitierten Vergleichswerte auf. Der Untersuchungsstelle obliegt nicht die Festlegung der aus dem Vergleichswertabgleich abzuleitenden Maßnahmen.

X: Überschreitung bzw. Verletzung der zitierten Vergleichswerte festgestellt

Probenbeschreibung: MP EBV
Probennummer: 124103319

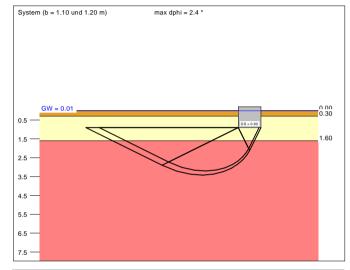
Test	Parameter	BM-0 BG-0	BM-0 BG-0	BM-0 BG-0	BM-0* BG-0*	BM-F0*	BM-F1 BG-F1	BM-F2 BG-F2	BM-F3 BG-F3
		Sand	Schluff, Lehm	Ton		BG-F0*			
Nickel [Königswasser-Aufschluss, < 2 mm] [16171] mg/kg TS	Nickel (Ni)	Х							
Arsen [2:1 Schütteleluat] mg/l	Arsen (As)				Х				
Blei [2:1 Schütteleluat] mg/l	Blei (Pb)				Х	Х			
Zink [2:1 Schütteleluat] mg/l	Zink (Zn)				Х	Х	Х		

angewendete Vergleichstabelle: EBV: Boden & Bag	aeraut (09.07.3	2021)						
Bezeichnung	Einheit	MP EBV	BM-0 BG-0 Sand	BM-0* BG-0*	BM-F0* BG-F0*	BM-F1 BG-F1	BM-F2 BG-F2	BM-F3 BG-F3
Probennummer		124103319						
Anzuwendende Klasse(n): Probenvorbereitung aus der Originalsubstanz (Frak	tion < 2 mm)	BM-F2 BG-F2						
Königswasseraufschluss (angewandte Methode)		rbarem Graphitblock						
Elemente aus dem Königswasseraufschluss n. DIN			10	20	40	40	40	150
Arsen (As) Blei (Pb)	mg/kg TS mg/kg TS	8,0 14	10 40		40 140	40 140		
Cadmium (Cd)	mg/kg TS	< 0,2	0,4	1	2	2	2	10
Chrom (Cr) Kupfer (Cu)	mg/kg TS mg/kg TS	26 15	30 20		120 80	120 80		600 320
Nickel (Ni)	mg/kg TS	16	15		100	100		350
Quecksilber (Hg)	mg/kg TS	0,10	0,2	0,6	0,6	0,6	0,6	5
Thallium (TI) Zink (Zn)	mg/kg TS mg/kg TS	< 0,2 39	0,5 60	300	300	300	300	1200
Organische Summenparameter aus der Originalsuk	stanz (Fraktior				555	333	000	.200
TOC EOX	Ma% TS mg/kg TS	0,4 < 1,0	1	1	5	5	5	5 10
Kohlenwasserstoffe C10-C22	mg/kg TS	< 40	'	300	300	300	_	1000
Kohlenwasserstoffe C10-C40	mg/kg TS	< 40		600	600	600	600	2000
PAK aus der Originalsubstanz (Fraktion < 2 mm) Naphthalin	mg/kg TS	n.n.						
Acenaphthylen	mg/kg TS	n.n.						
Acenaphthen	mg/kg TS	n.n.						
Fluoren Phenanthren	mg/kg TS mg/kg TS	n.n. n.n.						
Anthracen	mg/kg TS	n.n.						
Fluoranthen	mg/kg TS	n.n.						
Pyren Benzo[a]anthracen	mg/kg TS mg/kg TS	n.n. n.n.						
Chrysen	mg/kg TS	n.n.						
Benzo[b]fluoranthen Benzo[k]fluoranthen	mg/kg TS mg/kg TS	n.n. n.n.						
Benzo[a]pyren	mg/kg TS	n.n.	0,3					
Indeno[1,2,3-cd]pyren	mg/kg TS	n.n.						
Dibenzo[a,h]anthracen Benzo[ghi]perylen	mg/kg TS mg/kg TS	n.n. n.n.						
Summe 16 PAK nach EBV: 2021	mg/kg TS	(n. b.)	3	6	6	6	9	30
Summe 15 PAK ohne Naphthalin nach EBV: 2021 PCB aus der Originalsubstanz (Fraktion < 2 mm)	mg/kg TS	(n. b.)						
PCB 28	mg/kg TS	n.n.						
PCB 52	mg/kg TS	n.n.						
PCB 101	mg/kg TS	< 0,01						
PCB 153 PCB 138	mg/kg TS mg/kg TS	n.n. n.n.						
PCB 180	mg/kg TS	n.n.						
PCB 118	mg/kg TS	< 0,01						
Summe 7 PCB nach EBV: 2021	mg/kg TS	0,010	0,05	0,1	0,15	0,15	0,15	0,5
Physikalisch-chem. Kenngrößen aus dem 2:1-Schüt	teleluat nach D	IN 19529: 2015-12						
pH-Wert		7,1						
Leitfähigkeit bei 25°C	μS/cm	328						
Anionen aus dem 2:1-Schütteleluat nach DIN 1952	1							
Sulfat (SO4) Elemente aus dem 2:1-Schütteleluat nach DIN 195:	mg/l	31	250	250	250	450	450	1000
Arsen (As)								
Arser (As)		0		Ω	12	20	95	100
Blei (Pb)	µg/l µa/l	9 51		23	12 35	20 90		
Blei (Pb) Cadmium (Cd)	µg/I µg/I µg/I	9 51 0,3		23	12 35 3	20 90 3		470
	μg/l	51		23	35		250 10	470
Cadmium (Cd)	μg/I μg/I	51 0,3		23	35 3	90	250 10 290	470 15
Cadmium (Cd) Chrom (Cr)	µg/I µg/I µg/I	51 0,3 8		23 2 10 20 20	35 3 15	90 3 150	250 10 290 170	470 15 530 320
Cadmium (Cd) Chrom (Cr) Kupfer (Cu) Nickel (Ni) Quecksilber (Hg)	µg/I µg/I µg/I µg/I µg/I	51 0,3 8 20 5 < 0,1		23 2 10 20 20 0,1	35 3 15 30	90 3 150 110	250 10 290 170	470 15 530 320
Cadmium (Cd) Chrom (Cr) Kupfer (Cu) Nickel (Ni) Quecksilber (Hg) Thallium (TI)	µg/I µg/I µg/I µg/I µg/I µg/I	51 0,3 8 20 5 < 0,1 < 0,2		23 2 10 20 20 0,1 0,2	35 3 15 30 30	90 3 150 110 30	250 10 290 170 150	470 15 530 320 280
Cadmium (Cd) Chrom (Cr) Kupfer (Cu) Nickel (Ni) Quecksilber (Hg) Thallium (Tl) Zink (Zn)	µg/I µg/I µg/I µg/I µg/I µg/I µg/I	51 0,3 8 20 5 < 0,1		23 2 10 20 20 0,1	35 3 15 30	90 3 150 110	250 10 290 170 150	470 15 530 320
Cadmium (Cd) Chrom (Cr) Kupfer (Cu) Nickel (Ni) Quecksilber (Hg) Thallium (TI) Zink (Zn) PAK aus dem 2:1-Schütteleluat nach DIN 19529: 20	µg/I µg/I µg/I µg/I µg/I µg/I µg/I µg/I	51 0,3 8 20 5 < 0,1 < 0,2 202		23 2 10 20 20 0,1 0,2	35 3 15 30 30	90 3 150 110 30	250 10 290 170 150	470 15 530 320 280
Cadmium (Cd) Chrom (Cr) Kupfer (Cu) Nickel (Ni) Quecksilber (Hg) Thallium (TI) Zink (Zn) PAK aus dem 2:1-Schütteleluat nach DIN 19529: 20 Naphthalin	µg/I µg/I µg/I µg/I µg/I µg/I µg/I µg/I	51 0,3 8 20 5 < 0,1 < 0,2 202		23 2 10 20 20 0,1 0,2	35 3 15 30 30	90 3 150 110 30	250 10 290 170 150	470 15 530 320 280
Cadmium (Cd) Chrom (Cr) Kupfer (Cu) Nickel (Ni) Quecksilber (Hg) Thallium (TI) Zink (Zn) PAK aus dem 2:1-Schütteleluat nach DIN 19529: 20	µg/I µg/I µg/I µg/I µg/I µg/I µg/I µg/I	51 0,3 8 20 5 < 0,1 < 0,2 202		23 2 10 20 20 0,1 0,2	35 3 15 30 30	90 3 150 110 30	250 10 290 170 150	470 15 530 320 280
Cadmium (Cd) Chrom (Cr) Kupfer (Cu) Nickel (Ni) Quecksilber (Hg) Thallium (TI) Zink (Zn) PAK aus dem 2:1-Schütteleluat nach DIN 19529: 20 Naphthalin Acenaphthylen	µg/I µg/I µg/I µg/I µg/I µg/I µg/I µg/I	51 0,3 8 20 5 < 0,1 < 0,2 202		23 2 10 20 20 0,1 0,2	35 3 15 30 30	90 3 150 110 30	250 10 290 170 150	470 15 530 320 280
Cadmium (Cd) Chrom (Cr) Kupfer (Cu) Nickel (Ni) Quecksilber (Hg) Thallium (TI) Zink (Zn) PAK aus dem 2:1-Schütteleluat nach DIN 19529: 20 Naphthalin Acenaphthylen Acenaphthen	µg/I µg/I µg/I µg/I µg/I µg/I µg/I µg/I	51 0,3 8 20 5 < 0,1 < 0,2 202 n.n. n.n.		23 2 10 20 20 0,1 0,2	35 3 15 30 30	90 3 150 110 30	250 10 290 170 150	470 15 530 320 280
Cadmium (Cd) Chrom (Cr) Kupfer (Cu) Nickel (Ni) Quecksilber (Hg) Thallium (Tl) Zink (Zn) PAK aus dem 2:1-Schütteleluat nach DIN 19529: 20 Naphthalin Acenaphthylen Acenaphthen Fluoren Phenanthren Anthracen	рд/I рд/I рд/I рд/I рд/I рд/I рд/I рд/I	51 0,3 8 20 5 < 0,1 < 0,2 202 n.n. n.n. n.n.		23 2 10 20 20 0,1 0,2	35 3 15 30 30	90 3 150 110 30	250 10 290 170 150	470 15 530 320 280
Cadmium (Cd) Chrom (Cr) Kupfer (Cu) Nickel (Ni) Quecksilber (Hg) Thallium (Tl) Zink (Zn) PAK aus dem 2:1-Schütteleluat nach DIN 19529: 20 Naphthalin Acenaphthylen Acenaphthen Fluoren Phenanthren Anthracen Fluoranthen	рд/I рд/I рд/I рд/I рд/I рд/I рд/I рд/I	51 0,3 8 20 5 < 0,1 < 0,2 202 n.n. n.n. n.n. n.n.		23 2 10 20 20 0,1 0,2	35 3 15 30 30	90 3 150 110 30	250 10 290 170 150	470 15 530 320 280
Cadmium (Cd) Chrom (Cr) Kupfer (Cu) Nickel (Ni) Quecksilber (Hg) Thallium (Tl) Zink (Zn) PAK aus dem 2:1-Schütteleluat nach DIN 19529: 20 Naphthalin Acenaphthylen Acenaphthen Fluoren Phenanthren Anthracen Fluoranthen Pyren	рд/I рд/I рд/I рд/I рд/I рд/I рд/I рд/I	51 0,3 8 20 5 < 0,1 < 0,2 202 n.n. n.n. n.n. n.n.		23 2 10 20 20 0,1 0,2	35 3 15 30 30	90 3 150 110 30	250 10 290 170 150	470 15 530 320 280
Cadmium (Cd) Chrom (Cr) Kupfer (Cu) Nickel (Ni) Quecksilber (Hg) Thallium (Tl) Zink (Zn) PAK aus dem 2:1-Schütteleluat nach DIN 19529: 20 Naphthalin Acenaphthel Acenaphthen Fluoren Phenanthren Anthracen Fluoranthen Pyren Benzo[a]anthracen	рд/I рд/I рд/I рд/I рд/I рд/I рд/I рд/I	51 0,3 8 20 5 < 0,1 < 0,2 202 n.n. n.n. n.n. n.n. n.n. n.n.		23 2 10 20 20 0,1 0,2	35 3 15 30 30	90 3 150 110 30	250 10 290 170 150	470 15 530 320 280
Cadmium (Cd) Chrom (Cr) Kupfer (Cu) Nickel (Ni) Quecksilber (Hg) Thallium (TI) Zink (Zn) PAK aus dem 2:1-Schütteleluat nach DIN 19529: 20 Naphthalin Acenaphthel Acenaphthen Fluoren Phenanthren Anthracen Fluoranthen Pyren Benzo[a]anthracen Chrysen	рд/I рд/I рд/I рд/I рд/I рд/I рд/I рд/I	51 0,3 8 20 5 < 0,1 < 0,2 202 n.n. n.n. n.n. n.n. n.n. o.n.		23 2 10 20 20 0,1 0,2	35 3 15 30 30	90 3 150 110 30	250 10 290 170 150	470 15 530 320 280
Cadmium (Cd) Chrom (Cr) Kupfer (Cu) Nickel (Ni) Quecksilber (Hg) Thallium (Tl) Zink (Zn) PAK aus dem 2:1-Schütteleluat nach DIN 19529: 20 Naphthalin Acenaphthel Acenaphthen Fluoren Phenanthren Anthracen Fluoranthen Pyren Benzo[a]anthracen	рд/I рд/I рд/I рд/I рд/I рд/I рд/I рд/I	51 0,3 8 20 5 < 0,1 < 0,2 202 n.n. n.n. n.n. n.n. n.n. n.n.		23 2 10 20 20 0,1 0,2	35 3 15 30 30	90 3 150 110 30	250 10 290 170 150	470 15 530 320 280
Cadmium (Cd) Chrom (Cr) Kupfer (Cu) Nickel (Ni) Quecksilber (Hg) Thallium (Tl) Zink (Zn) PAK aus dem 2:1-Schütteleluat nach DIN 19529: 20 Naphthalin Acenaphthylen Acenaphthen Fluoren Phenanthren Anthracen Fluoranthen Pyren Benzo[a]anthracen Chrysen Benzo[b]fluoranthen	рд/I рд/I рд/I рд/I рд/I рд/I рд/I рд/I	51 0,3 8 20 55 <0,1 <0,2 202 n.n. n.n. n.n. n.n. n.n. n.n. n.n. n.n. n.n. n.n. n.n. n.n. n.n. n.n. n.n.		23 2 10 20 20 0,1 0,2	35 3 15 30 30	90 3 150 110 30	250 10 290 170 150	470 15 530 320 280
Cadmium (Cd) Chrom (Cr) Kupfer (Cu) Nickel (Ni) Quecksilber (Hg) Thallium (TI) Zink (Zn) PAK aus dem 2:1-Schütteleluat nach DIN 19529: 20 Naphthalin Acenaphthylen Acenaphthen Fluoren Phenanthren Anthracen Fluoranthen Pyren Benzo[a]anthracen Chrysen Benzo[b]fluoranthen Benzo[k]fluoranthen	рд/I рд/I рд/I рд/I рд/I рд/I рд/I рд/I	51 0,3 8 20 55 < 0,1 < 0,2 202 n.n. n.n. n.n. n.n. n.n. n.n. n.n.		23 2 10 20 20 0,1 0,2	35 3 15 30 30	90 3 150 110 30	250 10 290 170 150	470 15 530 320 280
Cadmium (Cd) Chrom (Cr) Kupfer (Cu) Nickel (Ni) Quecksilber (Hg) Thallium (Tl) Zink (Zn) PAK aus dem 2:1-Schütteleluat nach DIN 19529: 20 Naphthalin Acenaphthylen Acenaphthen Fluoren Phenanthren Anthracen Fluoranthen Pyren Benzo[a]anthracen Chrysen Benzo[b]fluoranthen Benzo[a]pyren	рд/I рд/I рд/I рд/I рд/I рд/I рд/I рд/I	51 0,3 8 20 5 < 0,1 < 0,2 202 n.n. n.n. n.n. n.n. n.n. n.n. n.n. n.n. n.n. n.n. n.n. n.n.		23 2 10 20 20 0,1 0,2	35 3 15 30 30	90 3 150 110 30	250 10 290 170 150	470 15 530 320 280
Cadmium (Cd) Chrom (Cr) Kupfer (Cu) Nickel (Ni) Quecksilber (Hg) Thallium (Tl) Zink (Zn) PAK aus dem 2:1-Schütteleluat nach DIN 19529: 20 Naphthalin Acenaphthel Fluoren Phenanthren Anthracen Fluoranthen Pyren Benzo[a]anthracen Chrysen Benzo[b]fluoranthen Benzo[a]pyren Indeno[1,2,3-cd]pyren Dibenzo[a,h]anthracen Benzo[ghi]perylen	рд/I рд/I рд/I рд/I рд/I рд/I рд/I рд/I	51 0,3 8 20 5 < 0,1 < 0,2 202 n.n. n.n. n.n. n.n.		23 2 10 20 20 0,1 0,2	35 3 15 30 30	90 3 150 110 30	250 10 290 170 150	470 15 530 320 280
Cadmium (Cd) Chrom (Cr) Kupfer (Cu) Nickel (Ni) Quecksilber (Hg) Thallium (Tl) Zink (Zn) PAK aus dem 2:1-Schütteleluat nach DIN 19529: 20 Naphthalin Acenaphthylen Acenaphthen Fluoren Phenanthren Anthracen Fluoranthen Pyren Benzo[a]anthracen Chrysen Benzo[b]fluoranthen Benzo[a]pyren Indeno[1,2,3-cd]pyren Dibenzo[a,h]anthracen Benzo[ghi]perylen Summe 16 PAK nach EBV: 2021	рд/I рд/I рд/I рд/I рд/I рд/I рд/I рд/I	51 0,3 8 20 5 < 0,1 < 0,2 202 n.n. n.n. n.n. n.n. n.n. n.n. n.n.		23 2 10 20 20 0,1 0,2 100	35 3 15 30 30 150	90 3 150 110 30	250 10 290 170 150	1600 150 1600
Cadmium (Cd) Chrom (Cr) Kupfer (Cu) Nickel (Ni) Quecksilber (Hg) Thallium (Tl) Zink (Zn) PAK aus dem 2:1-Schütteleluat nach DIN 19529: 20 Naphthalin Acenaphthylen Acenaphthen Fluoren Phenanthren Anthracen Fluoranthen Pyren Benzo[a]anthracen Chrysen Benzo[b]fluoranthen Benzo[k]fluoranthen Benzo[a]pyren Indeno[1,2,3-cd]pyren Dibenzo[a,h]anthracen Benzo[ghi]perylen Summe 16 PAK nach EBV: 2021 Summe 15 PAK ohne Naphthalin nach EBV: 2021	рд/I рд/I рд/I рд/I рд/I рд/I рд/I рд/I	51 0,3 8 20 5 < 0,1 < 0,2 202 n.n. n.n. n.n. n.n. n.n. n.n. n.n.		23 2 10 20 20 0,1 0,2	35 3 15 30 30	90 3 150 110 30	250 10 290 170 150	1600 150 1600
Cadmium (Cd) Chrom (Cr) Kupfer (Cu) Nickel (Ni) Quecksilber (Hg) Thallium (TI) Zink (Zn) PAK aus dem 2:1-Schütteleluat nach DIN 19529: 20 Naphthalin Acenaphthylen Acenaphthen Fluoren Phenanthren Anthracen Fluoranthen Pyren Benzo[a]anthracen Chrysen Benzo[b]fluoranthen Benzo[k]fluoranthen Benzo[a]pyren Indeno[1,2,3-cd]pyren Dibenzo[a,h]anthracen Benzo[ghi]perylen Summe 16 PAK nach EBV: 2021 Summe 15 PAK ohne Naphthalin nach EBV: 2021	рд/I рд/I рд/I рд/I рд/I рд/I рд/I рд/I	51 0,3 8 20 55 <0,1 <0,2 202 n.n. n.n. n.n. n.n. n.n. n.n. n.n.		23 2 10 20 20 0,1 0,2 100	35 3 15 30 30 150	90 3 150 110 30	250 10 290 170 150	1600 150 1600
Cadmium (Cd) Chrom (Cr) Kupfer (Cu) Nickel (Ni) Quecksilber (Hg) Thallium (Tl) Zink (Zn) PAK aus dem 2:1-Schütteleluat nach DIN 19529: 20 Naphthalin Acenaphthylen Acenaphthen Fluoren Phenanthren Anthracen Fluoranthen Pyren Benzo[a]anthracen Chrysen Benzo[b]fluoranthen Benzo[k]fluoranthen Benzo[a]pyren Indeno[1,2,3-cd]pyren Dibenzo[a,h]anthracen Benzo[ghi]perylen Summe 16 PAK nach EBV: 2021 Summe 15 PAK ohne Naphthalin nach EBV: 2021 1-Methylnaphthalin 2-Methylnaphthalin	рд/I рд/I рд/I рд/I рд/I рд/I рд/I рд/I	51 0,3 8 20 55 < 0,1 < 0,2 202 n.n. n.n. n.n. n.n. n.n. n.n. n.n.		23 2 10 20 20 0,1 100	35 3 15 30 30 150	90 3 150 110 30	250 10 290 170 150	1600 150 1600
Cadmium (Cd) Chrom (Cr) Kupfer (Cu) Nickel (Ni) Quecksilber (Hg) Thallium (Tl) Zink (Zn) PAK aus dem 2:1-Schütteleluat nach DIN 19529: 20 Naphthalin Acenaphthylen Acenaphthen Fluoren Phenanthren Anthracen Fluoranthen Pyren Benzo[a]anthracen Chrysen Benzo[b]fluoranthen Benzo[k]fluoranthen Benzo[a]pyren Indeno[1,2,3-cd]pyren Dibenzo[a,h]anthracen Benzo[ghi]perylen Summe 16 PAK nach EBV: 2021 Summe 15 PAK ohne Naphthalin nach EBV: 2021 1-Methylnaphthalin Summe Naphthalin + Methylnaphthaline nach EBV	рд/I рд/I рд/I рд/I рд/I рд/I рд/I рд/I	51 0,3 8 20 55 <0,1 <0,2 202 n.n. n.n. n.n. n.n. n.n. n.n. n.n.		23 2 10 20 20 0,1 0,2 100	35 3 15 30 30 150	90 3 150 110 30	250 10 290 170 150	1600 150 1600
Cadmium (Cd) Chrom (Cr) Kupfer (Cu) Nickel (Ni) Quecksilber (Hg) Thallium (Tl) Zink (Zn) PAK aus dem 2:1-Schütteleluat nach DIN 19529: 20 Naphthalin Acenaphthylen Acenaphthen Fluoren Phenanthren Anthracen Fluoranthen Pyren Benzo[a]anthracen Chrysen Benzo[b]fluoranthen Benzo[k]fluoranthen Benzo[a]pyren Indeno[1,2,3-cd]pyren Dibenzo[a,h]anthracen Benzo[ghi]perylen Summe 16 PAK nach EBV: 2021 Summe 15 PAK ohne Naphthalin nach EBV: 2021 1-Methylnaphthalin 2-Methylnaphthalin Summe Naphthalin + Methylnaphthaline nach EBV PCB aus dem 2:1-Schütteleluat nach DIN 19529: 20	рд/I рд/I рд/I рд/I рд/I рд/I рд/I рд/I	51 0,3 8 20 55 < 0,1 < 0,2 202 n.n. n.n. n.n. n.n. n.n.		23 2 10 20 20 0,1 100	35 3 15 30 30 150	90 3 150 110 30	250 10 290 170 150	1600 150 1600
Cadmium (Cd) Chrom (Cr) Kupfer (Cu) Nickel (Ni) Quecksilber (Hg) Thallium (Tl) Zink (Zn) PAK aus dem 2:1-Schütteleluat nach DIN 19529: 20 Naphthalin Acenaphthylen Acenaphthen Fluoren Phenanthren Anthracen Fluoranthen Pyren Benzo[a]anthracen Chrysen Benzo[b]fluoranthen Benzo[k]fluoranthen Benzo[a]pyren Indeno[1,2,3-cd]pyren Dibenzo[a,h]anthracen Benzo[ghi]perylen Summe 16 PAK nach EBV: 2021 Summe 15 PAK ohne Naphthalin nach EBV: 2021 1-Methylnaphthalin Summe Naphthalin + Methylnaphthaline nach EBV	рд/I рд/I рд/I рд/I рд/I рд/I рд/I рд/I	51 0,3 8 20 55 < 0,1 < 0,2 202 n.n. n.n. n.n. n.n. n.n. n.n. n.n.		23 2 10 20 20 0,1 100	35 3 15 30 30 150	90 3 150 110 30	250 10 290 170 150	1600 150 1600
Cadmium (Cd) Chrom (Cr) Kupfer (Cu) Nickel (Ni) Quecksilber (Hg) Thallium (Tl) Zink (Zn) PAK aus dem 2:1-Schütteleluat nach DIN 19529: 20 Naphthalin Acenaphthen Fluoren Phenanthren Anthracen Fluoranthen Pyren Benzo[a]anthracen Chrysen Benzo[b]fluoranthen Benzo[a]pyren Indeno[1,2,3-cd]pyren Dibenzo[a,h]anthracen Benzo[ghi]perylen Summe 16 PAK nach EBV: 2021 Summe 15 PAK ohne Naphthalin nach EBV: 2021 1-Methylnaphthalin 2-Methylnaphthalin Summe Naphthalin + Methylnaphthaline nach EBV PCB aus dem 2:1-Schütteleluat nach DIN 19529: 20 PCB 28	рд/I рд/I рд/I рд/I рд/I рд/I рд/I рд/I	51 0,3 8 20 55 < 0,1 < 0,2 202 n.n. n.n. n.n. n.n. n.n.		23 2 10 20 20 0,1 100	35 3 15 30 30 150	90 3 150 110 30	250 10 290 170 150	1600 150 1600
Cadmium (Cd) Chrom (Cr) Kupfer (Cu) Nickel (Ni) Quecksilber (Hg) Thallium (Tl) Zink (Zn) PAK aus dem 2:1-Schütteleluat nach DIN 19529: 20 Naphthalin Acenaphthylen Acenaphthen Fluoren Phenanthren Anthracen Fluoranthen Pyren Benzo[a]anthracen Chrysen Benzo[b]fluoranthen Benzo[k]fluoranthen Benzo[a,h]anthracen Indeno[1,2,3-cd]pyren Dibenzo[a,h]anthracen Benzo[ghi]perylen Summe 16 PAK nach EBV: 2021 Summe 15 PAK ohne Naphthalin nach EBV: 2021 1-Methylnaphthalin 2-Methylnaphthalin Summe Naphthalin + Methylnaphthaline nach EBV PCB aus dem 2:1-Schütteleluat nach DIN 19529: 20 PCB 28 PCB 52	рд/I рд/I рд/I рд/I рд/I рд/I рд/I рд/I	51 0,3 8 20 55 <0,1 <0,2 202 n.n. n.n. n.n. n.n. n.n.		23 2 10 20 20 0,1 100	35 3 15 30 30 150	90 3 150 110 30	250 10 290 170 150	1600 150 1600
Cadmium (Cd) Chrom (Cr) Kupfer (Cu) Nickel (Ni) Quecksilber (Hg) Thallium (Tl) Zink (Zn) PAK aus dem 2:1-Schütteleluat nach DIN 19529: 20 Naphthalin Acenaphthylen Acenaphthen Fluoren Phenanthren Anthracen Fluoranthen Pyren Benzo[a]anthracen Chrysen Benzo[b]fluoranthen Benzo[k]fluoranthen Benzo[a]pyren Indeno[1,2,3-cd]pyren Dibenzo[a,h]anthracen Benzo[ghi]perylen Summe 16 PAK nach EBV: 2021 Summe 15 PAK ohne Naphthalin nach EBV: 2021 1-Methylnaphthalin Summe Naphthalin + Methylnaphthaline nach EBV PCB aus dem 2:1-Schütteleluat nach DIN 19529: 20 PCB 28 PCB 52 PCB 101 PCB 153 PCB 138	рд/I рд/I рд/I рд/I рд/I рд/I рд/I рд/I	51 0,3 8 20 55 <0,1 <0,2 202 n.n. n.n. n.n. n.n. n.n. n.n. n.n.		23 2 10 20 20 0,1 100	35 3 15 30 30 150	90 3 150 110 30	250 10 290 170 150	1600 150 1600
Cadmium (Cd) Chrom (Cr) Kupfer (Cu) Nickel (Ni) Quecksilber (Hg) Thallium (TI) Zink (Zn) PAK aus dem 2:1-Schütteleluat nach DIN 19529: 20 Naphthalin Acenaphthylen Acenaphthen Fluoren Phenanthren Anthracen Fluoranthen Pyren Benzo[a]anthracen Chrysen Benzo[b]fluoranthen Benzo[a]pyren Indeno[1,2,3-cd]pyren Dibenzo[a,h]anthracen Benzo[ghi]perylen Summe 16 PAK nach EBV: 2021 Summe 15 PAK ohne Naphthalin nach EBV: 2021 1-Methylnaphthalin Summe Naphthalin + Methylnaphthaline nach EBV PCB aus dem 2:1-Schütteleluat nach DIN 19529: 20 PCB 28 PCB 52 PCB 101 PCB 153	рд/I рд/I рд/I рд/I рд/I рд/I рд/I рд/I	51 0,3 8 20 55 <0,1 <0,2 202 n.n. n.n. n.n. n.n. n.n.		23 2 10 20 20 0,1 100	35 3 15 30 30 150	90 3 150 110 30	250 10 290 170 150	1600 150 1600

n.b. : nicht berechenbar n.u. : nicht untersucht Detaillierte Informationen zu den verwendeten Grenz-, Zuordnungs-, Parameter-, Maßnahme- oder Richtwerten sind dem Original-Regelwerk zu entnehmen

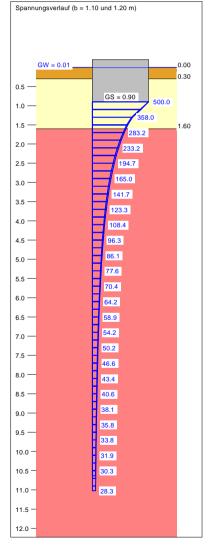
μg/l

(n. b.)


0,01

0,02

0,02


0,02

Summe 7 PCB nach EBV: 2021

a [m]	b [m]	zul s [kN/m²]	zul R [kN/m]	s [cm]	cal j [°]	cal c [kN/m²]	g ₂ [kN/m³]	s ü [kN/m²]	t _g [m]	UK LS [m]	k _s [MN/m³]
30.00	1.10	500.0	550.0	1.60	37.3	7.66	12.57	10.59	10.63	3.20	31.3
30.00	1.11	500.0	555.0	1.61	37.3	7.68	12.57	10.59	10.67	3.23	31.1
30.00	1.12	500.0	560.0	1.62	37.3	7.71	12.58	10.59	10.71	3.25	30.9
30.00	1.13	500.0	565.0	1.63	37.3	7.73	12.58	10.59	10.75	3.27	30.7
30.00	1.14	500.0	570.0	1.64	37.3	7.75	12.58	10.59	10.79	3.29	30.5
30.00	1.15	500.0	575.0	1.65	37.4	7.77	12.59	10.59	10.83	3.31	30.3
30.00	1.16	500.0	580.0	1.66	37.4	7.79	12.59	10.59	10.87	3.33	30.1
30.00	1.17	500.0	585.0	1.67	37.4	7.81	12.59	10.59	10.91	3.36	29.9
30.00	1.18	500.0	590.0	1.68	37.4	7.83	12.60	10.59	10.95	3.38	29.8
30.00	1.19	500.0	595.0	1.69	37.4	7.84	12.60	10.59	10.98	3.40	29.6
30.00	1.20	500.0	600.0	1.70	37.4	7.86	12.60	10.59	11.02	3.42	29.4

zul s = $s_{R,k} / (g_{R,v} \cdot g_{(G,Q)}) = s_{R,k} / (1.40 \cdot 1.39) = s_{R,k} / 1.94$ Verhältnis Veränderliche(Q)/Gesamtlasten(G+Q) [-] = 0.25

IFG Ingenieurbüro

Grundbruch- und Setzungsberechnung für Geotechnik Nach EC7-1, DIN 4017

Projekt-Nr.: I-051-04-24

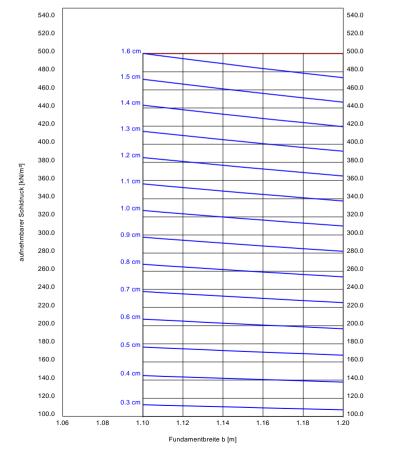
Purschwitzer Straße 13 02625 Bautzen Tel: 03591/6771-30 Fax: 03591/6771-40

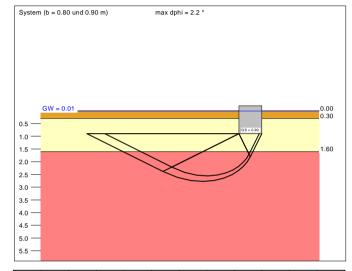
Brücke über die Pulsnitz in Friedersdorf Tragfähigkeit WL West (Bestand)

Berechnungsgrundlagen: Pulsnitz West Norm: EC 7 BS: DIN 1054: BS-P Grundbruchformel nach DIN 4017:2006

Teilsicherheitskonzept (EC 7) Streifenfundament (a = 30.00 m)

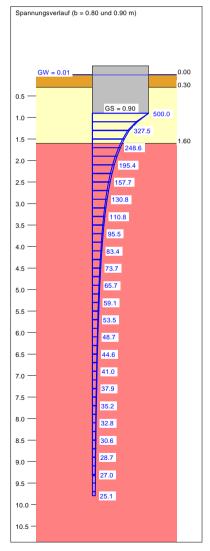
 $g_{R,v} = 1.40$ $g_G = 1.35$ $g_Q = 1.50$


Anteil Veränderliche Lasten = 0.250


 $g_{(G,Q)} = 0.250 \cdot g_Q + (1 - 0.250) \cdot g_G$ $g_{(G,Q)} = 1.388$ zul sigma auf 500.00 kN/m² begrenzt Gründungssohle = 0.90 m

Grundwasser = 0.01 m Grenztiefe mit p = 20.0 %

Grenztiefen spannungsvariabel bestimmt aufnehmbarer Sohldruck


Setzungen

a [m]	b [m]	zul s [kN/m²]	zul R [kN/m]	s [cm]	cal j [°]	cal c [kN/m²]	g ₂ [kN/m³]	s ü [kN/m²]	t _g [m]	UK LS [m]	k _s [MN/m³]
30.00	0.80	500.0	400.0	1.28	37.1	6.75	12.43	10.59	9.33	2.56	39.1
30.00	0.81	500.0	405.0	1.29	37.1	6.79	12.43	10.59	9.38	2.58	38.8
30.00	0.82	500.0	410.0	1.30	37.1	6.83	12.44	10.59	9.43	2.60	38.4
30.00	0.83	500.0	415.0	1.31	37.1	6.87	12.45	10.59	9.47	2.62	38.1
30.00	0.84	500.0	420.0	1.32	37.1	6.91	12.45	10.59	9.52	2.64	37.8
30.00	0.85	500.0	425.0	1.33	37.1	6.95	12.46	10.59	9.57	2.66	37.5
30.00	0.86	500.0	430.0	1.35	37.1	6.98	12.46	10.59	9.61	2.69	37.2
30.00	0.87	500.0	435.0	1.36	37.1	7.02	12.47	10.59	9.66	2.71	36.8
30.00	0.88	500.0	440.0	1.37	37.1	7.06	12.47	10.59	9.70	2.73	36.6
30.00	0.89	500.0	445.0	1.38	37.2	7.09	12.48	10.59	9.75	2.75	36.3
30.00	0.90	500.0	450.0	1.39	37.2	7.12	12.48	10.59	9.79	2.77	36.0

zul s = $s_{R,k} / (g_{R,v} \cdot g_{(G,Q)}) = s_{R,k} / (1.40 \cdot 1.39) = s_{R,k} / 1.94$ Verhältnis Veränderliche(Q)/Gesamtlasten(G+Q) [-] = 0.25

IFG Ingenieurbüro

Grundbruch- und Setzungsberechnung für Geotechnik Nach EC7-1, DIN 4017

Projekt-Nr.: I-051-04-24

Purschwitzer Straße 13 02625 Bautzen Tel: 03591/6771-30 Fax: 03591/6771-40

Brücke über die Pulsnitz in Friedersdorf Tragfähigkeit WL Ost (Bestand)

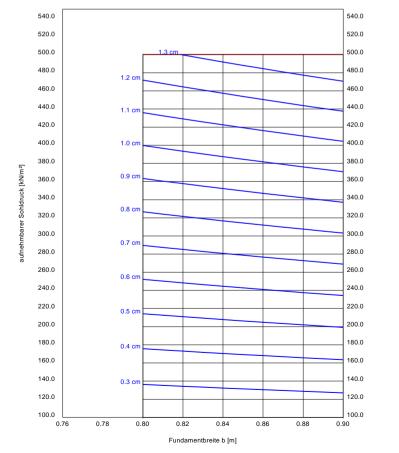
Berechnungsgrundlagen: Pulsnitz West Norm: EC 7 BS: DIN 1054: BS-P

Grundbruchformel nach DIN 4017:2006 Teilsicherheitskonzept (EC 7)

Streifenfundament (a = 30.00 m)

 $g_{R,v} = 1.40$ $g_G = 1.35$ $g_Q = 1.50$

Anteil Veränderliche Lasten = 0.250


 $g_{(G,Q)} = 0.250 \cdot g_Q + (1 - 0.250) \cdot g_G$ $g_{(G,Q)} = 1.388$

zul sigma auf 500.00 kN/m² begrenzt Gründungssohle = 0.90 m

Grundwasser = 0.01 m Grenztiefe mit p = 20.0 %

Grenztiefen spannungsvariabel bestimmt aufnehmbarer Sohldruck

Setzungen

