Ingenieurbüro Schubach

Bauplanung · Bauleitung · Gutachten · Tragwerksplanung

Statische Berechnung

Objekt: Feuerwehrgerätehaus Püchau

Hauptstraße 2 · 04828 Machern OT Püchau

Bauherr: Gemeinde Machern

Schloßplatz 9 · 04827 Machern

Inhalt: Statische Berechnungen zum bestehenden Dachtragwerk

im Blick auf geplante Lasterhöhung durch PV-Anlage

Tel.: 034293 / 5582-70 Fax: 034293 / 5582-79

E-Mail: buero@ib-schubach.de

pdf - Ausfertigung

29.09.2023

IIID-Viewel Velsion 2023 - Copyrigin 2022 - IIID AEC Sonwale

Inhaltsverzeichnis

ТВ	Titelblatt	1
	Inhalt	2
01	Erläuterungsbericht	3
02	Positionsplan (Grundriss)	5
03	Fotos	6
1a	Sparren Hauptdach mit PV	7
1b	Sparren Hauptdach ohne PV	10
2	Sparren über Freisitz+Anbau	13
3a	Gratsparren PV zweiseitig	16
3b	Gratsparren PV nur einseitig	25
4a	Pfette mit PV	34
4b	Pfette ohne PV	36
6	Binder PV dreiseitig	38
6b	Binder PV nur zweiseitig	43

Erläuterungsbericht

Die Gemeinde Machern beabsichtigt, auf dem Zeltdach des Feuerwehrgerätehauses Püchau auf Süd-, Ostund Westseite sowie auf dem östlich angrenzenden Schleppdach eine PV-Anlage installieren zu lassen.

Grundlage: E-Mail Herr Eichholz (EPEG) an Herrn Breske-Zanotello vom 11.4.2023 "Gewicht von PV Anlagen".

Das Gebäude wurde etwa 1997/98 errichtet, die Originalstatik (Architekt + Ingenieur Martin Schlotmann, Gerichshain; undatiert, geprüft 15.7.1997) konnte im LRA / Bauaufsichtsamt eingesehen werden.

Unter Übernahme des statischen Systems der Originalstatik wurden die Positionen 1-4 + 6 neu nach den aktuellen Regelwerken berechnet.

Eine örtliche Überprüfung i.S. einer Plausibilitätsprüfung erfolgte, die Sparrenquerschnitte und -abstände konnten jedoch weitgehend nicht geprüft werden.

In der Berechnung wurde die Lastannahmen für Dachdeckung und <u>Sparren gegenüber der Originalstatik</u> geringfügig reduziert (seinerzeit relativ reichlich angenommen) und auf zwei bzw. drei Dachseiten eine PV-Anlage (0,15 kN/m²) zusätzlich angesetzt.

Die zulässige Durchbiegung aller tragenden Bauteile wurde in der Originalstatik mit I/200 sehr hoch für ein unterseitig verkleidetes Dach angesetzt (so eigentlich nur für untergeordnete, nicht ausgebaute Dächer → Rissgefahr für Gipskartonbekleidung).

Für die beiden quer zu den Fahrzeugen liegenden Brettschichtholzbinder Pos. 6 wird in der Originalstatik die bereits zur Bauzeit nicht mehr genormte Güteklasse 1 angenommen mit einem E-Modul von 11.000 N/mm².

Für die Nachrechnung wird deshalb die BSH-Festigkeitsklasse GL24c mit gleichgroßem E-Modul angesetzt. Ob dies tatsächlich so zum Einsatz kam (oder ein hochwertigeres Material), ist unbekannt und nur u.U. aus evtl. Lieferscheinen o.ä. zu ermitteln

Die (im Positionsplan nicht dargestellten) nichttragenden BSH-Querschnitte in Fahrzeuglängsrichtung sind als Belastung mit angesetzt, analog der Originalstatik jedoch nicht die abgehängten Installationen und Sektionaltore.

Im Ergebnis der Berechnungen ist zusammenfassen festzustellen:

- 1.) Die Sparren sind für die Zusatzbelastung ausreichend dimensioniert, wenn die größere Durchbiegung mit daraus resultierender gewisser Rissgefahr für die unterseitige Bekleidung akzeptiert wird.
- 2.) Die beiden quer zu den Fahrzeugen liegenden Brettschichtholzbinder (Pos. 6a = Haupttragglieder des Zeltdaches) sind rechnerisch durch die geplante dreiseitige PV-Anlage um etwa 6% überlastet. Würde man die PV-Anlage nur auf Ost- und Westseite installieren (Pos. 6b), sind die Brettschichtholzbinder noch immer um 4% überlastet.

In beiden Fällen gilt, dass analog der Originalstatik mit I/200 eigentlich eine etwas zu hohe Durchbiegung zugelassen wird.

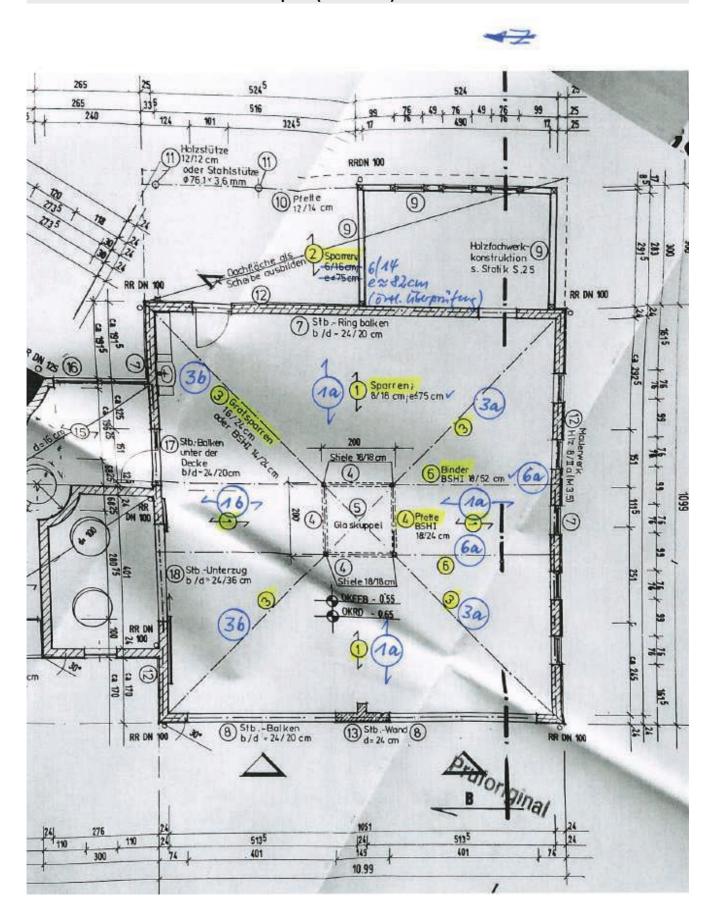
Bewertung:

Die PV-Anlage wird die beiden Binder in Querrichtung über der Fahrzeughalle rechnerisch geringfügig (6%) überlasten.

Dies bedeutet nicht, dass die Standsicherheit akut gefährdet würde, sondern der Sicherheitsabstand zum

Versagensfall etwas reduziert ist.

Da das Haupttragglied sichtbar und frei zugänglich ist, Schäden also für entsprechend sensibilisierte Nutzer rechtzeitig erkennbar wären, wird *nach subjektiver Einschätzung des Berichterstatters* die Zusatzlast durch eine dreiseitige PV-Anlage für vertretbar gehalten, wenn


- sichergestellt ist, dass keine weiteren nennenswerten Zusatzlasten am Tragwerk angehängt werden (z.B. Installationen),
- bei außergewöhnlich hohen Schneelasten das Dach geräumt wird (wenig realistisch wegen der PV-Anlage) oder die beiden Binder (Querträger) vorübergehend mit je einer Behelfsstütze in der Mitte der Fahrzeughalle versehen werden.

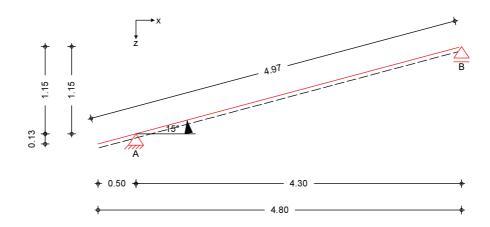
Hinweis: Die rechnerische Überlastung liegt sicherlich maximal in der Größenordnung der Ungenauigkeiten der statischen Berechnung.

Eine Entscheidung kann nur der Eigentümer treffen.

Pos. 02

Positionsplan (Grundriss)

Pos. 03 Fotos


Ansicht von Südwesten

Inneres nach Westen

Sparren Hauptdach mit PV

System M 1:50 1-Feld Sparren mit Kragarm

Abmessungen Mat./Querschnitt	Feld	l [m]	Material	b/h [cm]
	Kl	0.50	NH C24	8.0/18.0
	1	4.30		

Auflager	Lager	x	z	K _{T,z}		K _{T,x}
		[m]	[m]	[kN/m]		[kN/m]
	Α	0.50	0.13	fest		fest
	В	4.80	1.29	fest		frei
	Einschnittti	efe am Auflager		t =	3.0	cm
Dachneigung	Dachneigur	ngswinkel		δ =	15.0	o
Sparrenabstand	Abstand			a =	0.75	m

Belastungen	Belastungen auf das System
- c.astan.8c.	Belastangen dar das system

Grafik Belastungsgrafiken (einwirkungsbezogen)

Einwirkungen	Gk	Qk.S.A	Qk.W.000
	0.10 0.70 1.008 50 4.30	0.68	0.13
	Qk.W.090	Qk.W.180	Qk.W.270
	0.33	0.26	0.33

1.10

Flächenlasten in z-Richtung	Feld	Richt.	Komm.	a [m]	s [m]	q _a [kN/m²]	q _e [kN/m²]
Einw. <i>Gk</i>	KI	vert.DF	Eigengew	0.00	4.80		0.08
	(a) KI	vert.DF	Eindeck.	0.00	4.80		0.70
	1	vert.DF	Ausbau	0.00	4.30		0.25
	Kl	vert.DF	Ausbau	0.00	0.50		0.10
Einw. Qk.S.A	KI	vert.GF	Volllast	0.00	4.80		0.68
Einw. <i>Qk.W.000</i>	Kl	lokal	Ber. G	0.00	1.10		0.13
	1	lokal	Ber. H	0.60	3.70		0.13
Einw. <i>Qk.W.090</i>	Kl	lokal	Ber. I _{links}	0.00	4.80		-0.33
Einw. <i>Qk.W.180</i>	Kl	lokal	Ber. I	0.00	3.70		-0.26
	1	lokal	Ber. J	3.20	1.10		-0.79
Einw. <i>Qk.W.270</i>	Kl	lokal	Ber. I _{links}	0.00	4.80		-0.33
(a)	Dachd	leckung eins	schl. Lattung		.55 =	0.55	kN/m²
	PV-An	lage			.15 =	0.15	kN/m²
					=	0.70	kN/m²

 lokal:
 lokale Belastung orthogonal zur Dachfläche

 vert.DF:
 vertikale Belastung bezogen auf die Dachfläche

 vert.GF:
 vertikale Belastung bezogen auf die Grundfläche

Kombinationen

ständig/vorüberg. quasi-ständig Kombinationsbildung nach DIN EN 1990 Darstellung der maßgebenden Kombinationen

Ek	KLED	Σ (γ*ψ*EW)	
2	ku	1.35*Gk	+1.50*Qk.S.A
29)	1.00*Gk	
ku:	kurz		

Auflagerkräfte

je lfd. m (Windlasten mit cpe,10)

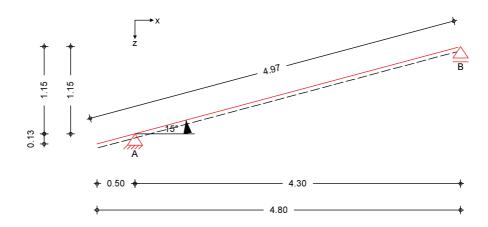
Char. Auflagerkr.

onan Managerian			
	Aufl.	F _{x,k}	$F_{z,k}$
		[kN/m]	[kN/m]
Einw. <i>Gk</i>	Α	0.00	2.78
	В		2.27
Einw. <i>Qk.S.A</i>	A	0.00	1.82
	В		1.44
Einw. <i>Qk.W.000</i>	A	0.17	0.33
	В		0.30
Einw. <i>Qk.W.090</i>	A	-0.42	-0.82
	В		-0.74
Einw. <i>Qk.W.180</i>	A	-0.45	-0.68
	В		-0.99
Einw. <i>Qk.W.270</i>	A	-0.42	-0.82
	В		-0.74

Zusammenfassung

Zusammenfassung der Nachweise

Nachweise (GZT) Nachweise im Grenzzustand der Tragfähigkeit


29.09.2023

	Nachweis Biegung Querkraft	Feld Feld 1 Feld 1	x [m] 2.23 0.00	OK OK	n [-] 0.58 0.29
	Biegung Querkraft	Auflager A Auflager A		OK OK	0.04 0.35
Nachweise (GZG)	Nachweise im Grenzzust. der Gebrauch	stauglichkeit			
	Nachweis	Feld	x [m]		η [-]
	ges. Enddurchbiegung	Feld 1	2.23	OK	0.94

Sparren Hauptdach ohne PV

System M 1:50

1-Feld Sparren mit Kragarm

Abmessungen
Mat./Querschnitt

Feld	I	Material	b/h
	[m]		[cm]
KI	0.50	NH C24	8.0/18.0
1	4 30		

Auflager

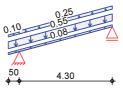
Lager	x [m]	z [m]	K _{T,z} [kN/m]		K _{T,x} [kN/m]
Α	0.50	0.13	fest		fest
В	4.80	1.29	fest		frei
Einschnittti	efe am Auflager		t =	3.0	cm
Dachneigur	ngswinkel		δ =	15.0	۰
Abstand			a =	0.75	m

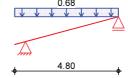
Belastungen

Dachneigung

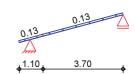
Sparrenabstand

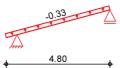
Belastungen auf das System

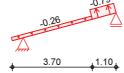

Grafik

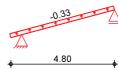

Belastungsgrafiken (einwirkungsbezogen)

Einwirkungen









Qk.S.A

Einw. Qk.S.A Einw. Qk.W.000 Einw. Qk.W.090 Einw. Qk.W.180 Einw. Qk.W.270

(a)

Feld	Richt.	Komm.	а	S	Qa	q _e
			[m]	[m]	$[kN/m^2]$	[kN/m ²]
KI	vert.DF	Eigengew	0.00	4.80		0.08
(a) KI	vert.DF	Eindeck.	0.00	4.80		0.55
1	vert.DF	Ausbau	0.00	4.30		0.25
Kl	vert.DF	Ausbau	0.00	0.50		0.10
Kl	vert.GF	Volllast	0.00	4.80		0.68
KI	lokal	Ber. G	0.00	1.10		0.13
1	lokal	Ber. H	0.60	3.70		0.13
Kl	lokal	Ber. I _{links}	0.00	4.80		-0.33
ΚI	lokal	Ber. I	0.00	3.70		-0.26
1	lokal	Ber. J	3.20	1.10		-0.79
Kl	lokal	Ber. I _{links}	0.00	4.80		-0.33
Dacho	deckung eins	schl. Lattung		.55 =	= 0.5	5 kN/m²
PV-An	nlage			0 =	0.0	0 kN/m ²
·				=	= 0.5	5 kN/m ²

lokal: lokale Belastung orthogonal zur Dachfläche vert.DF: vertikale Belastung bezogen auf die Dachfläche vertikale Belastung bezogen auf die Grundfläche vert.GF:

Kombinationen

Kombinationsbildung nach DIN EN 1990 Darstellung der maßgebenden Kombinationen

ständig/vorüberg.
quasi-ständig

Ek KLED $\Sigma (\gamma^* \psi^* EW)$ 2 1.35*Gk 29 1.00*Gk ku: kurz

۸ . . ۲۱

+1.50*Qk.S.A

Auflagerkräfte

je lfd. m (Windlasten mit cpe,10)

Char. Auflagerkr.

	Autl.	F _{x,k}	F _{z,k}
		[kN/m]	[kN/m]
Einw. <i>Gk</i>	Α	0.00	2.36
	В		1.94
Einw. Qk.S.A	A	0.00	1.82
	В		1.44
Einw. <i>Qk.W.000</i>	A	0.17	0.33
	В		0.30
Einw. <i>Qk.W.090</i>	A	-0.42	-0.82
	В		-0.74
Einw. Qk.W.180	A	-0.45	-0.68
	В		-0.99
Einw. Qk.W.270	A	-0.42	-0.82

[-]

0.80

Zusammenfassung

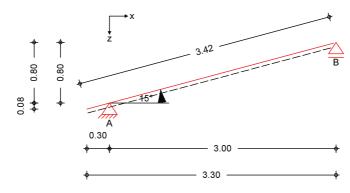
Nachweise (GZT)

Nachweise (GZG)

[m]

2.23 OK

Feld 1

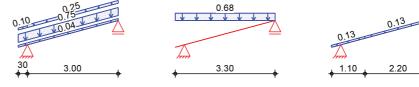

Aufl.	F _{x,k} [kN/m]			F _{z,k} [kN/m]	
В				-0.74	
Zusammenfassung der Nach	hweise				
Nachweise im Grenzzustand	d der Tragfähigkeit				
Nachweis	Feld	x [m]		η [-]	
Biegung	Feld 1	2.23	OK	0.53	
Querkraft	Feld 1	0.00	OK	0.27	
Biegung	Auflager A		OK	0.04	
Querkraft	Auflager A		OK	0.32	
Nachweise im Grenzzust. der Gebrauchstauglichkeit					
Nachweis	Feld	x		η	

ges. Enddurchbiegung

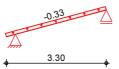
Der Nachweis gelingt mit dem normalen Grenzwert für die Sparrendurchbiegung von I/300 nicht.

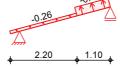
Da es sich jedoch um einen untergeordneten Nebenraum handelt, kann eine **leichte Rissbildung der Dachbekleidung** hingenommen werden. Daher wurde hier die zulässige Durchbiegung auf I/250 gesetzt, die Installation der PV-Anlage wird für verantwortbar gehalten.

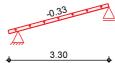
Abmessungen Mat./Querschnitt	Feld	l [m]	Material		b/h [cm]
	KI 1	0.30 3.00	NH C24		6.0/14.0
Auflager	Lager	x [m]	z [m]	K _{T,z} [kN/m]	K _{T,x} [kN/m]


Auflager	Lager	х [m]	z [m]	K _{T,z} [kN/m]		K _{T,x} [kN/m]
	Α	0.30	0.08	fest		fest
	В	3.30	0.88	fest		frei
	Einschnittti	efe am Auflager		t =	3.0	cm
Dachneigung	Dachneigun	gswinkel		δ =	15.0	o
Sparrenabstand	Abstand			a =	0.82	m

Sparrenabstand	Abstand	a	=	0.82	m


Grafik Belastungsgrafiken (einwirkungsbezogen)


Einwirkungen Gk Qk.S.A Qk.W.000


Belastungen auf das System

Belastungen

0.75

kN/m²

Flächenlasten in z-Richtung Einw. <i>Gk</i>
Einw. Qk.S.A Einw. Qk.W.000
Einw. <i>Qk.W.090</i>

Feld	Richt.	Komm.	a [m]	s [m]	q _a [kN/m²]	q _e [kN/m²]
Kl	vert.DF	Eigengew	0.00	3.30		0.04
_(a) KI	vert.DF	Eindeck.	0.00	3.30		0.75
1	vert.DF	Ausbau	0.00	3.00		0.25
Κl	vert.DF	Ausbau	0.00	0.30		0.10
KI	vert.GF	Volllast	0.00	3.30		0.68
Kl	lokal	Ber. G	0.00	1.10		0.13
1	lokal	Ber. H	0.80	2.20		0.13
Kl	lokal	Ber. I _{links}	0.00	3.30		-0.33
KI	lokal	Ber. I	0.00	2.20		-0.26
1	lokal	Ber. J	1.90	1.10		-0.83
KI	lokal	Ber. I _{links}	0.00	3.30		-0.33
Dacho	deckung eins	chl. Lattung		.60 =	0.60	kN/m²
PV-Ar	nlage	-		.15 =	0.15	kN/m²

(a)

Einw. Qk.W.180

Einw. Qk.W.270

lokal: lokale Belastung orthogonal zur Dachfläche vert.DF: vertikale Belastung bezogen auf die Dachfläche vert.GF: vertikale Belastung bezogen auf die Grundfläche

Kombinationen

Kombinationsbildung nach DIN EN 1990 Darstellung der maßgebenden Kombinationen

ständig/vorüberg. quasi-ständig

Ek	KLED	Σ (γ*ψ*EW)	
2	ku	1.35*Gk	+1.50*Qk.S.A
29		1.00*Gk	
ku:	kurz		

Auflagerkräfte

je lfd. m (Windlasten mit cpe,10)

Char. Auflagerkr.

	Aufl.	$F_{x,k}$	$F_{z,k}$
		[kN/m]	[kN/m]
Einw. <i>Gk</i>	Α	0.00	1.91
	В		1.61
Einw. Qk.S.A	A	0.00	1.23
	В		1.01
Einw. <i>Qk.W.000</i>	Α	0.11	0.22
	В		0.21
Einw. <i>Qk.W.090</i>	Α	-0.29	-0.56
	В		-0.52
Einw. <i>Qk.W.180</i>	Α	-0.34	-0.50
	В		-0.79
Einw. <i>Qk.W.270</i>	A	-0.29	-0.56

Zusammenfassung	Aufl. B Zusammenfassung der Nachweise				F _{z,k} [kN/m] -0.52
Nachweise (GZT)	Nachweise im Grenzzustand der Tr	ragfähigkeit			
	Nachweis	Feld	x [m]		η [-]
	Biegung Querkraft	Feld 1 Feld 1	1.55 0.00	OK OK	0.69 0.38
	Biegung	Auflager A	0.00	OK	0.04
	Querkraft	Auflager A		OK	0.49
Nachweise (GZG)	Nachweise im Grenzzust. der Gebr	auchstauglichkeit			
	Nachweis	Feld	x [m]		η [-]
	ges. Enddurchbiegung	Feld 1	1.56	ОК	0.94

Pos. 3a

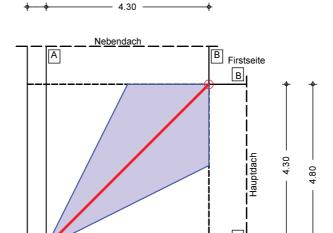
Gratsparren PV zweiseitig

Die Abmessung des Gratsparrens konnte nur der Originalstatik entnommen werden, eine Überprüfung am Bau (= Konstruktionsöffnung) erfolgte nicht.

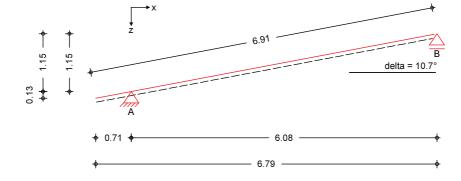
Ob die Gratsparren in Vollholz (Pos. 3a) oder Brettschichtholz (Pos. 3b) ausgeführt sind, ist nicht bekannt.

Für die Gratsparren muss die zulässige Durchbiegung auf I/200 (statt I/300) gesetzt werden, damit der Nachweis gelingt.

Dies kann Risse in der unterseitigen Gipskartonbekleidung zur Folge haben, ist ansonsten jedoch akzeptabel.

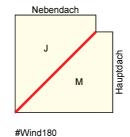

Hinweis: Bereits in der Originalstatik wird für Pos. 2 nur eine Durchbiegungsbegrenzung von I/200 angesetzt und wurde vom Prüfstatiker akzeptiert.

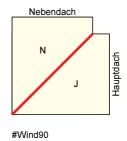
4.80 -


System M 1:100

1-Feld Gratsparren mit Kragarm

0.50




Gebäudeabmessungen	Geländehöhe über Meeresniveau				Α	=	100.00	m	
	Ort		Form	1	Breite [m]		Länge [m]		Höhe [m]
	•	ach (HD)	Satteld.		10.00		10.00)	6.00
	Nebend	ach (ND)	Satteld.		10.00		11.00)	-
Dachgeometrie	Ort				δ		ŀ)	I
				[°]		[m]		[m]	
	Hauptda				15.00		1.15		4.97
	Nebend				15.00		1.15		4.97
	Gratsparren				10.73		1.15	•	6.91
	Traufenwinkel					Θ	=	90.00	o
Stützweiten	Ort			Haup	tdach	Nebe	endach	1	Sparren
					[m]		[m]		[m]
	Kragarm unten				0.50		0.50)	0.71
	Feld 1				4.30		4.30)	6.08
Auflager	Lager	Ort	vert.	=	horiz.	_	Kı	-	Höhe
	_			[kN/m]		[[kN/m]		[m]
	Α	HD/ND	starr	-	starr			-	0.00
	В	HD/ND	starr	-	-		•	-	1.15
	Nutzung	gsklasse 1							
Baustoff	Nadelho	olz C24							
Querschnitt	Sparren					b/h	=	16/24	cm

Belastungen

Windbereiche M 1:225

Sparren

kN/m²

kN/m²

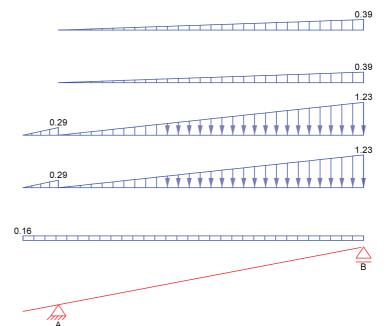
0.08

0.78

Einwirkung Gk
Zusammenstellung
Gk· ø

Zusammenstel	llun
Gk: g	

Dachdeckung einschl. Lattung	.55 =	0.55	kN/m²
PV-Anlage	.15 =	0.15	kN/m²
Sparren	.08 =	0.08	kN/m^2
	=	0.78	kN/m²
Dachdeckung einschl. Lattung	.55 =	0.55	kN/m²
PV-Anlage	.15 =	0.15	kN/m²

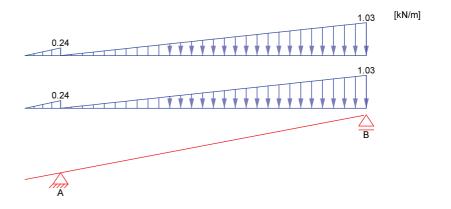

Gk: g

Feld	gк,но [kN/m²]	g _{k,ND} [kN/m²]	gk,i,HD [kN/m²]	g _{k,i,ND} [kN/m²]
Kragarm unten	0.78	0.78	-	-
Feld 1	0.78	0.78	0.25	0.25

.08 =

Lastart	Dach	Richtung	a [m]	s [m]	qa [kN/m]	qe [kN/m]	F [kN]
Gleich	Sp	vert.			0.16		
Trapez	HD	vert.	-0.71	0.71	0.00	0.29	
Trapez	HD	vert.	0.00	6.08	0.00	1.23	
Trapez	ND	vert.	-0.71	0.71	0.00	0.29	
Trapez	ND	vert.	0.00	6.08	0.00	1.23	
Trapez	HD	vert.	0.00	6.08	0.00	0.39	
Trapez	ND	vert.	0.00	6.08	0.00	0.39	

[kN/m]


Einwirkung Qk.S.A Schneelast

nach DIN EN 1991-1-3:2010-12

Schneelastzone 2

Schneefanggitter vorhanden

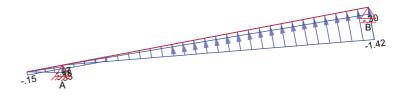
Lastart	Dach	Richtung	a [m]	s [m]	qa [kN/m]	qe [kN/m]	F [kN]
				[]		[KI4/III]	[IXI4]
Trapez	HD	vert.	-0.71	0.71	0.00	0.24	
Trapez	HD	vert.	0.00	6.08	0.00	1.03	
Trapez	ND	vert.	-0.71	0.71	0.00	0.24	
Trapez	ND	vert.	0.00	6.08	0.00	1.03	

Einwirkung Qk.W.000 Windlast

nach DIN EN 1991-1-4:2010-12

Windzone 2, Binnenland vereinfachtes Verfahren

Geschwindigkeitsdruck Anströmrichtung $q = 0.65 \text{ kN/m}^2$ $\theta = 0.00$


Bereich		e/10 _{HD} [m]	l _{HD} [m]	e/10 _{ND} [m]	l _{ND} [m]
D	Unterwind (UW)		0.50		0.50
F		1.00		1.10	

Bereich		ср _{е,НD}	W _{e,HD} [kN/m²]	Cp _{e,ND}	W _{e,ND} [kN/m²]
D	UW	0.75	0.49	0.75	0.49
F		-	-	-0.90	-0.59
L/H		-1.40	-0.91	-0.30	-0.20

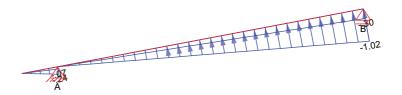
Lastart	Dach	Richtung	а	S	Q a	Q e	F
			[m]	[m]	[kN/m]	[kN/m]	[kN]
Trapez	HD	lokal	-0.71	0.71	0.00	-0.33	
Trapez	HD	lokal	0.00	6.08	0.00	-1.42	
Trapez	ND	lokal	-0.71	0.71	0.00	-0.07	
Trapez	ND	lokal	0.00	6.08	0.00	-0.30	
Block	ND	lokal	-0.71	0.71	-0.15		

Lastart	Dach	Richtung	а	s	Q a	Q e	F
			[m]	[m]	[kN/m]	[kN/m]	[kN]
Block	ND	lokal	0.00	0.85	-0.18		

[kN/m]

Einwirkung Qk.W.090

Anströmrichtung


 $\theta = 90.00$

Bereich		cp e,HD	W _{e,HD} [kN/m²]			cp _{e,ND}	$W_{e,ND}$ [kN/m ²]
J/N		-1.00	-0.65			-0.30	-0.20
Lastart	Dach	Richtung	а	s	Q a	Q e	F
			r1	[]	Flakt /mall	[[.81/1	F1.617
			[m]	[m]	[kN/m]	[kN/m]	[kN]
Trapez	HD	lokal	-0.71	0.71	0.00	-0.24	[KN]
Trapez Trapez	HD HD	lokal lokal		• •			[KN]
•			-0.71	0.71	0.00	-0.24	[KN]

[kN/m]

 I_{ND}

-0.65

Einwirkung Qk.W.180

Anströmrichtung

Bereich

M/J

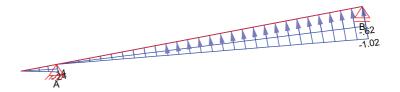
 $\theta = 180.00$

 I_{HD}

 $e/10_{ND}$

-1.00

			[m]	[m]	[m]	[m]
D	Unt	erwind (UW)	0.50		0.50
Bereich		cp e,HD	W _{e,HD} [kN/m²]		cp _{e,ND}	W _{e,ND} [kN/m²]
D	UW	0.75	0.49		0.75	0.49


-0.39

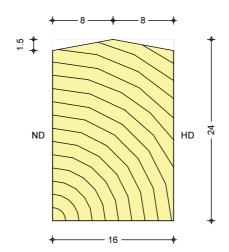
e/10_{HD}

-0.60

Lastart	Dach	Richtung	а	s	Q a	Q e	F
			[m]	[m]	[kN/m]	[kN/m]	[kN]
Trapez	HD	lokal	-0.71	0.71	0.00	-0.14	
Trapez	HD	lokal	0.00	6.08	0.00	-0.62	
Trapez	ND	lokal	-0.71	0.71	0.00	-0.24	
Trapez	ND	lokal	0.00	6.08	0.00	-1.02	

[kN/m]

Kombinationen


Kombinationsbildung nach DIN EN 1990 Darstellung der maßgebenden Kombinationen

	Ek	KLED	Σ (γ*ψ*EW)	
ständig/vorüberg.	2	ku	1.35*Gk	+1.50*Qk.S.A
quasi-ständig	23		1.00*Gk	
	ku:	kurz		

Bemessung (GZT) nach DIN EN 1995-1-1

Demessung (GZ1)	Hach Dily Liv 1995-1-1				
Baustoff	Nadelholz C24				
	Verformungsbeiwert	k_{def}	=	0.60	-
	char. Biegefestigkeit	$f_{m,y,k}$	=	24.00	N/mm ²
	char. Druckfestigkeit	$f_{c,0,k}$		21.00	N/mm ²
	char. Druckfestigkeit⊥	f _{c,90,k}	=	2.50	N/mm ²
	char. Zugfestigkeit	$f_{t,0,k}$	=	14.50	N/mm ²
	char. Schubfestigkeit	$f_{v,k}$	=	4.00	N/mm ²
	Rissfaktor für Schubfestigkeit	k_{cr}	=	0.50	-
	mittl. Elastizitätsmodul	$E_{0,mean}$	=	11000	N/mm ²
	char. Elastizitätsmodul	E _{0,05}	=	7400	N/mm ²
	mittl. Schubmodul	G_{mean}	=	690	N/mm ²
	char. Schubmodul	G ₀₅	=	460	N/mm ²
	Teilsicherheitsbeiwert	γм	=	1.30	-
gewählt	Sparren	b/h	=	16/24	cm

M 1:5

Quersc	hnittsv	verte

	t [cm]	A/A _n [cm²]	Wy/Wy,n [cm³]	l _y [cm ⁴]	iy [cm]
Feld	-	372.09	1358.58	16803.44	6.72
Aufl. A-B	3.0	324.09	1022.33	_	_

Knickwerte

Feld	lef,y	λ _y	λ rel,c,y	k c,y
	[m]	[-]	[-]	[-]
KrUn	1.44	21.42	0.3632	0.9857
1	6.19	92.10	1.5617	0.3534

Nachweise (GZT)

Nachweise im Grenzzustand der Tragfähigkeit nach DIN EN 1995-1-1

Nachweise der Querschnittstragfähigkeit

Feld

Biegung	una	Zug
---------	-----	-----

	für Ek 2 (KLED kurz)	k_{mod}	=	0.90	-
	maßgebende Stelle	Х	=	3.57	m
	Normalkraft	$N_{t,0,d}$	=	0.01	kN
	Biegemoment	$M_{y,d}$	=	18.66	kNm
	Zugspannung	$\sigma_{t,0,d}$	=	0.00	N/mm ²
	Biegespannung	$\sigma_{\text{m,y,d}}$	=	13.74	N/mm ²
	Zugfestigkeit	$f_{t,0,d}$	=	10.04	N/mm ²
	Biegefestigkeit	$f_{m,y,d}$	=	16.62	N/mm ²
(6.17)	0.00 / 10.04 + 13.74 / 16.62		=	0.83	≤ 1

Schub aus Querkraft

	für Ek 2 (KLED kurz)	k_{mod}	=	0.90	-
	maßgebende Stelle	х	=	6.19	m
	Querkraft	$V_{z,d}$	=	-15.53	kN
	Schubspannung	$\tau_{z,d}$	=	1.25	N/mm ²
	Schubfestigkeit	$f_{v,d}$	=	2.77	N/mm ²
(6.13)	1.25 / 2.77		=	0.45	≤ 1

7.06

Auflager A		geschwächter	Querschnitt (K	erve)					
Biegung und Zug		für Ek 2 (KLED	kurz)			k_{mod}	=	0.90	_
		Normalkraft	,			$N_{t,0,d}$	=	0.13	kN
		Biegemoment				$M_{y,d}$	=	-0.18	kNm
		Zugspannung				$\sigma_{t,0,d}$	=	0.00	N/mm ²
		Biegespannun	g			$\sigma_{m,y,d}$	=	0.18	N/mm ²
		Zugfestigkeit				$f_{t,0,d}$	=	10.04	N/mm ²
		Biegefestigkei	t			$f_{m,y,d}$	=	16.62	N/mm ²
	(6.17)		0.18 / 16.62			,,,=	=	0.01	≤ 1
Biegung und Druck		für Ek 2 (KLED	kurz)			k_{mod}	=	0.90	-
		Normalkraft	,			$N_{c,0,d}$	=	-1.54	kN
		Biegemoment				$M_{y,d}$	=	-0.18	kNm
		Druckspannur				$\sigma_{c,0,d}$	=	0.05	N/mm ²
		Biegespannun	-			$\sigma_{m,y,d}$	=	0.18	N/mm ²
		Druckfestigkei	~			f _{c,0,d}	=	14.54	N/mm²
		Biegefestigkei				$f_{m,y,d}$	=	16.62	N/mm ²
	(6.19)		k) ² + 0.18 / 16.	.62		-111, y, u	=	0.01	≤ 1
Schub aus Querkraft		für Ek 2 (KLED	kurz)			k_{mod}	=	0.90	_
Jonas aus Querman		Querkraft	KG12)			$V_{z,d}$	=	8.14	kN
		Schubspannur	ng			$\tau_{z,d}$	=	0.75	N/mm²
		Schubfestigke				f _{v,d}	=	2.77	N/mm ²
	(6.13)					·v,u	=	0.27	≤ 1
		Nachweise de	r Stabilität mit	Ersatzstak	overfahren	ı			
Biegung und Druck		für Ek 2 (KLED	kurz)			k_{mod}	_	0.90	_
blegarig and brack		maßgebende S	-			X	=	3.53	m
		Normalkraft	stelle			$N_{c,0,d}$	=	-0.02	kN
		Biegemoment				$M_{y,d}$	=	18.66	kNm
		Druckspannur				$\sigma_{c,0,d}$	=	0.00	N/mm ²
		Biegespannun	_			$\sigma_{m,y,d}$		13.74	N/mm ²
		Druckfestigkei				$f_{c,0,d}$	=	14.54	N/mm ²
		Biegefestigkei				f _{m,y,d}	=	16.62	N/mm ²
	(6.23)		1.54) + 13.74 / :	16 62		ım,y,a	_	0.83	
Nachweise (GZG)	(3.23)	Nachweise im	Grenzzustand	der Gebra	_		ach		
Grenzwerte Verform.		Durchhana	Channan			C.		1/200	
Grenzwerte verform.		Durchhang Sp Kragarm	Sparren			C _d C _d		l/200 l/100	-
		GI.		Ek	X []	vorh v		zul w	η
		\\\	Feld	23	[m] 3.21	[mm 28.3	_	[mm] 30.95	[-] 0.92
Auflagerkräfte		W _{net} ,fin	reiu	23	3.21	20.5	,	30.93	0.52
Char. Auflagerkr.									
Chai. Adhagetti.		Aufl.			F _{x,k}				F _{z,k}
					[kN]				[kN]
Einw. <i>Gk</i>		A			0.00				4.12
		_			-				7.00

В

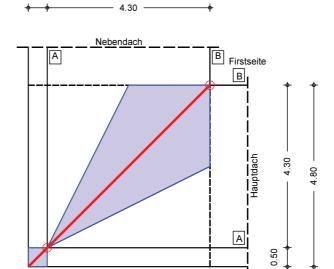
	Aufl.	F _{x,k} [kN]			F _{z,k} [kN]
Einw. Qk.S.A	A	0.00			2.27
	В				4.18
Einw. <i>Qk.W.000</i>	Α	-1.07			-2.02
	В				-3.62
Einw. <i>Qk.W.090</i>	Α	-0.78			-1.35
	В				-2.76
Einw. <i>Qk.W.180</i>	A	-0.97			-1.68
	В				-3.42
Zusammenfassung	Zusammenfassung der Nachweise	9			
Nachweise (GZT)	Nachweise im Grenzzustand der	Tragfähigkeit			
	Nachweis	Feld	x [m]		ղ [-]
	Biegung	Feld	3.53	OK	0.83
	Querkraft	Feld	6.19	OK	0.45
Nachweise (GZG)	Nachweise im Grenzzust. der Geb	orauchstauglichkeit			
	Nachweis	Feld	x [m]		ր [-]
	Durchhang	Feld	3.21	OK	0.92

Pos. 3b Gratsparren PV nur einseitig

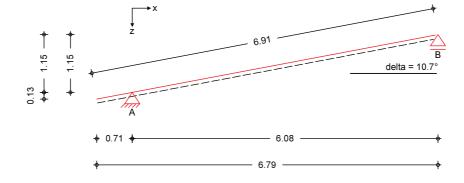
Die Abmessung des Gratsparrens konnte nur der Originalstatik entnommen werden, eine Überprüfung am Bau (= Konstruktionsöffnung) erfolgte nicht.

Ob die Gratsparren in Vollholz (Pos. 3a) oder Brettschichtholz (Pos. 3b) ausgeführt sind, ist nicht bekannt.

Für die Gratsparren muss die zulässige Durchbiegung auf I/200 (statt I/300) gesetzt werden, damit der Nachweis gelingt.

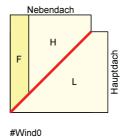

Dies kann Risse in der unterseitigen Gipskartonbekleidung zur Folge haben, ist ansonsten jedoch akzeptabel.

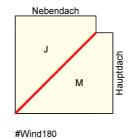
Hinweis: Bereits in der Originalstatik wird für Pos. 2 nur eine Durchbiegungsbegrenzung von I/200 angesetzt und wurde vom Prüfstatiker akzeptiert.

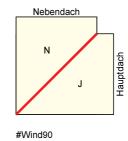

4.80 -

System M 1:100 1-Feld Gratsparren mit Kragarm

0.50


M 1:75




Gebäudeabmessungen	Gelände	höhe über	Meeresnivea	u		Α	=	100.00	m
	Ort		Form	E	Breite [m]		Länge [m		Höhe [m]
	Hauptda Nebend	ach (HD) ach (ND)	Satteld. Satteld.		10.00 10.00		10.00 11.00)	6.00
Dachgeometrie	Ort				δ		, I		. !
	Hauptda Nebend Gratspa	ach			[°] 15.00 15.00 10.73		[m 1.15 1.15 1.15	5	[m] 4.97 4.97 6.91
	Traufen	winkel				Θ	=	90.00	۰
Stützweiten	Ort			Haup	tdach [m]	Nebe	ndacl [m		Sparren [m]
	Kragarm Feld 1	unten			0.50 4.30		0.50 4.30		0.71 6.08
Auflager	Lager	Ort	vert.	Κ _ν [kN/m]	horiz.	[K kN/m		Höhe [m]
	A B	HD/ND HD/ND	starr starr	-	starr -			-	0.00 1.15
	Nutzung	sklasse 1							
Baustoff	Nadelho	olz C24							
Querschnitt	Sparren					b/h	=	16/24	cm

Belastungen

Windbereiche M 1:225

Sparren

kN/m²

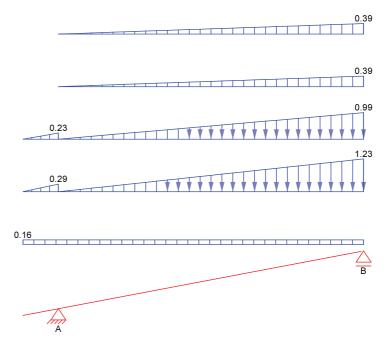
kN/m²

0.08

0.63

Einwirkung Gk
Zusammenstellung
Gk: g

Dachdeckung einschl. Lattung	.55 =	0.55	kN/m²
PV-Anlage	.15 =	0.15	kN/m²
Sparren	.08 =	0.08	kN/m²
	=	0.78	kN/m²
Dachdeckung einschl. Lattung	.55 =	0.55	kN/m²
PV-Anlage	0 =	0.00	kN/m²

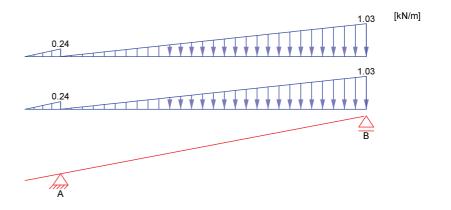

Gk: g

Feld	g _{k,но} [kN/m²]	g _{k,ND} [kN/m²]	g _{k,i,HD} [kN/m²]	g _{k,i,ND} [kN/m²]
Kragarm unten	0.78	0.63	-	-
Feld 1	0.78	0.63	0.25	0.25

.08 =

Lastart	Dach	Richtung	a [m]	s [m]	qa [kN/m]	qe [kN/m]	F [kN]
Gleich	Sp	vert.			0.16		
Trapez	HD	vert.	-0.71	0.71	0.00	0.29	
Trapez	HD	vert.	0.00	6.08	0.00	1.23	
Trapez	ND	vert.	-0.71	0.71	0.00	0.23	
Trapez	ND	vert.	0.00	6.08	0.00	0.99	
Trapez	HD	vert.	0.00	6.08	0.00	0.39	
Trapez	ND	vert.	0.00	6.08	0.00	0.39	

[kN/m]


Einwirkung Qk.S.A Schneelast

nach DIN EN 1991-1-3:2010-12

Schneelastzone 2

Schneefanggitter vorhanden

Lastart	Dach	Richtung	а	s	Q a	Q e	F
			[m]	[m]	[kN/m]	[kN/m]	[kN]
Trapez	HD	vert.	-0.71	0.71	0.00	0.24	
Trapez	HD	vert.	0.00	6.08	0.00	1.03	
Trapez	ND	vert.	-0.71	0.71	0.00	0.24	
Trapez	ND	vert.	0.00	6.08	0.00	1.03	

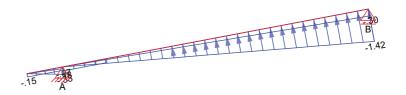
Einwirkung Qk.W.000 Windlast

nach DIN EN 1991-1-4:2010-12

Windzone 2, Binnenland vereinfachtes Verfahren Geschwindigkeitsdruck

Anströmrichtung

 $q = 0.65 \text{ kN/m}^2$ $\theta = 0.00 ^{\circ}$


Bereich		e/10 _{HD} [m]	I _{НD} [m]	e/10 _{ND} [m]	l _{ND} [m]
D	Unterwind (UW)		0.50		0.50
F		1.00		1.10	

Bereich		ср _{е,НD}	W _{e,HD} [kN/m²]	cp _{e,ND}	w _{e,ND} [kN/m²]
D	UW	0.75	0.49	0.75	0.49
F		-	-	-0.90	-0.59
L/H		-1.40	-0.91	-0.30	-0.20

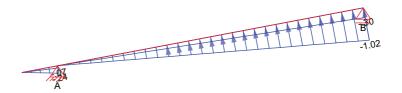
Lastart	Dach	Richtung	a [m]	s [m]	qa [kN/m]	qe [kN/m]	F [kN]
Trapez	HD	lokal	-0.71	0.71	0.00	-0.33	
Trapez	HD	lokal	0.00	6.08	0.00	-1.42	
Trapez	ND	lokal	-0.71	0.71	0.00	-0.07	
Trapez	ND	lokal	0.00	6.08	0.00	-0.30	
Block	ND	lokal	-0.71	0.71	-0.15		

Lastart	Dach	Richtung	a	s	Q a	Q e	F
			[m]	[m]	[kN/m]	[kN/m]	[kN]
Block	ND	lokal	0.00	0.85	-0.18		

[kN/m]

Einwirkung Qk.W.090

Anströmrichtung


 $\theta = 90.00$

Bereich		cp e,HD	W _{e,HD} [kN/m²]			cp _{e,ND}	W _{e,ND} [kN/m²]
J/N		-1.00	-0.65			-0.30	-0.20
Lastart	Dach	Richtung	а	s	Q a	Q e	F
			[m]	[m]	[kN/m]	[kN/m]	[kN]
Trapez	HD	lokal	[m] -0.71	[m] 0.71	[kN/m] 0.00	[kN/m] -0.24	[kN]
Trapez Trapez	HD HD	lokal lokal		• •			[kN]
•			-0.71	0.71	0.00	-0.24	[kN]

[kN/m]

 I_{ND}

[m]

Einwirkung Qk.W.180

Anströmrichtung

Bereich

 $\theta = 180.00$

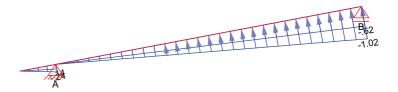
 I_{HD}

[m]

e/10_{ND}

[m]

D	Unt	erwind (UW)	0.50		0.50
Bereich		cp _{e,HD}	W _{e,HD} [kN/m²]		cp _{e,ND}	W _{e,ND} [kN/m²]
D	UW	0.75	0.49		0.75	0.49
M/J		-0.60	-0.39		-1.00	-0.65


e/10_{HD}

[m]

mb BauStatik S120.de 2023.014 29.09.2023

Lastart	Dach	Richtung	а	s	Q a	Q e	F
			[m]	[m]	[kN/m]	[kN/m]	[kN]
Trapez	HD	lokal	-0.71	0.71	0.00	-0.14	
Trapez	HD	lokal	0.00	6.08	0.00	-0.62	
Trapez	ND	lokal	-0.71	0.71	0.00	-0.24	
Trapez	ND	lokal	0.00	6.08	0.00	-1.02	

[kN/m]

Kombinationen

Kombinationsbildung nach DIN EN 1990 Darstellung der maßgebenden Kombinationen

	Ek	KLED	Σ (γ*ψ*EW)	
ständig/vorüberg.	2	ku	1.35*Gk	+1.50*Qk.S.A
quasi-ständig	23		1.00*Gk	
	ku:	kurz		

Bemessung (GZT) nach DIN EN 1995-1-1

beillessung (GZ1)	Hach bill Liv 1999-1-1				
Baustoff	Nadelholz C24				
	Verformungsbeiwert	k_{def}	=	0.60	-
	char. Biegefestigkeit	$f_{m,y,k}$	=	24.00	N/mm ²
	char. Druckfestigkeit	$f_{c,0,k}$	=	21.00	N/mm ²
	char. Druckfestigkeit⊥	f _{c,90,k}	=	2.50	N/mm ²
	char. Zugfestigkeit	$f_{t,0,k}$	=	14.50	N/mm ²
	char. Schubfestigkeit	$f_{v,k}$	=	4.00	N/mm ²
	Rissfaktor für Schubfestigkeit	k_{cr}	=	0.50	-
	mittl. Elastizitätsmodul	$E_{0,mean}$	=	11000	N/mm ²
	char. Elastizitätsmodul	E _{0,05}	=	7400	N/mm ²
	mittl. Schubmodul	G_{mean}	=	690	N/mm ²
	char. Schubmodul	G ₀₅		460	N/mm ²
	Teilsicherheitsbeiwert	γм	=	1.30	-
gewählt	Sparren	b/h	=	16/24	cm

M 1:5

Quer	rschn	ittsw	/erte

	t [cm]	A/A _n [cm²]	Wy/Wy,n [cm ³]	l _y [cm ⁴]	i _y [cm]
Feld	-	372.09	1358.58	16803.44	6.72
Aufl. A-B	3.0	324.09	1022.33	_	-

Knickwerte

Feld	lef,y	λγ	$oldsymbol{\lambda}$ rel,c,y	kc,y
	[m]	[-]	[-]	[-]
KrUn	1.44	21.42	0.3632	0.9857
1	6.19	92.10	1.5617	0.3534

Nachweise (GZT)

Nachweise im Grenzzustand der Tragfähigkeit nach DIN EN 1995-1-1

Nachweise der Querschnittstragfähigkeit

Feld

Biegung und Zug	für Ek 2 (KLED kurz)	k_{mod}	=	0.90	-
	maßgebende Stelle	X	=	3.57	m
	Normalkraft	$N_{t,0,d}$	=	0.01	kN
	Biegemoment	$M_{y,d}$	=	17.91	kNm
	Zugspannung	$\sigma_{t,0,d}$	=	0.00	N/mm ²
	Biegespannung	$\sigma_{m,\gamma,d}$	=	13.18	N/mm ²
	Zugfestigkeit	$f_{t,0,d}$	=	10.04	N/mm ²
	Biegefestigkeit	$f_{m,y,d}$	=	16.62	N/mm ²
	(6.17) 0.00 / 10.04 + 13.18 / 16.62		=	0.79	≤ 1

Schub aus Querkraft

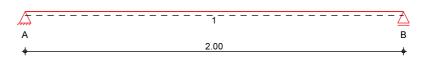
	für Ek 2 (KLED kurz)	k_{mod}	=	0.90	-
	maßgebende Stelle	Х	=	6.19	m
	Querkraft	$V_{z,d}$	=	-14.89	kN
	Schubspannung	$\tau_{z,d}$	=	1.20	N/mm ²
	Schubfestigkeit	$f_{v,d}$	=	2.77	N/mm ²
(6.13)	1.20 / 2.77		=	0.43	≤ 1

Biegung und Zug	Auflager A		geschwächter	Querschnitt (I	Kerve)					
Normalkraft No.0	Biegung und Zug		für Ek 2 (KLED	kurz)			k_{mod}	=	0.90	-
Biegemoment			· · · · · · · · · · · · · · · · · · ·	,				=		kN
Sugspannung								=		
Biegespannung			_							
Machine Mach				g						
Biegefestigkeit				0						
Biegung und Druck Für Ek 2 (KLED kurz) kmod = 0.90 - Normalkraft Nc.0.d = -1.48 kN Normalkraft Nc.0.d = -1.48 kN Normalkraft Nc.0.d = -1.48 kN Normalkraft Nc.0.d = -0.17 kNmm Druckspannung Orc.0.d = 0.014 Nymm² Normalkraft Nymd = -0.17 kNmm² Normalkraft Nymd² Nymm² Nymm				t						
Normalkraft Nc,0,d = -1.48 kN Normalkraft Nc,0,d = -0.17 kNm Normalkraft Nc,0,d = -0.01 kNm Normalkraft Nc,0,d = -0.02 kNm Normalkraft		(6.17)			2		• пп, у, а			
Normalkraft Nc,0,d = -1.48 kN Normalkraft Nc,0,d = -0.17 kNm Normalkraft Nc,0,d = -0.01 kNm Normalkraft Nc,0,d = -0.02 kNm Normalkraft										
Biegemoment	Biegung und Druck			kurz)				=		-
Druckspannung Biegespannung Biegespann								=		
Biegespannung			_				$M_{y,d}$	=		
			Druckspannur	ng			$\sigma_{\text{c,0,d}}$	=		
Biegefestigkeit							$\sigma_{\text{m,y,d}}$	=	0.17	
Co.19 Co.04 14.54)² + 0.17 16.62			_				$f_{c,0,d}$	=	14.54	
Schub aus Querkraft Querkraft Querkraft Querkraft Vz,d = 7.82 kN Schubspannung Tz,d = 0.72 kNmm² Schubfestigkeit fv,d = 2.77 kNmm² Schubfestigkeit fv,d = 2.77 kNmm² Nachweise der Stabilität mit Ersatzstabverfahren Biegung und Druck Für Ek 2 (KLED kurz) kmod = 0.90 maßgebende Stelle x = 3.53 mm Normalkraft Nc,0.d = 0.02 kN Biegemoment Nm,d = 17.91 kNmm² Normalkraft Nc,0.d = 0.00 kNmm² Normalkraft Nc,0.d = 0.00 kNmm² Normalkraft Nc,0.d = 13.18 kNmm² Normalkraft No			Biegefestigkei	t			$f_{m,y,d}$	=	16.62	N/mm ²
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		(6.19)	(0.04 / 14.54	$(1)^2 + 0.17 / 16$	5.62			=	0.01	≤ 1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Schub aus Querkraft		für Ek 2 (KLED	kurz)			kmod	=	0.90	-
Schubspannung Schubspannung Schubfestigkeit Schubfestigke	•		· · · · · · · · · · · · · · · · · · ·	,				=		kN
Schubfestigkeit ft_,d = 2.77 N/mm²			-	าย						
Nachweise der Stabilität mit Ersatzstabverfahren Biegung und Druck Für Ek 2 (KLED kurz) kmod = 0.90 - maßgebende Stelle x = 3.53 m Normalkraft Nc,0,d = -0.02 kN Biegemoment My,d = 17.91 kNm Druckspannung σ _{C,0,d} = 0.00 N/mm² Biegespannung σ _{m,y,d} = 13.18 N/mm² Druckfestigkeit f _{c,0,d} = 14.54 N/mm² Biegefestigkeit f _{m,y,d} = 16.62 N/mm² (6.23) 0.00 /(0.35*14.54) + 13.18 / 16.62 = 0.79 ≤ 1			•	_						
Nachweise der Stabilität mit Ersatzstabverfahren		(6.13)					. v,u			
Machweise (GZG) Machweise im Grenzzustand der Gebrauchstauglichkeit nach DIN EN 1995-1-1 negative Verformungen werden nicht berücksichtigt Machweise (GZG) Machweise im Grenzzustand der Gebrauchstauglichkeit nach DIN EN 1995-1-1 negative Verformungen werden nicht berücksichtigt GI	Diagram a und David				: Ersatzstak	overfahren			0.00	
Normalkraft	Biegung und Druck									-
Biegemoment			-	Stelle						
Druckspannung Gc,0,d = 0.00 N/mm² Biegespannung Gm,y,d = 13.18 N/mm² Druckfestigkeit fc,0,d = 14.54 N/mm² Biegefestigkeit fm,y,d = 16.62 N/mm² Biegefestigkeit fm,y,d = 16.62 N/mm² Biegefestigkeit fm,y,d = 16.62 N/mm² G(23) D.00 / (0.35*14.54) + 13.18 / 16.62 = 0.79 ≤ 1 Nachweise (GZG) Nachweise im Grenzzustand der Gebrauchstauglichkeit nach DIN EN 1995-1-1 negative Verformungen werden nicht berücksichtigt Grenzwerte Verform. Durchhang Sparren Cd = 1/200 − − − − − − − − − − − − − − − − − −										
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$								=		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			-	_						-
Biegefestigkeit fm,y,d = 16.62 N/mm² (6.23) 0.00 /(0.35*14.54) + 13.18 / 16.62 = 0.79 ≤ 1 Nachweise (GZG) Nachweise im Grenzzustand der Gebrauchstauglichkeit nach DIN EN 1995-1-1 negative Verformungen werden nicht berücksichtigt Grenzwerte Verform. Durchhang Sparren Sp Kragarm Cd = 1/200 - 1/2			• .	•						· ·
Nachweise (GZG) Nachweise im Grenzzustand der Gebrauchstauglichkeit nach DIN EN 1995-1-1 negative Verformungen werden nicht berücksichtigt Grenzwerte Verform. Durchhang Sparren Sp Kragarm $C_d = 1/200 - 1/100 -$			_							
Nachweise (GZG)Nachweise im Grenzzustand der Gebrauchstauglichkeit nach DIN EN 1995-1-1 negative Verformungen werden nicht berücksichtigtGrenzwerte Verform.Durchhang Sparren Sp Kragarm $C_d = 1/200 - C_d = 1/100 - C_d$		(6.22)			16.62		T _{m,y,d}			
		(6.23)	0.00 / (0.35*14	1.54) + 13.18 /	16.62			=	0.79	≤ 1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Nachweise (GZG)					_		ach	DIN EN 19	95-1-1
Gl.	Grenzwerte Verform.		_	Sparren						-
Auflagerkräfte Feld 23 3.21 26.49 30.95 0.86 Char. Auflagerkr. Aufl. F _{x,k} F _{z,k} F _{z,k} F _{x,k} F _{x,k}			Sp Kragarm				C_d	=	1/100	-
Auflagerkräfte Feld 23 3.21 26.49 30.95 0.86 Char. Auflagerkr. Aufl. F _{x,k} [kN] F _{z,k} [kN] [kN] Einw. Gk A 0.00 3.86			Gl.		Ek	х	vorh v	V	zul w	η
Auflagerkräfte Char. Auflagerkr. Aufl. $F_{x,k}$ $F_{z,k}$ $[kN]$ Einw. Gk A 0.00 3.86							_	_		
Char. Auflagerkr.			W _{net} ,fin	Feld	23	3.21	26.49	9	30.95	0.86
Aufl. $F_{x,k}$ $F_{z,k}$ [kN] [kN] Einw. Gk A 0.00 3.86	Auflagerkräfte									
[kN] [kN] Einw. Gk A 0.00 3.86	Char. Auflagerkr.									
Einw. <i>Gk</i> A 0.00 3.86			Aufl.							
<u>B</u> 6.58	Einw. <i>Gk</i>		Α			0.00				3.86
			В							6.58

	Aufl.	F _{x,k} [kN]			F _{z,k} [kN]
Einw. Qk.S.A	A	0.00			2.27
	В				4.18
Einw. <i>Qk.W.000</i>	Α	-1.07			-2.02
	<u>B</u>				-3.62
Einw. <i>Qk.W.090</i>	Α	-0.78			-1.35
	В				-2.76
Einw. <i>Qk.W.180</i>	A	-0.97			-1.68
	В				-3.42
Zusammenfassung	Zusammenfassung der Nachweise	e			
Nachweise (GZT)	Nachweise im Grenzzustand der	Tragfähigkeit			
	Nachweis	Feld	x [m]		ղ [-]
	Biegung	Feld	3.53	OK	0.79
	Querkraft	Feld	6.19	OK	0.43
Nachweise (GZG)	Nachweise im Grenzzust. der Geb	prauchstauglichkeit			
	Nachweis	Feld	x [m]		ր [-]
	Durchhang	Feld	3.21	OK	0.86

0.30

0.00


Pos. 4a Pfette mit PV

Die Position dient nur der Lastermittlung.

System

Holz-Einfeldträger

M 1:20

Abmessungen / Nutzungsklassen

Feld	1	lef,m	NKL
	[m]	[m]	
1	2.00	2.00	1

Auflager

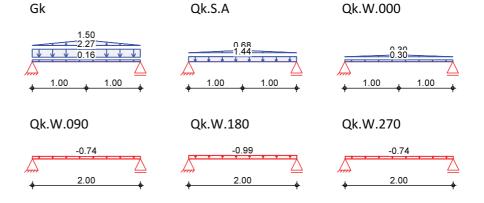
Aufl.	x	b	Transl.	Rotat.
	[m]	[cm]	[kN/m]	[kNm/rad]
Α	0.00	18.00	starr	frei
В	2.00	18.00	starr	frei

Material

BSH GL22h

Querschnitt

b/h = 18/24 cm


Belastungen

Belastungen auf das System

Grafik

Belastungsgrafiken (einwirkungsbezogen)

Einwirkungen

Streckenlasten

Gleich- und Trapezlasten

Kuppel

Kuppel

1

1

in z-Richtung
Einw. <i>Gk</i>

	Feld	Komm.	a	S	qıi	q re
			[m]	[m]	[kN/m]	[kN/m]
	1	Eigengew	0.00	2.00		0.16
(a)	1	Sparren	0.00	2.00		2.27
	1	Kuppel	0.00	1.00	0.00	1.50
	1	Kuppel	1.00	1.00	1.50	0.00
(a)	1	Sparren	0.00	2.00		1.44
	1	Kuppel	0.00	1.00	0.00	0.68
	1	Kuppel	1.00	1.00	0.68	0.00
(a)	1	Sparren	0.00	2.00		0.30

1.00

1.00

0.00

0.30

0.00

1.00

Einw. Qk.S.A

Einw. Qk.W.000

F	eld	Komm.	a [m]	s [m]	qլ։ [kN/m]	q _{re} [kN/m]
(a)	1	Sparren	0.00	2.00		-0.74
(a)	1	Sparren	0.00	2.00		-0.99
(a)	1	Sparren	0.00	2.00		-0.74

(a)

aus Pos. '1a', Lager 'B' (Seite 8)

Kombinationen

Einw. *Qk.W.090* Einw. *Qk.W.180* Einw. *Qk.W.270*

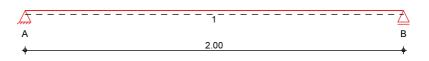
> Kombinationsbildung nach DIN EN 1990 Darstellung der maßgebenden Kombinationen

	Ek	KLED	Σ (γ*ψ*EW)		
ständig/vorüberg.	2	ku	1.35*Gk	+1.50*Qk.S.A	
selten	30		1.00*Gk	+1.00*Qk.S.A	+0.60*Qk.W.000
quasi-ständig	31		1.00*Gk		
	ku:	kurz			

Auflagerkräfte

Charakteristische Auflagerkräfte

Char. Auflagerkr.


Char. Manageria.		
	Aufl.	$F_{z,k}$
		[kN]
Einw. <i>Gk</i>	A	3.18
	В	3.18
Einw. <i>Qk.S.A</i>	A	1.78
	В	1.78
Einw. <i>Qk.W.000</i>	A	0.45
	В	0.45
Einw. <i>Qk.W.090</i>	A	-0.74
	В	-0.74
Einw. <i>Qk.W.180</i>	A	-0.99
	В	-0.99
Einw. <i>Qk.W.270</i>	A	-0.74
	В	-0.74

Pos. 4b **Pfette ohne PV**

Die Position dient nur der Lastermittlung.

Holz-Einfeldträger System

M 1:20

Abmessungen / Nutzungsklassen

Feld		lef,m	NKL
	[m]	[m]	
1	2.00	2.00	1

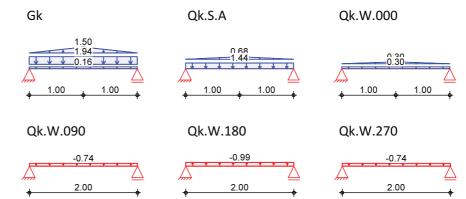
Auflager

Aufl.	x	b	Transl.	Rotat.
	[m]	[cm]	[kN/m]	[kNm/rad]
Α	0.00	18.00	starr	frei
В	2.00	18.00	starr	frei

Material **BSH GL22h**

Querschnitt b/h = 18/24 cm

Belastungen Belastungen auf das System


(a) 1

1

1

Grafik Belastungsgrafiken (einwirkungsbezogen)

Einwirkungen

0.00

0.30

 \mathbf{q}_{re}

0.16 1.94

1.50

0.00

1.44

0.68

0.00

0.30

0.30

0.00

[kN/m]

Streckenlasten

Gloich- und Trangalacton

Sparren

Kuppel

Kuppel

n z-Richtung	
--------------	--

	Feld	Komm.	а	s	qıi
			[m]	[m]	[kN/m]
	1	Eigengew	0.00	2.00	
(a)	1	Sparren	0.00	2.00	
	1	Kuppel	0.00	1.00	0.00
	1	Kuppel	1.00	1.00	1.50
(a)	1	Sparren	0.00	2.00	
	1	Kuppel	0.00	1.00	0.00
	1	Kuppel	1.00	1.00	0.68

0.00

0.00

1.00

2.00

1.00

1.00

Einw. Gk

Einw. Qk.S.A

Einw. Qk.W.000

Feld	Komm.	a [m]	s [m]	qլ։ [kN/m]	q _{re} [kN/m]
(a) 1	Sparren	0.00	2.00		-0.74
(a) 1	Sparren	0.00	2.00		-0.99
(a) 1	Sparren	0.00	2.00		-0.74

(a)

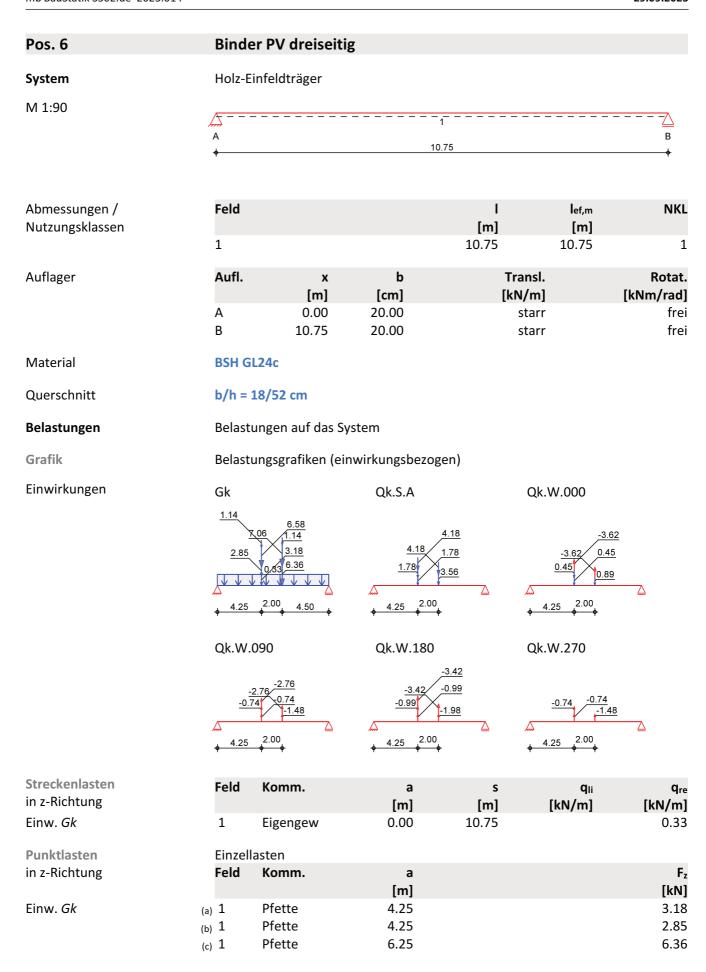
aus Pos. '1b', Lager 'B' (Seite 11)

Kombinationen

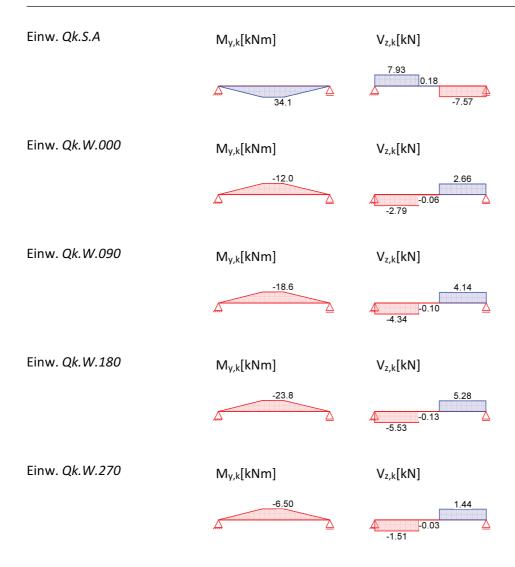
Einw. Qk.W.090 Einw. Qk.W.180 Einw. Qk.W.270

> Kombinationsbildung nach DIN EN 1990 Darstellung der maßgebenden Kombinationen

	Ek	KLED	Σ (γ*ψ*EW)		
ständig/vorüberg.	2	ku	1.35*Gk	+1.50*Qk.S.A	
selten	30		1.00*Gk	+1.00*Qk.S.A	+0.60*Qk.W.000
quasi-ständig	31		1.00*Gk		
	ku:	kurz			


Auflagerkräfte

Charakteristische Auflagerkräfte


Char. Auflagerkr.

char. Aunagerki.		
	Aufl.	$F_{z,k}$
		[kN]
Einw. <i>Gk</i>	Α	2.85
	В	2.85
Einw. <i>Qk.S.A</i>	A	1.78
	В	1.78
inw. <i>Qk.W.000</i>	A	0.45
	В	0.45
inw. <i>Qk.W.090</i>	A	-0.74
	В	-0.74
Einw. <i>Qk.W.180</i>	A	-0.99
	В	-0.99
inw. <i>Qk.W.270</i>	A	-0.74
	В	-0.74

Einw. <i>Gk</i>
Einw. Qk.S.A
Einw. <i>Qk.W.000</i>
Einw. <i>Qk.W.090</i>
Einw. <i>Qk.W.180</i>
Einw. <i>Qk.W.270</i>

	Feld	Komm.	а			Fz
	l Clu	Komm.	[m]			[kN]
	(d) 1	Grat	6.25			7.06
	(e) 1	Grat	4.25			6.58
	(f) 1	Balken	4.25			1.14
	(f) <u>1</u>	Balken	6.25			1.14
Einw. Qk.S.A	(a) 1	Pfette	4.25			1.78
	(b) 1	Pfette	4.25			1.78
	(c) 1	Pfette	6.25			3.56
	(d) 1	Grat	6.25			4.18
	(e) 1	Grat	4.25			4.18
Einw. <i>Qk.W.000</i>	(a) 1	Pfette	4.25			0.45
	(b) 1	Pfette	4.25			0.45
	(c) 1	Pfette	6.25			0.89
	(d) 1	Grat	6.25			-3.62
Fire 01 W 000	(e) 1	Grat	4.25			-3.62
Einw. <i>Qk.W.090</i>	(a) 1	Pfette	4.25			-0.74
	(b) 1	Pfette	4.25			-0.74
	(c) 1	Pfette	6.25			-1.48
	(d) 1	Grat Grat	6.25 4.25			-2.76 -2.76
Einw. <i>Qk.W.180</i>	(e) <u>1</u>	Pfette	4.25			-0.99
LIIIW. QK.W.180	(a) 1 (b) 1	Pfette	4.25			-0.99
	(c) 1	Pfette	6.25			-1.98
	(c) 1 (d) 1	Grat	6.25			-3.42
	(e) 1	Grat	4.25			-3.42
Einw. <i>Qk.W.270</i>	(e) <u>1</u>	Pfette	4.25			-0.74
Z Q	(b) 1	Pfette	4.25			-0.74
	(c) 1	Pfette	6.25			-1.48
	(6) —					
(a)	aus Po	os. '4a', Lager 'A' (Seite 35)			
(b)	aus Po	os. '4b', Lager 'A' (Seite 37)			
(c)	aus Po	os. '4a', Lager 'A',	Faktor = 2.00 (S	Seite 35)		
(d)	aus Po	os. '3a', Lager 'B' (Seite 23)			
(e)	aus Po	os. '3b', Lager 'B' (Seite 32)			
(f)		n ("Scheinbinder")			
	rechtv	vinkl. zu Binder		.35*(4.5+2)/2 =	1.14	kN
				(// -		
Char. Schnittgrößen	charal	kteristische Schni	ttgrößen			
Grafik	Schnit	tgrößen (je Einwi	rkung)			
Einw. <i>Gk</i>	$M_{y,k}[k$	Nm]	$V_{z,k}[kN]$			
		67.1	16.2 14.8 0.4 1.0	.2 -15.7		

Tabelle Schnittgrößen (je Einwirkung)

	Feld	x [m]	M _{y,k} [kNm]	V _{z,k} [kN]
Einw. <i>Gk</i>	1	0.00	0.00	16.16*
		6.25	67.13 *	0.37
		10.75	0.00 *	-15.65 *
Einw. Qk.S.A	1	0.00	0.00	7.93 *
		6.25	34.06 *	0.18
		6.25	34.06 *	-7.57 *
		10.75	0.00 *	-7.57
Einw. <i>Qk.W.000</i>	1	0.00	0.00	-2.79 *
		6.25	-11.97 *	-0.06
		6.25	-11.97 *	2.66*
		10.75	0.00 *	2.66
Einw. <i>Qk.W.090</i>	1	0.00	0.00	-4.34 *
		6.25	-18.64 *	-0.10
		6.25	-18.64 *	4.14 *
		10.75	0.00 *	4.14
Einw. <i>Qk.W.180</i>	1	0.00	0.00	-5.53 *
		6.25	-23.77 *	-0.13
		6.25	-23.77 *	5.28 *

Feld	x [m]	M _{y,k} [kNm]	V _{z,k} [kN]
	10.75	0.00 *	5.28
1	0.00	0.00	-1.51*
	6.25	-6.50 *	-0.03
	6.25	-6.50 *	1.44 *
	10.75	0.00 *	1.44

Kombinationen

Einw. Qk.W.270

Kombinationsbildung nach DIN EN 1990 Darstellung der maßgebenden Kombinationen

	Ek	KLED	Σ (γ*ψ*EW)	
ständig/vorüberg.	2	ku	1.35*Gk	+1.50*Qk.S.A
selten	29		1.00*Gk	+1.00*Qk.S.A
quasi-ständig	31		1.00*Gk	
	ku:	kurz		

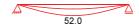
Bem.-schnittgrößen

Bemessungsschnittgrößen

Grafik Schnittgrößen (Umhüllende)

 $\label{eq:combinationen} \text{Kombinationen} \qquad \qquad M_{y,d}[kNm] \qquad \qquad V_{z,d}[kN]$

Tabelle


Schnittgrößen (Umhüllende)

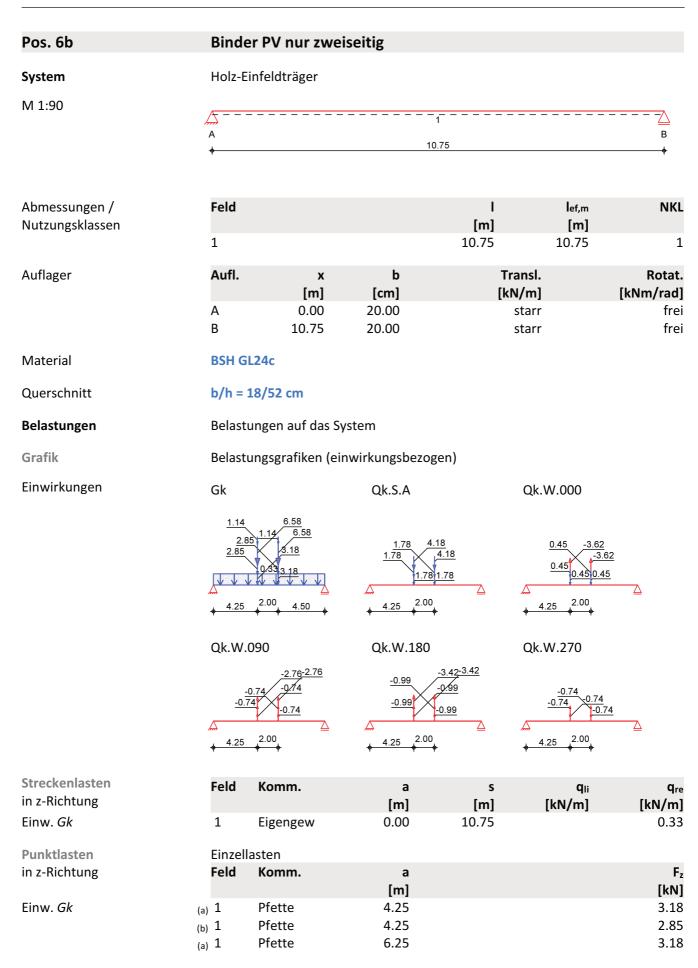
	X	$M_{y,d,min}$	Ek	$M_{y,d,max}$	Ek	$V_{z,d,min}$	Ek	$V_{z,d,max}$	Ek
	[m]	[kNm]		[kNm]		[kN]		[kN]	
Feld 1	0.00	0.00	3	0.00	2	7.86	3	33.71	2
	6.25	31.47	3	141.70	2	0.18	3	0.77	2
	10.75	0.00	3	0.00	2	-32.48	2	-7.73	3

Bem.-verformungen Bemessungsverformungen

Grafik Verformungen (Umhüllende)

Kombinationen $w_{z,d}[mm]$

Tabelle


Verformungen (Umhüllende)

	x	W z,d,min	Ek	W z,d,max	Ek
	[m]	[mm]		[mm]	
Feld 1	0.00	0.00	30	0.00	31
	5.36	21.00	30	51.95	31
	10.75	0.00	30	0.00	31

Mat./Querschnitt

nach DIN EN 1995-1-1

Materialien	Holz	f n	n,k f t0k	f c0k	fc90k	fvk	E ₀ mean
	,			_	/mm²]		
	BSH GL24c ^f f: Lamellenlage flachkar		1.0 17.0	21.5	2.5	3.5	11000
Querschnittswerte		b	ı	h	Α		ly
	[[cm]	[cm]	[cm ²]		[cm ⁴]
		18.0	52.0	0	936.0		210912.0
**** FEHLER ****	Im Feld 1 treten u	nzulässige S	Spannungsi	überschreit	ungen auf.		
Auflagerkräfte	Charakteristische A	Auflagerkrä	fte				
Char. Auflagerkr.							
	Aufl.						F _{z,k}
							[kN]
Einw. <i>Gk</i>	A						16.16
	В						15.65
Einw. <i>Qk.S.A</i>	Α						7.93
	В						7.57
Einw. <i>Qk.W.000</i>	Α						-2.79
	В						-2.66
Einw. <i>Qk.W.090</i>	A						-4.34
	В						-4.14
Einw. <i>Qk.W.180</i>	A						-5.53
	<u>B</u>						-5.28
Einw. <i>Qk.W.270</i>	A						-1.51
	В						-1.44
Zusammenfassung	Zusammenfassung	g der Nachw	veise				
Nachweise (GZT)	Nachweise im Gre	nzzustand o	der Tragfähi	gkeit			
	Nachweis	F	eld/Auflag	er	X []		η
	Dio auma		eld 1		[m] 6.25	- OV	[-]
	<mark>Biegung</mark> Querkraft		eld 1 eld 1		0.59	n.OK OK	1.06 0.31
	Auflagerpressung		Auflager A		0.55	OK	0.31
	Authaget pressuring	,	Auriagei A			OK	0.47
Nachweise (GZG)	Nachweise im Grei	nzzust. der	Gebrauchst	tauglichkeit			
	Nachweis	F	eld		х		η
					[m]		[-]
	Anfangsdurchbieg		eld 1		5.36	OK	0.91
	gesamte Enddurch	ıb. F	eld 1		5.36	OK	0.97

	Feld	Komm.	a			Fz
			[m]			[kN]
	(b) 1	Pfette	6.25			2.85
	(c) 1	Grat	6.25			6.58
	(c) 1	Grat	4.25			6.58
	(d) 1	Balken	4.25			1.14
	(d) 1	Balken	6.25			1.14
	(a) 1	Pfette	4.25			1.78
	(b) 1	Pfette	4.25			1.78
	(a) 1	Pfette	6.25			1.78
	(b) 1	Pfette	6.25			1.78
	(c) 1	Grat	6.25			4.18
	(c) 1	Grat	4.25			4.18
	(a) 1	Pfette	4.25			0.45
	(b) 1	Pfette	4.25			0.45
	(a) 1	Pfette	6.25			0.45
	(b) 1	Pfette	6.25			0.45
	(c) 1	Grat	6.25			-3.62
	(c) <u>1</u>	Grat	4.25			-3.62
	(a) 1	Pfette	4.25			-0.74
	_(b) 1	Pfette	4.25			-0.74
	(a) 1	Pfette	6.25			-0.74
	(b) 1	Pfette	6.25			-0.74
	(c) 1	Grat	6.25			-2.76
	(c) <u>1</u>	Grat	4.25			-2.76
	(a) 1	Pfette	4.25			-0.99
	(b) 1	Pfette	4.25			-0.99
	(a) 1	Pfette	6.25			-0.99
	(b) 1	Pfette	6.25			-0.99
	(c) 1	Grat	6.25			-3.42
	(c) 1	Grat	4.25			-3.42
	(a) 1	Pfette	4.25			-0.74
	(b) 1	Pfette	4.25			-0.74
	(a) 1	Pfette	6.25			-0.74
	(b) 1	Pfette	6.25			-0.74
(a)	aus Po	os. '4a', Lage	er 'A' (Seite 35)			
(b)	aus Po	os. '4b', Lage	er 'A' (Seite 37)			
(c)	aus Po	os. '3b', Lage	er 'B' (Seite 32)			
(d)	Balker	ı ("Scheinbiı	nder")			
		vinkl. zu Bin				
				.35*(4.5+2)/2 =	1.14	kN

Schnittgrößen (je Einwirkung)

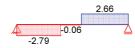
Einw. Gk




Einw. Qk.S.A

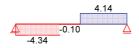
$$V_{z,k}[kN] \\$$

 $V_{z,k}[kN]$



Einw. Qk.W.000

$$V_{z,k}[kN]$$

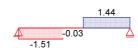


Einw. Qk.W.090

$$V_{z,k}[kN]$$

Einw. Qk.W.180

$$V_{z,k}[kN] \\$$



Einw. Qk.W.270

$$V_{z,k}[kN]$$

Tabelle

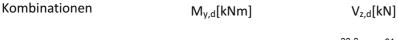
Schnittgrößen (je Einwirkung)

	Feld	x [m]	M _{y,k} [kNm]	V _{z,k} [kN]
Einw. <i>Gk</i>	1	0.00	0.00	15.82*
		6.25	65.01 *	0.03
		10.75	0.00 *	-15.18 *
Einw. Qk.S.A	1	0.00	0.00	7.93 *
		6.25	34.06 *	0.18
		6.25	34.06 *	-7.57 *
		10.75	0.00 *	-7.57
Einw. <i>Qk.W.000</i>	1	0.00	0.00	-2.79*

	Feld	x [m]	M _{y,k} [kNm]	V _{z,k} [kN]
		6.25	-11.97 *	-0.06
		6.25	-11.97 *	2.66 *
		10.75	0.00 *	2.66
Einw. <i>Qk.W.090</i>	1	0.00	0.00	-4.34 *
		6.25	-18.64 *	-0.10
		6.25	-18.64 *	4.14 *
		10.75	0.00 *	4.14
Einw. <i>Qk.W.180</i>	1	0.00	0.00	-5.53*
		6.25	-23.77 *	-0.13
		6.25	-23.77 *	5.28 *
		10.75	0.00 *	5.28
Einw. <i>Qk.W.270</i>	1	0.00	0.00	-1.51*
		6.25	-6.50 *	-0.03
		6.25	-6.50 *	1.44 *
		10.75	0.00*	1.44

Kombinationen

Kombinationsbildung nach DIN EN 1990 Darstellung der maßgebenden Kombinationen


	Ek	KLED	Σ (γ*ψ*EW)	
ständig/vorüberg.	2	ku	1.35*Gk	+1.50*Qk.S.A
selten	29		1.00*Gk	+1.00*Qk.S.A
quasi-ständig	31		1.00*Gk	
	ku:	kurz		

Bem.-schnittgrößen

Bemessungsschnittgrößen

Grafik

Schnittgrößen (Umhüllende)

Tabelle

Schnittgrößen (Umhüllende)

	x [m]	M _{y,d,min} [kNm]	Ek	M _{y,d,max} [kNm]	Ek	V _{z,d,min} [kN]	Ek	V _{z,d,max} [kN]	Ek
Feld 1	0.00	0.00	3	0.00	2	7.52	3	33.25	2
	6.25	29.36	3	138.85	2	-0.16	3	0.31	2
	10.75	0.00	3	0.00	2	-31.85	2	-7.26	3

Bem.-verformungen

Bemessungsverformungen

Grafik

Verformungen (Umhüllende)

Kombinationen

 $w_{z,d}[mm] \\$

Tabelle	Verformungen (Umhüllend	de)						
Feld 1	x [m] 0.00 5.35 10.75	W _{z,d,min} [mm] 0.00 20.13 0.00	Ek 30 30 30		[1	d,max Ek mm] 0.00 31 0.57 31 0.00 31		
Mat./Querschnitt	nach DIN EN 1995-1-1							
Materialien	Holz	fm,k ft0k	fc0k [N/I	fc90k mm²]	fvk	E ₀ mean		
	BSH GL24c ^f f: Lamellenlage flachkant	24.0 17.0	21.5	2.5	3.5	11000		
Querschnittswerte	b [cm] 18.0	h [cm] 52.0		A [cm ²] 936.0		l _y [cm ⁴] 210912.0		
**** FEHLER ****	lm Feld 1 treten unzulässi	ge Spannungsü	berschreitur	ngen auf.				
Auflagerkräfte	Charakteristische Auflager	kräfte						
Char. Auflagerkr.	Aufl.					F _{z,k} [kN]		
Einw. <i>Gk</i>	A B					15.82 15.18		
Einw. <i>Qk.S.A</i>	A B					7.93 7.57		
Einw. <i>Qk.W.000</i>	A B					-2.79 -2.66		
Einw. <i>Qk.W.090</i>	A					-4.34		
Einw. <i>Qk.W.180</i>	B A					-4.14 -5.53		
Einw. <i>Qk.W.270</i>	B A B					-5.28 -1.51 -1.44		
Zusammenfassung	Zusammenfassung der Nac	chweise						
Nachweise (GZT)								
	Nachweis	Feld/Auflage	er	x [m]		η [-]		
	Biegung	Feld 1		6.25	n.OK	1.04		
	Querkraft Auflagerpressung	Feld 1 Auflager A		0.59	OK OK	0.31 0.46		
Nachweise (GZG)	Nachweise im Grenzzust. der Gebrauchstauglichkeit							
	Nachweis	Feld		x [m]		η [-]		
	Anfangsdurchbieg. gesamte Enddurchb.	Feld 1 Feld 1		5.35 5.35	OK OK	0.89 0.94		