BAUGRUND Ingenieurbüro für Baugrund JACOBI GmbH

Boden – Baugrund – Geotechnik – Hydrogeologie – Altlasten – Erdstatik Schadstoffe in Gebäuden – Gebäuderückbau – Schadensgutachten – Beratung Ihr Partner für Baugrund. Seit 1990 für Sie da!

99094 Erfurt - Straße des Friedens 4 - Tel.: (0361) 22 54 54 8 - Fax: (0361) 22 55 16 9 E-Mail: info@baugrundjacobi.de - Web: www.baugrundjacobi.de

Bericht zur Abfallcharakterisierung

Bauvorhaben : Anbau an Sporthalle Löwenpark

Friedrich-Ebert-Straße

Erfurt

Auftrags-Nr. : S21-090 zu B21-205

Projekt-Nr. : 2535

Auftraggeber : Basketball Löwen e.V.

Leipziger Straße 71

99085 Erfurt

über : Lehrmann & Partner GbR

Architektur- und Ingenieurbüro

Waltershäuser Landstraße

99880 Waltershausen OT Schmerbach

Geschäftsführer Dipl.-Geol. Wedekind, U. Bearbeiter Dipl.-Geol. Bsteh, R. Durchwahl 21 69 65 2

Erfurt, den 27. Juli 2021

Auftrags-Nr.: S21-090 Anbau an Sporthalle Löwenpark Friedrich-Ebert-Straße Erfurt

|Seite - 2 von 6 -

Inhaltsverzeichnis

1	Al	LLGEMEINES	3
2	PI	ROBENBESCHREIBUNG	3
	2.1	MISCHPROBE 1	}
	2.2	Mischprobe 2	ŀ
3	A	USWERTUNG	4
4	Н	INWEISE ZUR EINSTUFUNG	5
5	ш	INWEISE ZUR RAHAUSEÜHRUNG	6

Anlagenverzeichnis

- Aufschlussplan aus B21-205 A 1
- A 2 Aufschlussprofile aus B21-205
- Α3 Tabellarische Ergebnisauswertung des Prüfberichts
- Prüfbericht der Wessling GmbH A 4

Auftrags-Nr.: S21-090 Anbau an Sporthalle Löwenpark Friedrich-Ebert-Straße Erfurt

|Seite - 3 von 6 -

Allgemeines

Der bei o.g. Bauvorhaben potentiell anfallende Aushub soll planungsvorbereitend einer Abfallcharakterisierung unterzogen werden.

Die Probenentnahme erfolgte im Rahmen der Baugrunderkundung B21-205.

Hierzu wurden am 22.06.2021 folgende Mischproben (MP) zusammengestellt (Tabelle 1):

Tabelle 1: Zusammenstellung der Mischproben.

Proben	Probenart		Schicht gemäß Geot. Bericht B21-205	Tiefe [m u. GOK]	Analyseverfahren
MP 1	Auffüllung	RKS 1 bis 7	Schicht 2	0,3 bis 1,3	LAGA M 20 Boden (2003)
MP 2	natürliche Boden	RKS 1 bis 7	Schicht 3	1,0 bis 2,0	Tab. II 1.2-2 ^A und Tab. II 1.2-3 ^A

^A mit länderspezifischer Anpassung des Freistaates Thüringen (Handlungsempfehlungen des TMLNU)

Des Weiteren erfolgt eine Zuordnung der untersuchten Parameter nach Deponieverordnung (2020).

Die Analytik erfolgte durch die WESSLING GmbH.

Probenbeschreibung

Mischprobe 1 2.1

Tabelle 2: Beschreibung Mischprobe 1

Parameter	Klassifizierung
Bodenart	Auffüllung
	- Kies, schwach schluffig bis schluffig, sandig
	- Schluff, stark sandig, schwach kiesig bis stark kiesig, sehr schwach
	steinig
	- Sand, schluffig, kiesig
	- Fremdbestandteile: Ziegel-, Betonreste
Bodengruppen (DIN 18196)	[TL-TM, SU*, GU, GU*]
Färbung	braun, dunkelbraun, bunt
Fremdbestandteile in der Probe	< 5 bis 15 % - Beton- und Ziegelbruch
organoleptische Auffälligkeiten	keine

Auftrags-Nr.: S21-090 Anbau an Sporthalle Löwenpark

Friedrich-Ebert-Straße
Erfurt

2.2 Mischprobe 2

Tabelle 3: Beschreibung Mischprobe 2

Parameter	Klassifizierung
Bodenart	Lößderivat
	- Schluff, sandig, sehr schwach tonig bis tonig, teils sehr schwach
	kiesig
Bodengruppen (DIN 18196)	TL-TM
Färbung	braun
Fremdbestandteile in der Probe	-
organoleptische Auffälligkeiten	keine

3 Auswertung

Der Parameter mit der höchsten Zuordnungsklasse, ist maßgebend für die Einstufung der jeweiligen Probe. Die tabellarische Auswertung des Prüfberichts ist als Anlage 3 beigefügt. Die genauen Ergebnisse/Prüfberichte der Analyse können der Anlage 4 entnommen werden. Grundlage für die Bewertung sind Anforderungen an die Verwertung mineralischer Abfälle vom Freistaat Thüringen: https://umwelt.thueringen.de/themen/kreislauf-u-abfallwirtschaft/

Tabelle 4: Auswertung der Analytik.

Probe	Überschreitender Zuordnungswert	Einstufung der Probe nach LAGA M 20	vorläufige ^A Einstufung der Probe nach DepV	vorläufige ^A Abfallschlüsselnummer (AVV)
MP 1	Benzo(a)pyren (1,50 mg/kg)	Z 2	DK 0	17 05 04
MP 1	-	Z 0	DK 0	17 05 04

A Da für die Einstufung nicht der komplette Untersuchungsumfang durchgeführt wurde, ist das Ergebnisse als vorläufig anzusehen.

Definitionen der Zuordnungswerte

- Z 0 uneingeschränkter Einbau
- Z 1 eingeschränkter offener Einbau
- Z 1.1 eingeschränkter offener Einbau, selbst unter ungünstigen hydrogeologischen Voraussetzungen
- Z 1.2 eingeschränkter offener Einbau, nur bei günstigen hydrogeologischen Voraussetzungen
- Z 2 eingeschränkter Einbau mit definierten technischen Sicherungsmaßnahmen
- > Z 2 Ablagerung in Deponien, es gelten Deponieklassen
- DK 0-III Deponieklassen

Auftrags-Nr.: S21-090 Anbau an Sporthalle Löwenpark Friedrich-Ebert-Straße Erfurt

|Seite - 5 von 6 -

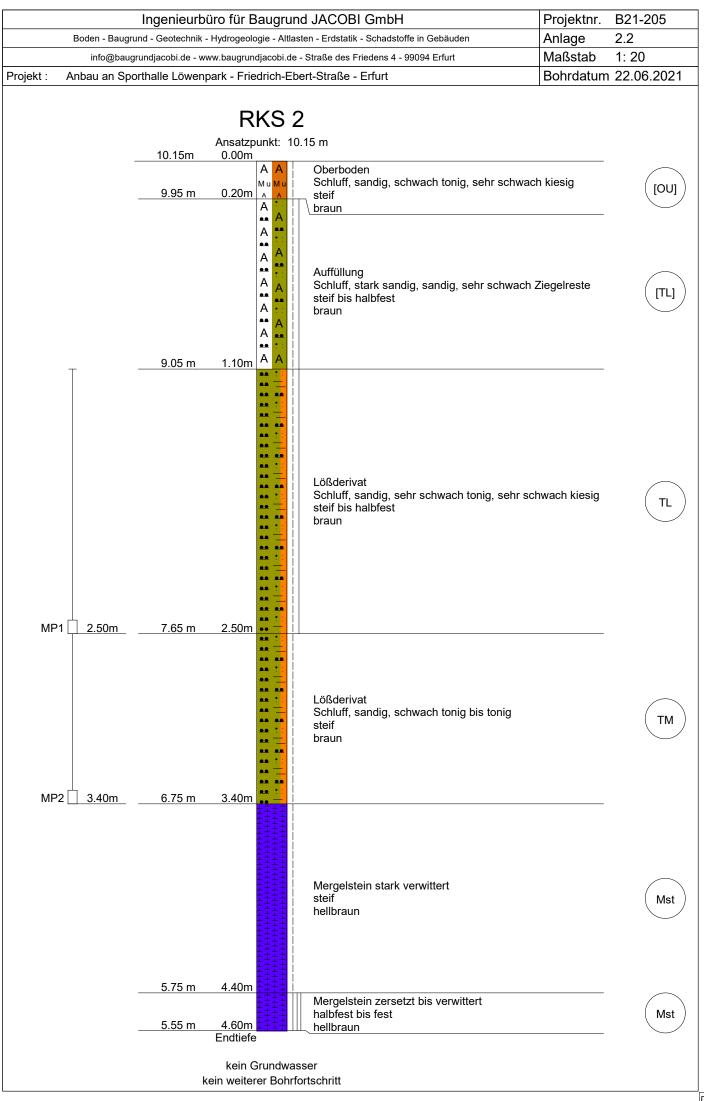
Hinweise zur Einstufung

- durchgeführten Untersuchungen dienen der Grundlagenermittlung für Leistungsausschreibung der Erdarbeiten und ersetzen nicht die baubegleitend erforderliche Deklaration der anfallenden Erdstoffe.
- Die Erdstoffproben wurden stichprobenartig entnommen.
- In nicht untersuchten Bereichen können durchaus höhere oder geringere Konzentrationen der untersuchten Parameter vorhanden sein können, sodass eine andere Zuordnungs-/ Deponieklasse maßgebend ist. Dies muss bei der Ausschreibung beachtet werden.
- Bei über 1 % Massenanteil an Fremdbestandteilen ist ggf. keine Verwertung als Z 0*-Material (Verfüllung von Abgrabungen) möglich.
- Generell ist bei Baumaßnahmen auf innerstädtischen Flächen darauf zu achten, dass Nester mit Verunreinigungen oder auffällige Anschüttungen, die durch eine stichprobenartige Untersuchung nicht zu erfassen sind, erst bei den Erdarbeiten angetroffen werden können. Demzufolge sind bei der Ausschreibung entsprechende Positionen zu berücksichtigen.

Auftrags-Nr.: S21-090 Anbau an Sporthalle Löwenpark Friedrich-Ebert-Straße Erfurt

|Seite - 6 von 6 -

Hinweise zur Bauausführung 5


- Gemäß Kreislaufwirtschaftsgesetz (KrWG) gilt Vermeidung, vor Verwertung, vor Beseitigung von Abfall.
- Der Verwertungs- bzw. Entsorgungsweg ist vor dem Vorgang eindeutig festzulegen, um eine fachgerechte Deklaration der Verwertungs- bzw. Entsorgungsmassen durchzuführen. Er folgt dies nicht, kann es zu Verzögerungen des Bauablaufes und somit zu Mehrkosten kommen.
- Werden während späterer Schachtarbeiten Bereiche mit Schadstoffen augenscheinlich und geruchsmäßig belasteten Erdstoffen oder anderen Materialien festgestellt, so ist unser Büro sofort zu benachrichtigen.
- Materialien sind fachgerecht und entsprechend des Schadstoffverdachts getrennt zu lagern.
- Eine Reduzierung der Kosten ist durch das Separieren der Aushubmassen und zusätzliche Deklarationsanalysen während der Bauausführung möglich.
- Für die Entsorgung nach DepV oder der Verwertung nach LAGA M20 werden in der Regel weitere Untersuchungen und Parameter erforderlich. Diese sind in Abstimmung mit dem Entsorger bzw. dem Verwerter und ggf. der zuständigen Behörde zu untersuchen. Darüber hinaus können für die Entsorgung oder Verwertung weitere spezifische Unterlagen, Prüfungen oder Anforderungen erforderlich werden. Es wird empfohlen dies rechtzeitig (2 bis 4 Wochen vor dem Entsorgungs- bzw. Verwertungsvorgang) bei der ausgewählten Deponie bzw. Verwertungsstelle zu erfragen und weitere Untersuchungen zu veranlassen.

Für Rückfragen stehen wir Ihnen jederzeit gern zur Verfügung.

Ingenieurbüro für Baugrund JACOBI GmbH	Projektnr.:	B21-205
Baugrunduntersuchung - Erdstofflabor - Gründungsberatung - Versickerung - Altlasten	Anlage:	1
Straße des Friedens 4 - 99094 Erfurt	Maßstab:	ca. 1:500
Projekt: Anbau an Sporthalle Löwenpark - Friedrich-Ebert-Straße - Erfurt	Datum:	22.06.2021

	Ingenieurbi	üro für Baugrı	nd JACOBI GmbH	Projektnr.	B21-205
Boden - Baugr	und - Geotechnik -	Hydrogeologie - Al	asten - Erdstatik - Schadstoffe in Gebäuden	Anlage	2.1
info@baug	grundjacobi.de - wv	vw.baugrundjacobi.	e - Straße des Friedens 4 - 99094 Erfurt	Maßstab	1: 20
rojekt : Anbau an Spo	orthalle Löwenp	oark - Friedrich-l	bert-Straße - Erfurt	Bohrdatun	1 22.06.2021
	10.05m 9.95 m	Ansatzpunkt: 0.00m 0.10m A A A A A A A A A A A A A			[OU]
MP1 1.20m	8.85 m	1.20m °° ° 1.20m °° ° 1.20m °°	Lößderivat Schluff, stark sandig, schwach tonig steif braun		TL
P1.2 3.50m	6.55 m	3.50m	Lößderivat Schluff, tonig, sandig halbfest dunkelbraun		TM
	6.35 m	3.70m	Mergelstein, zersetzt bis verwittert Schluff, sandig, schwach kiesig, schwach to halbfest hellbraun	onig	Mst
	k	kein Grundw ein weiterer Boh			

Boten - Baugund - Ceotochnik - Hydrogeologie - Alleaden - Endandik - Schadsfelfe in Cestaudon Anlage 2.3 Integrating and production - www baugundgoodude - Straße deer Frederich - Enderschaft - 19984 Erfurt Maßstab 1: 20 Projekt : Anbau an Sporthalle Lowenpark - Friedrich - Ebert-Straße - Erfurt Bohrdatum 22.06.2021 RKS 3 Ansatzpunkt: 10.19 m Oberboden Schluff, sandig, schwach tonig, sehr schwach kiesig, Kies braun And	Projekt: Anbau an Sporthalle Löwenpark - Friedrich-Ebert-Straße - Erfurt Bohrdatum 22 06 202* RKS 3 Anseatzpunkt: 10.19 m 10.19m 0.00m Obertoden Schluff, sandig, schwach tonig, sehr schwach klesig, Kies andig, schwach schluffig, Ziegelreste Einzelfunde an Sandsteinbruch stelf bis halbfest, nass bei 0.6 m bunt MP1 1,20m 8.99 m 1.20m 1.20m 8.99 m 1.20m 1	info@baugrund	djacobi.de - w alle Löwenp 10.19m 9.89 m	RKS Ansatzpunkt: 10.00m A A O.30m A A O.30	Be - Straße des Friedens 4 - 99094 Erfurt Bohrdatur Obert-Straße - Erfurt Oberboden Schluff, sandig, schwach tonig, sehr schwach kiesig, Kies steif braun Auffüllung Kies, sandig, schwach schluffig, Ziegelreste Einzelfunde an Sandsteinbruch steif bis halbfest, nass bei 0,6 m	1: 20 m 22.06.2021
RKS 3 Ansatzpunkt: 10.19 m 10.19m 0.00m 9.89 m 0.30m mussu 9.89 m 1.20m A A A A A A A A A A A A A A A A A A A	RKS 3 Ansatzpunkt: 10.19 m 10.19m 10.19m 10.19m 0.00m A A Schuff, sandig, schwach tonig, sehr schwach kiesig, Kies stelf braun A A A Schuff, sandig, schwach schluffig, Ziegelreste Einde Schluff, sandig bis schwach tonig stelf braun MP1 1.20m 8.99 m 1.20m A A A C Schuff, sandig bis schwach tonig sehr schwach kiesig, Kies schluff, sandig bis schwach schluffig, Ziegelreste Einzelfunde an Sandsteinbruch stelf bis habfest, nass bei 0.6 m MP1 1.20m 8.99 m 1.20m A A C Schuff, sandig bis schwach tonig stelf braun MP2 2.80m 7.39 m 2.80m Mergelstein zersetzt bis verwittert Kalkstein in Spitze halbrest hellbraun Mst hellbraun Mst hellbraun Mst hellbraun	Projekt : Anbau an Sporth	alle Löwenp 10.19m 9.89 m	RKS Ansatzpunkt: 10.00m A A A O.30m Mu Mu Mu A A A A A A A A A A A A A A A	3 0.19 m Oberboden Schluff, sandig, schwach tonig, sehr schwach kiesig, Kies steif braun Auffüllung Kies, sandig, schwach schluffig, Ziegelreste Einzelfunde an Sandsteinbruch steif bis halbfest, nass bei 0,6 m	n 22.06.2021
Ansatzpunkt: 10.19 m O.00 A A A B A A A A A A A A A A A A A A A	Ansatzpunkt: 10,19 m O.00 A A A A A A A A A A A A A A A A A A		10.19m 9.89 m	Ansatzpunkt: 10.00m A A A A A A A A A A A A A A A A A A A	3 0.19 m Oberboden Schluff, sandig, schwach tonig, sehr schwach kiesig, Kies steif braun Auffüllung Kies, sandig, schwach schluffig, Ziegelreste Einzelfunde an Sandsteinbruch steif bis halbfest, nass bei 0,6 m	
Ansatzpunkt: 10.19 m 10.19m	Ansatzpunkt: 10.19 m 0.00m A	MP1 1.20m	9.89 m	Ansatzpunkt: 10.00m A A A A O.30m Mu Mu Mu A A A A A A A A A A A A A A A	Oberboden Schluff, sandig, schwach tonig, sehr schwach kiesig, Kies steif braun Auffüllung Kies, sandig, schwach schluffig, Ziegelreste Einzelfunde an Sandsteinbruch steif bis halbfest, nass bei 0,6 m	-
MP1 1.20m 8.99 m 1.20m A A A A A A A A A A A A A A A A A A A	MP1 1.20m 8.99 m 1.20m A A A A A A A A A A A A A A A A A A A	MP1 1.20m		0.30m Mu Mu A A A A A A A A A A A A A A A A A	Auffüllung Kies, sandig, schwach schluffig, Ziegelreste Einzelfunde an Sandsteinbruch steif bis halbfest, nass bei 0,6 m	[GU]
Lößderivat Schluff, sandig bis schwach tonig steif braun MP2 2.80m 7.39 m 2.80m Mergelstein zersetzt bis verwittert Kalkstein in Spitze halbfest hellbraun 6.79 m 3.40m Endtiefe kein Grundwasser	Lößderivat Schluff, sandig bis schwach tonig steif braun MP2 2.80m 7.39 m 2.80m Mergelstein zersetzt bis verwittert Kalkstein in Spitze halbfest hellbraun 6.79 m 3.40m Endtiefe kein Grundwasser	MP1 1.20m	8.99 m	A ==		
Mergelstein zersetzt bis verwittert Kalkstein in Spitze halbfest hellbraun 6.79 m 3.40m Endtiefe kein Grundwasser	Mergelstein zersetzt bis verwittert Kalkstein in Spitze halbfest hellbraun 6.79 m 3.40m Endtiefe kein Grundwasser	MP2 280m	7 30 m	## 11	Schluff, sandig bis schwach tonig steif	TL
Endtiefe kein Grundwasser	Endtiefe kein Grundwasser	MP2 <u> 2.80m</u>			Kalkstein in Spitze halbfest	Mst
				Endtiefe		-
kein weiterer Bohrfortschritt	kein weiterer Bohrfortschritt					
			k	eın weiterer Bohr	tortschritt	

			nd JACOBI GmbH	Projektnr. B21-205
			sten - Erdstatik - Schadstoffe in Gebäuden	Anlage 2.4
			e - Straße des Friedens 4 - 99094 Erfurt	Maßstab 1: 20
rojekt : Anbau an Spo	orthalle Löwenr	oark - Friedrich-El	oert-Straße - Erfurt	Bohrdatum 22.06.2021
	10.15m 9.85 m	Ansatzpunkt: 10.00m A A A O.30m Mu Mu A A A O.30m Mu Mu A A A A O.30m Mu Mu A A A A A A A A A A A A A A A A A A A		[OU]
MP1 1.10m	9.05 m	1.10m A A A A A A A A A A A A A A A A A A A	Lößderivat Schluff, sandig, sehr schwach tonig steif braun	TL
	6.95 m	3.20m	Lößderivat Schluff, sandig, tonig halbfest dunkelbraun	TL - TM
	k	kein Grundwa ein weiterer Bohr		

					Projektnr.	B21-205
					Anlage	2.5
info@baug	rundjacobi.de - w	ww.baugrundjaco	bi.de -		Maßstab	1: 20
Projekt: Anbau an Spo	orthalle Löwen	oark - Friedric	า-Ebe	rt-Straße - Erfurt	Bohrdatum	22.06.2021
	10.15m	M u N	: 10. ⁻		([OL	J]
_	9.85 m	0.30m ми	1 u	steif		
MP1 1.40m	<u>8.75 m</u>	A to	A	Auffüllung Sand, kiesig, schluffig, sehr schwach Ziegelre locker bis mitteldicht braun	este	*])-([TL])
MP2 <u>2.00m</u>	8.15 m	2.00m		Lößderivat Schluff, sandig, sehr schwach tonig steif bis halbfest braun	TL	
	7.45 m	8.0 - 8.0 - 8.0 - 8.0 - 8.0 -		Lößderivat Schluff, sandig, schwach tonig steif dunkelbraun	TL	
	7.05 m	2 10m	++++++++++	Mergelstein zersetzt bis verwittert Schluff, sandig, sehr schwach kiesig, schwach halbfest hellbraun	h tonig Ms	ut)

kein Grundwasser kein weiterer Bohrfortschritt

3.10m

Endtiefe

7.05 m

	Ingenieurk	püro für Baugı	rund JACOBI GmbH	Projektnr. B21-205
			ultlasten - Erdstatik - Schadstoffe in Gebäuden	Anlage 2.6
	-		i.de - Straße des Friedens 4 - 99094 Erfurt	Maßstab 1: 20
ojekt : Anbau an Sp	orthalle Löwer	npark - Friedrich	-Ebert-Straße - Erfurt	Bohrdatum 22.06.2021
MP1 1.20m	9.87m 9.67 m 8.67 m	Ansatzpunkt: 0.00m A A A A A A A A A A A A A A A A A A A		
MP2 2.40m	7.47 m	2.40m == 1	Lößderivat Schluff, sandig, schwach tonig, sehr schwac steif hellbraun	h kiesig TL

kein Grundwasser kein weiterer Bohrfortschritt

			rund JACOBI GmbH		321-205
			Itlasten - Erdstatik - Schadstoffe in Gebäuden		2.7
			.de - Straße des Friedens 4 - 99094 Erfurt		: 20
ojekt : Anbau an S	porthalle Löwe	npark - Friedrich-	Ebert-Straße - Erfurt	Bohrdatum 2	2.06.2021
	9.97m	RKS Ansatzpunkt: 0.00m	9.97 m Oberboden Schluff, sandig, schwach tonig, sehr schw	ach kiesig, Kies	[OU]
MP1	9.77 m	0.20m A A A A A A A A A A A A A A A A A A A	steif braun Auffüllung Schluff, sandig, sehr schwach kiesig, sehr Beton angetroffen, umgesetzt steif dunkelbraun	schwach Ziegelreste	
MP2 ☐ 2.50m	7.47 m	2.50m	Lößderivat Schluff, sandig, sehr schwach tonig steif braun		TL
	6.57 m	3.40m	Lößderivat Schluff, sandig, tonig vorwiegend steif, bis halbfest dunkelbraun		TM
		Endtiefe kein Grundw kein weiterer Boh			

Baugrunduntersuchung - Erdstofflabor - Gründungsberatung - Versickerung - Altlasten

Bauvorhaben:	Anbau an Sporthalle Löwenpark - Friedrich-Ebert-Straße - Erfurt		
Entnahmedatum:	22.06.2021	Auftrags-Nr.	S21-090
Bearbeiter:	Bsteh	Anlage:	3.1

Ergebnisse nach Feststoffkriterien LAGA M20 Boden (2003, Komplettuntersuchungsprogramm) Tab. II 1.2-2 mit landesspezifischer Anpassung des Freistaates Thüringen und Deponieverordnung (2020)

Parameter	Einheit	MP 1 Auffüllung	Z	DK	MP 2 nat. Boden	Z	DK	Z 0 Ton	Z 1.1	Z 1.2	Z 2	DK 0	DKI	DK II	DK III
pH-Wert (CaCl2)		7,90	Z 0	DK 0	7,80	Z 0	DK 0	-	5,5-8	5-9	-	-	-	1	ı
TOC	Gew%	0,39	Z 0	DK 0	0,38	Z 0	DK 0	0,5	1,5	1,5	5	1	1	3	6
Cyanid gesamt	mg/kg	0,1	Z 0	DK 0	<0,1	Z 0	DK 0	-	10	30	100	-	-	-	-
EOX	mg/kg	<0,5	Z 0	DK 0	<0,5	Z 0	DK 0	1	3	10	15	-	-	-	-
Arsen	mg/kg	8,3	Z 0	DK 0	6,9	Z 0	DK 0	20	30	50	150	-	-	-	ı
Blei	mg/kg	20,0	Z 0	DK 0	17,0	Z 0	DK 0	100	200	300	1.000	-	-	-	-
Cadmium	mg/kg	<0,4	Z 0	DK 0	<0,4	Z 0	DK 0	1,5	1	3	10	-	-	-	-
Chrom (ges.)	mg/kg	28,0	Z 0	DK 0	38,0	Z 0	DK 0	100	100	200	600	-	-	-	-
Kupfer	mg/kg	15,0	Z 0	DK 0	21,0	Z 0	DK 0	60	100	200	600	-	-	-	-
Nickel	mg/kg	16,0	Z 0	DK 0	38,0	Z 0	DK 0	70	100	200	600	-	-	-	ı
Quecksilber	mg/kg	0,06	Z 0	DK 0	<0,05	Z 0	DK 0	1	1	3	10	-	-	1	ı
Thallium	mg/kg	<0,4	Z 0	DK 0	<0,4	Z 0	DK 0	1	1	3	10	-	-	-	-
Zink	mg/kg	75,0	Z 0	DK 0	42,0	Z 0	DK 0	200	300	500	1500	-	-	-	-
Kohlenwasserstoffe C ₁₀ -C ₂₂	mg/kg	25	Z 0	DK 0	<10	Z 0	DK 0	100	300	300	1.000	-	1	1	-
Kohlenwasserstoffe C_{10} - C_{40}	mg/kg	52	Z 0	DK 0	<10	Z 0	DK 0	-	600	600	2.000	500	-	-	-
∑ BTEX	mg/kg	-/-	Z 0	DK 0	-/-	Z 0	DK 0	1	1	3	5	6	-	-	-
∑ rhkm	mg/kg	-/-	Z 0	DK 0	-/-	Z 0	DK 0	1	1	3	5	-	-	-	-
∑ PCB ₆	mg/kg	-/-	Z 0	DK 0	-/-	Z 0	DK 0	0,05	0,1	0,5	1	1	-	-	-
Naphthalin	mg/kg	<0,05	Z 0	DK 0	<0,05	Z 0	DK 0	0,3	0,5	1	-	-	-	-	-
Benzo(a)pyren	mg/kg	1,50	Z 2	DK 0	<0,05	Z 0	DK 0	0,3	0,5	1	-	-	-	-	-
∑ PAK ₁₆ nach EPA	mg/kg	13,9	Z 1.2	DK 0	-/-	Z 0	DK 0	3	5	15	20	30	-	-	-

Ergebnisse nach Eluatkriterien LAGA M20 Boden (2003, Komplettuntersuchungsprogramm) Tab. II 1.2-3 mit landesspezifischer Anpassung des Freistaates Thüringen und Deponieverordnung (2020)

Parameter	Einheit	MP 1 Auffüllung	Z	DK	MP 2 nat. Boden	Z	DK	Z 0	Z 1.1	Z 1.2	Z 2	DK 0	DKI	DK II	DK III
pH-Wert		9,30	Z 1.2	DK 0	8,60	Z 0	DK 0	6,5-9	6,5-9	6-12	5,5-12	5,5-13	5,5-13	5,5-13	4-13
Elektr. Leitfähigkeit	μS/cm	93	Z 0	DK 0	96	Z 0	DK 0	500	500	1000	1500	-	-	-	-
Chlorid	mg/l	<1	Z 0	DK 0	<1	Z 0	DK 0	10	10	20	100	80	1500	1500	2500
Sulfat	mg/l	6,9	Z 0	DK 0	3,5	Z 0	DK 0	50	250	250	250	100	2.000	2.000	5.000
Cyanid ges.	mg/l	<0,0050	Z 0	DK 0	<0,0050	Z 0	DK 0	0,01	0,01	0,05	0,1	0,01	0,1	0,5	1
Phenol-Index	mg/l	<0,010	Z 0	DK 0	<0,010	Z 0	DK 0	0,01	0,01	0,05	0,1	0,1	0,2	50	100
Arsen	μg/l	<5	Z 0	DK 0	<5	Z 0	DK 0	10	10	40	60	50	200	200	2500
Blei	μg/l	<5	Z 0	DK 0	<5	Z 0	DK 0	20	40	100	200	50	200	1000	5000
Cadmium	μg/l	<0,5	Z 0	DK 0	<0,5	Z 0	DK 0	2	2	5	10	4	50	100	500
Chrom	μg/l	<5	Z 0	DK 0	<5	Z 0	DK 0	15	30	75	150	50	300	1.000	7.000
Kupfer	μg/l	<3	Z 0	DK 0	<3	Z 0	DK 0	50	50	150	300	200	1.000	5.000	10.000
Nickel	μg/l	<5	Z 0	DK 0	<5	Z 0	DK 0	40	50	150	200	40	200	1.000	4.000
Quecksilber	μg/l	<0,2	Z 0	DK 0	<0,2	Z 0	DK 0	0,2	0,2	1	2	1	5	20	200
Thallium	μg/l	<0,8	Z 0	DK 0	<0,8	Z 0	DK 0	<1	1	3	5	-	-	-	-
Zink	μg/l	<10	Z 0	DK 0	<10	Z 0	DK 0	100	100	300	600	400	2.000	5.000	20.000

 Einstufung
 LAGA DepV
 Z 2 DK 0
 Z 0 DK 0

 Abfallschlüssel AVV 170504 gefährlich Zuordnungswert AVV nein nein nein

überschreitung

-, n.a. nicht analysiert

-/-, n.ber. nicht berechenbar, da alle Werte kleiner Bestimmungsgrenze

Grundlage für die Bewertung sind Anforderungen an die Verwertung mineralischer Abfälle vom Freistaat Thüringen: https://umwelt.thueringen.de/themen/kreislauf-u-abfallwirtschaft/

WESSLING GmbH Moritzburger Weg 67 · 01109 Dresden www.wessling.de

WESSLING GmbH, Moritzburger Weg 67, 01109 Dresden

Ingenieurbüro für Baugrund JACOBI GmbH Robert Bsteh Straße des Friedens 4 99094 Erfurt Geschäftsfeld: Umwelt

Ansprechpartner R. Teufert

Durchwahl: +49 351 8 116 4927

E-Mail: Roswitha.Teufert @wessling.de

Prüfbericht

Prüfbericht Nr.: CDR21-004250-1 Datum: 19.07.2021

Auftrag Nr.: CDR-01624-21

Auftrag: Löwenpark, Erfurt

Rosush hal

Roswitha Teufert

Sachverständige Umwelt und Wasser

Dipl.-Ing. Gärungstechnologie

WESSLING GmbH Moritzburger Weg 67 · 01109 Dresden www.wessling.de

Probeninformation

Probe Nr.	21-112383-01
Bezeichnung	RKS 1-7 (0,3-1,3m)
Probenart	Aushubboden
Proben-ID	01624865387128
Probenahme	22.06.2021
Probenahme durch	Auftraggeber
Probenehmer	Bsteh
Probengefäß	kleiner Eimer
Eingangsdatum	29.06.2021
Untersuchungsbeginn	29.06.2021
Untersuchungsende	19.07.2021

Physikalische Untersuchung

	21-112383-01	Einheit	Bezug	Methode	aS
Art des Trocknungsverfahrens	Trocknung 105°C		os	DIN EN 14346 (2007-03) A	AL
Trockenrückstand	87,5	Gew%	os	DIN EN 14346 (2007-03) A	AL
pH-Wert (CaCl2)	7,9		os	DIN ISO 10390 (2005-12)	AL

Eluaterstellung

	21-112383-01	Einheit	Bezug	Methode	aS
Volumen des Auslaugungsmittel	986,0	ml	os	DIN EN 12457-4 (2003-01) ^Å	AL
Frischmasse der Messprobe	114,3	g	os	DIN EN 12457-4 (2003-01) ^A	AL
Erstellung eines Eluats	08.07.2021		os	DIN EN 12457-4 (2003-01) ^A	AL
Feuchtegehalt	14,3	Gew%	TS	DIN EN 12457-4 (2003-01) ^A	AL

Extraktions- und Reinigungsverfahren

	21-112383-01	Einheit	Bezug	Methode	aS
Aufschlussverfahren Königswasserextrakt	thermischer Aufschluss		TS 40°C	DIN EN 13657 Verf. III (2003-01) ^A	AL
Extraktionsverfahren (KW)	Fest-flüssig		os	DIN EN 14039 (2005-01) i.V. LAGA KW/04 (2019-09) ^A	AL
Reinigungsverfahren (KW)	Schüttel-clean-up		os	DIN EN 14039 (2005-01) i.V. LAGA KW/04 (2019-09) ^A	AL
Extraktionsverfahren (PCB)	Schütteln		os	DIN EN 15308 (2016-12) ^A	AL
Reinigungsverfahren (PCB)	Reinigung mit Florisil		os	DIN EN 15308 (2016-12) ^A	AL

WESSLING GmbH Moritzburger Weg 67 · 01109 Dresden www.wessling.de

Im Königswasser-Aufschluss

Elemente

	21-112383-01	Einheit	Bezug	Methode	aS
Arsen (As)	8,3	mg/kg	TS	DIN EN ISO 17294-2 (2017-01) ^A	AL
Blei (Pb)	20	mg/kg	TS	DIN EN ISO 17294-2 (2017-01) A	AL
Cadmium (Cd)	<0,4	mg/kg	TS	DIN EN ISO 17294-2 (2017-01) A	AL
Chrom (Cr)	28	mg/kg	TS	DIN EN ISO 17294-2 (2017-01) A	AL
Kupfer (Cu)	15	mg/kg	TS	DIN EN ISO 17294-2 (2017-01) A	AL
Nickel (Ni)	16	mg/kg	TS	DIN EN ISO 17294-2 (2017-01) A	AL
Thallium (TI)	<0,4	mg/kg	TS	DIN EN ISO 17294-2 (2017-01) A	AL
Zink (Zn)	75	mg/kg	TS	DIN EN ISO 17294-2 (2017-01) A	AL
Quecksilber (Hg)	0,061	mg/kg	TS	DIN EN ISO 12846 (2012-08) ^A	AL

Summenparameter

	21-112383-01	Einheit	Bezug	Methode	aS
Cyanid (CN), ges.	0,14	mg/kg	TS	DIN ISO 17380 (2013-10)	AL
EOX	<0,5	mg/kg	TS	DIN 38414 S17 (2017-01)	AL
Kohlenwasserstoffe C10-C22	25	mg/kg	TS	DIN EN 14039 (2005-01) i.V. LAGA KW/04 (2019-09) ^A	AL
Kohlenwasserstoffe C10-C40	52	mg/kg	TS	DIN EN 14039 (2005-01) i.V. LAGA KW/04 (2019-09) ^A	AL
TOC	0,39	Gew%	TS	DIN EN 15936 (2012-11) A	OP

Leichtflüchtige aromatische Kohlenwasserstoffe (BTEX)

	21-112383-01	Einheit	Bezug	Methode	aS
Benzol	<0,11	mg/kg	TS	DIN EN ISO 22155 (2016-07) ^A	AL
Toluol	<0,11	mg/kg	TS	DIN EN ISO 22155 (2016-07) A	AL
Ethylbenzol	<0,11	mg/kg	TS	DIN EN ISO 22155 (2016-07) ^A	AL
m-, p-Xylol	<0,11	mg/kg	TS	DIN EN ISO 22155 (2016-07) ^A	AL
o-Xylol	<0,11	mg/kg	TS	DIN EN ISO 22155 (2016-07) ^A	AL
Cumol	<0,11	mg/kg	TS	DIN EN ISO 22155 (2016-07) ^A	AL
Styrol	<0,11	mg/kg	TS	DIN EN ISO 22155 (2016-07) ^A	AL
Summe quantifizierter BTEX	-/-	mg/kg	TS	DIN EN ISO 22155 (2016-07) ^A	AL

WESSLING GmbH Moritzburger Weg 67 · 01109 Dresden www.wessling.de

Polycyclische aromatische Kohlenwasserstoffe (PAK)

	21-112383-01	Einheit	Bezug	Methode	aS
Naphthalin	<0,05	mg/kg	TS	DIN 38414 S23 (2002-02)	AL
Acenaphthylen	<0,50	mg/kg	TS	DIN 38414 S23 (2002-02)	AL
Acenaphthen	0,07	mg/kg	TS	DIN 38414 S23 (2002-02)	AL
Fluoren	0,10	mg/kg	TS	DIN 38414 S23 (2002-02)	AL
Phenanthren	0,86	mg/kg	TS	DIN 38414 S23 (2002-02)	AL
Anthracen	0,31	mg/kg	TS	DIN 38414 S23 (2002-02)	AL
Fluoranthen	2,7	mg/kg	TS	DIN 38414 S23 (2002-02)	AL
Pyren	2,6	mg/kg	TS	DIN 38414 S23 (2002-02)	AL
Benzo(a)anthracen	1,5	mg/kg	TS	DIN 38414 S23 (2002-02)	AL
Chrysen	1,1	mg/kg	TS	DIN 38414 S23 (2002-02)	AL
Benzo(b)fluoranthen	0,80	mg/kg	TS	DIN 38414 S23 (2002-02)	AL
Benzo(k)fluoranthen	0,62	mg/kg	TS	DIN 38414 S23 (2002-02)	AL
Benzo(a)pyren	1,5	mg/kg	TS	DIN 38414 S23 (2002-02)	AL
Dibenz(ah)anthracen	0,13	mg/kg	TS	DIN 38414 S23 (2002-02)	AL
Indeno(1,2,3-cd)pyren	0,78	mg/kg	TS	DIN 38414 S23 (2002-02)	AL
Benzo(ghi)perylen	0,73	mg/kg	TS	DIN 38414 S23 (2002-02)	AL
Summe quantifizierter PAK	13,9	mg/kg	TS	DIN 38414 S23 (2002-02)	AL

Polychlorierte Biphenyle (PCB)

	21-112383-01	Einheit	Bezug	Methode	aS
PCB Nr. 28	<0,010	mg/kg	TS	DIN EN 15308 (2016-12) A	AL
PCB Nr. 52	<0,010	mg/kg	TS	DIN EN 15308 (2016-12) A	AL
PCB Nr. 101	<0,010	mg/kg	TS	DIN EN 15308 (2016-12) ^A	AL
PCB Nr. 138	<0,010	mg/kg	TS	DIN EN 15308 (2016-12) A	AL
PCB Nr. 153	<0,010	mg/kg	TS	DIN EN 15308 (2016-12) ^A	AL
PCB Nr. 180	<0,010	mg/kg	TS	DIN EN 15308 (2016-12) A	AL
Summe der 6 PCB	-/-	mg/kg	TS	DIN EN 15308 (2016-12) A	AL
PCB Nr. 118	<0,010	mg/kg	TS	DIN EN 15308 (2016-12) A	AL
Summe der 7 PCB	-/-	mg/kg	TS	DIN EN 15308 (2016-12) A	AL

WESSLING GmbH Moritzburger Weg 67 · 01109 Dresden www.wessling.de

Leichtflüchtige halogenierte Kohlenwasserstoffe (LHKW)

	21-112383-01	Einheit	Bezug	Methode	aS
Dichlormethan	<0,1	mg/kg	TS	DIN EN ISO 22155 (2016-07) ^A	AL
cis-1,2-Dichlorethen	<0,1	mg/kg	TS	DIN EN ISO 22155 (2016-07) ^A	AL
Trichlormethan	<0,1	mg/kg	TS	DIN EN ISO 22155 (2016-07) ^A	AL
Tetrachlormethan	<0,1	mg/kg	TS	DIN EN ISO 22155 (2016-07) ^A	AL
1,1,1-Trichlorethan	<0,1	mg/kg	TS	DIN EN ISO 22155 (2016-07) ^A	AL
Trichlorethen	<0,1	mg/kg	TS	DIN EN ISO 22155 (2016-07) ^A	AL
Tetrachlorethen	<0,1	mg/kg	TS	DIN EN ISO 22155 (2016-07) ^A	AL
Vinylchlorid	<0,1	mg/kg	TS	DIN EN ISO 22155 (2016-07) ^A	AL
Summe quantifizierter LHKW	-/-	mg/kg	TS	DIN EN ISO 22155 (2016-07) ^A	AL

Im Eluat

Physikalische Untersuchung

	21-112383-01	Einheit	Bezug	Methode	aS
pH-Wert	9,3		EL	DIN EN ISO 10523 (2012-04) ^A	AL
Messtemperatur pH-Wert	20,9	°C	EL	DIN EN ISO 10523 (2012-04) ^A	AL
Leitfähigkeit [25°C], elektrische	93	μS/cm	EL	DIN EN 27888 (1993-11) ^A	AL

Anionen

	21-112383-01	Einheit	Bezug	Methode	aS
Chlorid (CI)	<1	mg/l	EL	DIN EN ISO 10304-1 (2009-07) ^A	AL
Sulfat (SO4)	6,9	mg/l	EL	DIN EN ISO 10304-1 (2009-07) ^A	AL

Summenparameter

	21-112383-01	Einheit	Bezug	Methode	aS
Cyanid (CN), ges.	<0,0050	mg/l	EL	DIN EN ISO 14403-2 (2012-10) ^A	AL
Phenol-Index nach Destillation	<0,010	mg/l	EL	DIN EN ISO 14402 (1999-12) ^A	AL

Elemente

	21-112383-01	Einheit	Bezug	Methode	aS
Arsen (As)	<5	μg/l	EL	DIN EN ISO 17294-2 (2017-01) ^A	AL
Blei (Pb)	<5	μg/l	EL	DIN EN ISO 17294-2 (2017-01) ^A	AL
Cadmium (Cd)	<0,5	μg/l	EL	DIN EN ISO 17294-2 (2017-01) ^A	AL
Chrom (Cr)	<5	μg/l	EL	DIN EN ISO 17294-2 (2017-01) ^A	AL
Kupfer (Cu)	<3	μg/l	EL	DIN EN ISO 17294-2 (2017-01) ^A	AL
Nickel (Ni)	<5	μg/l	EL	DIN EN ISO 17294-2 (2017-01) ^A	AL
Zink (Zn)	<10	μg/l	EL	DIN EN ISO 17294-2 (2017-01) ^A	AL
Thallium (TI)	<0,8	μg/l	EL	DIN EN ISO 17294-2 (2017-01) ^A	AL
Quecksilber (Hg)	<0,2	μg/l	EL	DIN EN ISO 12846 (2012-08) ^A	AL

WESSLING GmbH Moritzburger Weg 67 · 01109 Dresden www.wessling.de

Probeninformation

Probe Nr.	21-112383-02
Bezeichnung	RKS 1-7 (1,0-2,0m)
Probenart	Aushubboden
Proben-ID	11624865387129
Probenahme	22.06.2021
Probenahme durch	Auftraggeber
Probenehmer	Bsteh
Probengefäß	kleiner Eimer
Eingangsdatum	29.06.2021
Untersuchungsbeginn	29.06.2021
Untersuchungsende	19.07.2021

Physikalische Untersuchung

	21-112383-02	Einheit	Bezug	Methode	aS
Art des Trocknungsverfahrens	Trocknung 105°C		os	DIN EN 14346 (2007-03) A	AL
Trockenrückstand	84,3	Gew%	os	DIN EN 14346 (2007-03) A	AL
pH-Wert (CaCl2)	7,8		os	DIN ISO 10390 (2005-12)	AL

Eluaterstellung

	21-112383-02	Einheit	Bezug	Methode	aS
Volumen des Auslaugungsmittel	981,0	ml	os	DIN EN 12457-4 (2003-01) ^A	AL
Frischmasse der Messprobe	118,6	g	os	DIN EN 12457-4 (2003-01) ^A	AL
Erstellung eines Eluats	08.07.2021		os	DIN EN 12457-4 (2003-01) ^A	AL
Feuchtegehalt	18,6	Gew%	TS	DIN EN 12457-4 (2003-01) ^A	AL

Extraktions- und Reinigungsverfahren

	21-112383-02	Einheit	Bezug	Methode	aS
Aufschlussverfahren Königswasserextrakt	thermischer Aufschluss		TS 40°C	DIN EN 13657 Verf. III (2003-01) ^A	AL
Extraktionsverfahren (KW)	Fest-flüssig		os	DIN EN 14039 (2005-01) i.V. LAGA KW/04 (2019-09) ^A	AL
Reinigungsverfahren (KW)	Schüttel-clean-up		os	DIN EN 14039 (2005-01) i.V. LAGA KW/04 (2019-09) ^A	AL
Extraktionsverfahren (PCB)	Schütteln		os	DIN EN 15308 (2016-12) ^A	AL
Reinigungsverfahren (PCB)	Reinigung mit Florisil		os	DIN EN 15308 (2016-12) A	AL

WESSLING GmbH Moritzburger Weg 67 · 01109 Dresden www.wessling.de

Im Königswasser-Aufschluss

Elemente

	21-112383-02	Einheit	Bezug	Methode	aS
Arsen (As)	6,9	mg/kg	TS	DIN EN ISO 17294-2 (2017-01) ^A	AL
Blei (Pb)	17	mg/kg	TS	DIN EN ISO 17294-2 (2017-01) ^A	AL
Cadmium (Cd)	<0,4	mg/kg	TS	DIN EN ISO 17294-2 (2017-01) ^A	AL
Chrom (Cr)	38	mg/kg	TS	DIN EN ISO 17294-2 (2017-01) ^A	AL
Kupfer (Cu)	21	mg/kg	TS	DIN EN ISO 17294-2 (2017-01) ^A	AL
Nickel (Ni)	38	mg/kg	TS	DIN EN ISO 17294-2 (2017-01) ^A	AL
Thallium (TI)	<0,4	mg/kg	TS	DIN EN ISO 17294-2 (2017-01) ^A	AL
Zink (Zn)	42	mg/kg	TS	DIN EN ISO 17294-2 (2017-01) ^A	AL
Quecksilber (Hg)	<0,05	mg/kg	TS	DIN EN ISO 12846 (2012-08) ^A	AL

Summenparameter

	21-112383-02	Einheit	Bezug	Methode	aS
Cyanid (CN), ges.	<0,1	mg/kg	TS	DIN ISO 17380 (2013-10)	AL
EOX	<0,5	mg/kg	TS	DIN 38414 S17 (2017-01)	AL
Kohlenwasserstoffe C10-C22	<10	mg/kg	TS	DIN EN 14039 (2005-01) i.V. LAGA KW/04 (2019-09) ^A	AL
Kohlenwasserstoffe C10-C40	<10	mg/kg	TS	DIN EN 14039 (2005-01) i.V. LAGA KW/04 (2019-09) ^A	AL
TOC	0,38	Gew%	TS	DIN EN 15936 (2012-11) ^A	ОР

Leichtflüchtige aromatische Kohlenwasserstoffe (BTEX)

	21-112383-02	Einheit	Bezug	Methode	aS
Benzol	<0,12	mg/kg	TS	DIN EN ISO 22155 (2016-07) ^A	AL
Toluol	<0,12	mg/kg	TS	DIN EN ISO 22155 (2016-07) ^A	AL
Ethylbenzol	<0,12	mg/kg	TS	DIN EN ISO 22155 (2016-07) ^A	AL
m-, p-Xylol	<0,12	mg/kg	TS	DIN EN ISO 22155 (2016-07) ^A	AL
o-Xylol	<0,12	mg/kg	TS	DIN EN ISO 22155 (2016-07) ^A	AL
Cumol	<0,12	mg/kg	TS	DIN EN ISO 22155 (2016-07) ^A	AL
Styrol	<0,12	mg/kg	TS	DIN EN ISO 22155 (2016-07) ^A	AL
Summe quantifizierter BTEX	-/-	mg/kg	TS	DIN EN ISO 22155 (2016-07) ^A	AL

WESSLING GmbH Moritzburger Weg 67 · 01109 Dresden www.wessling.de

Polycyclische aromatische Kohlenwasserstoffe (PAK)

	21-112383-02	Einheit	Bezug	Methode	aS
Naphthalin	<0,05	mg/kg	TS	DIN 38414 S23 (2002-02)	AL
Acenaphthylen	<0,50	mg/kg	TS	DIN 38414 S23 (2002-02)	AL
Acenaphthen	<0,05	mg/kg	TS	DIN 38414 S23 (2002-02)	AL
Fluoren	<0,05	mg/kg	TS	DIN 38414 S23 (2002-02)	AL
Phenanthren	<0,05	mg/kg	TS	DIN 38414 S23 (2002-02)	AL
Anthracen	<0,05	mg/kg	TS	DIN 38414 S23 (2002-02)	AL
Fluoranthen	<0,05	mg/kg	TS	DIN 38414 S23 (2002-02)	AL
Pyren	<0,05	mg/kg	TS	DIN 38414 S23 (2002-02)	AL
Benzo(a)anthracen	<0,05	mg/kg	TS	DIN 38414 S23 (2002-02)	AL
Chrysen	<0,05	mg/kg	TS	DIN 38414 S23 (2002-02)	AL
Benzo(b)fluoranthen	<0,05	mg/kg	TS	DIN 38414 S23 (2002-02)	AL
Benzo(k)fluoranthen	<0,05	mg/kg	TS	DIN 38414 S23 (2002-02)	AL
Benzo(a)pyren	<0,05	mg/kg	TS	DIN 38414 S23 (2002-02)	AL
Dibenz(ah)anthracen	<0,05	mg/kg	TS	DIN 38414 S23 (2002-02)	AL
Indeno(1,2,3-cd)pyren	<0,05	mg/kg	TS	DIN 38414 S23 (2002-02)	AL
Benzo(ghi)perylen	<0,05	mg/kg	TS	DIN 38414 S23 (2002-02)	AL
Summe quantifizierter PAK	-/-	mg/kg	TS	DIN 38414 S23 (2002-02)	AL

Polychlorierte Biphenyle (PCB)

	21-112383-02	Einheit	Bezug	Methode	aS
PCB Nr. 28	<0,010	mg/kg	TS	DIN EN 15308 (2016-12) A	AL
PCB Nr. 52	<0,010	mg/kg	TS	DIN EN 15308 (2016-12) A	AL
PCB Nr. 101	<0,010	mg/kg	TS	DIN EN 15308 (2016-12) ^A	AL
PCB Nr. 138	<0,010	mg/kg	TS	DIN EN 15308 (2016-12) ^A	AL
PCB Nr. 153	<0,010	mg/kg	TS	DIN EN 15308 (2016-12) ^A	AL
PCB Nr. 180	<0,010	mg/kg	TS	DIN EN 15308 (2016-12) ^A	AL
Summe der 6 PCB	-/-	mg/kg	TS	DIN EN 15308 (2016-12) A	AL
PCB Nr. 118	<0,010	mg/kg	TS	DIN EN 15308 (2016-12) A	AL
Summe der 7 PCB	-/-	mg/kg	TS	DIN EN 15308 (2016-12) A	AL

WESSLING GmbH Moritzburger Weg 67 · 01109 Dresden www.wessling.de

Leichtflüchtige halogenierte Kohlenwasserstoffe (LHKW)

	21-112383-02	Einheit	Bezug	Methode	aS
Dichlormethan	<0,1	mg/kg	TS	DIN EN ISO 22155 (2016-07) ^A	AL
cis-1,2-Dichlorethen	<0,1	mg/kg	TS	DIN EN ISO 22155 (2016-07) ^A	AL
Trichlormethan	<0,1	mg/kg	TS	DIN EN ISO 22155 (2016-07) ^A	AL
Tetrachlormethan	<0,1	mg/kg	TS	DIN EN ISO 22155 (2016-07) ^A	AL
1,1,1-Trichlorethan	<0,1	mg/kg	TS	DIN EN ISO 22155 (2016-07) ^A	AL
Trichlorethen	<0,1	mg/kg	TS	DIN EN ISO 22155 (2016-07) ^A	AL
Tetrachlorethen	<0,1	mg/kg	TS	DIN EN ISO 22155 (2016-07) ^A	AL
Vinylchlorid	<0,1	mg/kg	TS	DIN EN ISO 22155 (2016-07) ^A	AL
Summe quantifizierter LHKW	-/-	mg/kg	TS	DIN EN ISO 22155 (2016-07) ^A	AL

Im Eluat

Physikalische Untersuchung

	21-112383-02	Einheit	Bezug	Methode	aS
pH-Wert	8,6		EL	DIN EN ISO 10523 (2012-04) ^A	AL
Messtemperatur pH-Wert	21,1	°C	EL	DIN EN ISO 10523 (2012-04) ^A	AL
Leitfähigkeit [25°C], elektrische	96	μS/cm	EL	DIN EN 27888 (1993-11) ^A	AL

Anionen

	21-112383-02	Einheit	Bezug	Methode	aS
Chlorid (CI)	<1	mg/l	EL	DIN EN ISO 10304-1 (2009-07) A	AL
Sulfat (SO4)	3,5	mg/l	EL	DIN EN ISO 10304-1	AL

Summenparameter

	21-112383-02	Einheit	Bezug	Methode	aS
Cyanid (CN), ges.	<0,0050	mg/l	EL	DIN EN ISO 14403-2 (2012-10) ^A	AL
Phenol-Index nach Destillation	<0,010	mg/l	EL	DIN EN ISO 14402 (1999-12) ^A	AL

Elemente

	21-112383-02	Einheit	Bezug	Methode	aS
Arsen (As)	<5	μg/l	EL	DIN EN ISO 17294-2 (2017-01) ^Å	AL
Blei (Pb)	<5	μg/l	EL	DIN EN ISO 17294-2 (2017-01) ^A	AL
Cadmium (Cd)	<0,5	μg/l	EL	DIN EN ISO 17294-2 (2017-01) ^A	AL
Chrom (Cr)	<5	μg/l	EL	DIN EN ISO 17294-2 (2017-01) ^A	AL
Kupfer (Cu)	<3	μg/l	EL	DIN EN ISO 17294-2 (2017-01) ^A	AL
Nickel (Ni)	<5	μg/l	EL	DIN EN ISO 17294-2 (2017-01) ^A	AL
Zink (Zn)	<10	μg/l	EL	DIN EN ISO 17294-2 (2017-01) ^A	AL
Thallium (TI)	<0,8	μg/l	EL	DIN EN ISO 17294-2 (2017-01) ^A	AL
Quecksilber (Hg)	<0,2	μg/l	EL	DIN EN ISO 12846 (2012-08) A	AL

WESSLING GmbH Moritzburger Weg 67 · 01109 Dresden www.wessling.de

21-112383-01

Eine parameterspezifische Analysenprobe zur Bestimmung leichtflüchtiger organischer Stoffe, d.h. eine mit Methanol überschichtete Stichprobe, ist nicht angeliefert worden. Minderbefunde der vorgenannten Stoffe können nicht ausgeschlossen werden. Ergänzend ist anzumerken, dass die Entnahme einer parameterspezifischen Analysenprobe in Abhängigkeit von der Körnigkeit des zu beprobenden Materials u.U. nicht möglich ist.

Legende

aS ausführender Standort
 DS Originalsubstanz
 TS Trockensubstanz TS 40°C
 EL Eluat
 AL Altenberge

OP Oppin

